Bike Crank AIM- Numerical Results

Author(s): Andrew Dawd, Cornell University

Problem Specification

- 1. Pre-Analysis & Start-Up
- 2. Geometry
- 3. Mesh
- 4. Physics Setup
- 5. Numerical Solution
- 6. Numerical Results
- 7. Verification & Validation

Comments

Numerical Results

The following video shows how to plot the deformed shape and use it to check if the displacement constraints have been applied correctly.

Summary of steps in the above video:

- 1. In the Results main window, under the Objects tab, Click Add near "Results" Click on "CONTOUR"
- 2. Add the body of the crank using the body select tool
- 3. Under "Variable", select "Displacement Magnitude" Click Generate and analyze the results of the contour map

Sigma_x Conturs

We next take a look at $_{\rm x}$ variation in the model.

Summary of steps in the above video:

- 1. Click on ADD next to "Results" and add another "Contour"
- 2. Make sure the the location is specified
- 3. Under "Variable", scroll down to "Stress" and click on "Stress XX" You can also rename the Contour
- 4. Update and analyze results

Go to Step 7: Verification & Validation

Go to all (ANSYS or FLUENT) Learning Modules