
1.

CS 4786 Spring 2015 - Competition 2
Prefatory note Competition 2, "you said what"?!

Due date The due date is May 11th, 4:30 PM on CMS. Submit what you
have at least once by an hour before that deadline, even if you haven’t
quite added all the finishing touches — CMS allows resubmissions up
to, but not after, the deadline. If there is an emergency such that you
need an extension, contact the professors.

How to form groups for this competition You may work in groups of
one up to four , where your group was formed by you (ASAP, and 1

certainly by May 1st) . Please ensure that each member of the group
can individually defend or explain your group’s submission equally well.

Footnote: The choice of the number
“four” is intended to reflect the idea of
allowing collaboration, but requiring that
all group members be able to fit “all
together at the whiteboard”, and thus all
be participating equally at all times.
(Admittedly, it will be a tight squeeze
around a laptop, but please try.)

Collaboration and academic integrity policy

Students may discuss and exchange ideas with students not in their
group, but only at the conceptual level.

We distinguish between “merely” violating the rules for a given
assignment and violating academic integrity. To violate the latter is to
commit fraud by claiming credit for someone else’s work. For this
assignment, an example of the former would be getting detailed
feedback on your approach from person X who is not in your group but
stating in your homework that X was the source of that particular
answer. You would cross the line into fraud if you did not mention X. The
worst-case outcome for the former is a grade penalty; the worst-case
scenario in the latter is academic-integrity hearing procedures.

The way to avoid violating academic integrity is to always document any
portions of work you submit that are due to or influenced by other
sources, even if those sources weren’t permitted by the rules.2

2. Footnote: We make an exception for sources
that can be taken for granted in the instructional
setting, namely, the course materials. To
minimize documentation effort, we also do not
expect you to credit the course staff for ideas you
get from them, although it’s nice to do so anyway.

Data

Here is a link to a page where you can view "diffs" between any two
: use the "compare selected versions" feature to highlight versions

precisely what text was added or deleted.

Version Published Changed

By

Comment

 (v. 9)CURRENT May 19, 2015 08:31 Lillian
Lee

added reference to hmmlearn and Jack's progress-bar code

v. 8 May 10, 2015 18:30 Lillian
Lee

references to other HMM toolboxes

v. 7 Apr 30, 2015 15:39 Lillian
Lee

add requirement of HMM experiments

v. 6 Apr 30, 2015 15:33 Lillian
Lee

minor: kaggle leaderboard turned out to be public

v. 5 Apr 29, 2015 11:03 Lillian
Lee

remove mention of README in data given to students

v. 4 Apr 28, 2015 22:10 Lillian
Lee

update due date, add sidebar, a few minor edits

v. 3 Apr 28, 2015 21:55 Karthik
Sridharan

v. 2 Apr 28, 2015 15:25 Karthik
Sridharan

v. 1 Apr 28, 2015 13:30 Lillian
Lee

https://confluence.cornell.edu/pages/viewpreviousversions.action?pageId=314803455
https://confluence.cornell.edu/pages/viewpreviousversions.action?pageId=314803455
viewpage.action?pageId=314803455
 /display/~ljl2

 /display/~ljl2

viewpage.action?pageId=317424103
 /display/~ljl2

 /display/~ljl2

viewpage.action?pageId=316178464
 /display/~ljl2

 /display/~ljl2

viewpage.action?pageId=314805015
 /display/~ljl2

 /display/~ljl2

viewpage.action?pageId=314804997
 /display/~ljl2

 /display/~ljl2

viewpage.action?pageId=314804045
 /display/~ljl2

 /display/~ljl2

viewpage.action?pageId=314803792
 /display/~ks999

 /display/~ks999

viewpage.action?pageId=314803787
 /display/~ks999

 /display/~ks999

viewpage.action?pageId=314803655
 /display/~ljl2

 /display/~ljl2

1.
2.

1.

2.

First, download the and unzip it. data zipfile The data provided to you
consists this time is speech data (spoken words). Specifically, the data

of people (both male and female) speaking one of a set of seven words.
Your goal is, given the speech data for a particular word utterance
identify the word being spoken. Mel-frequency Cepstral coefficients
(MFCC) is a standard feature extraction technique for speech data. This
has been performed for you and you are provided with the feature-
extracted data-set. Specifically, each word occurrence is broken into
windows of time unit and for every window of speech, there are 13
numbers representing the MFC coefficients of that window. Each
utterance of a word is represented by a sequence of 83 windows (so
overall 83 times 13 = 1079 numbers for each data point or word
utterance). If the utterance was shorter than 83 windows, we simply
padded the remainder with 0’s so that every word utterance produces a
vector of same size. We have provided a training set consisting of word
utterances in file “train.data” in csv format where each line represents a
particular word utterance by a speaker. The labels of which word was
spoken is provided in file "train.labels". This file is in Kaggle format. That
is, the first line of this file is "Id,Prediction" and every subsequent line
has two comma separated values, the first indicating which line in the
"train.data" file is being referred to and the second value indicates which
of the seven words (from "0" to "6") was the actual spoken word. You
can use this data to train a machine learning algorithm to automatically
classify word utterances into one of the 7 words being said based on the
feature extracted speech data.

Q1 (Challenge: identify what was said).

As for the task, you are also provided with another file "test.data"
consisting of 1540 test utterances that you need to classify as being one
of the seven words based on the machine learning model you trained

Your goal is to produce a file consisting based on the training sample.
of 1541 comma-separated lines, where, to conform to what Kaggle is

:expecting

The first line should be "Id,Prediction".
Each subsequent line consists of two comma-separated
numbers: the first number is which word utterance is being
referred to, , and the second number is one starting with line 0
of “0” to “6”. So, the second line in your csv file (the one after
"Id,Prediction" will be "0,0" ,...,or "0,6". You will name this file
“test.csv”. We will evaluate your grouping against the ground
truth (which is of course hidden from you). Your goal is to make
as few mistakes as possible.

Deliverables and instructions: Part of the competition is on Kaggle so
do sign up and compete. This time however we are planning to make
the leader board private. So you will get to know your accuracy but not

 (your rank. We will release statistics from leaderboard from time to time.
We were not able to configure the leaderboard to be private-only.) At
the end of the competition you will be required to submit one data file
described in the question above (as a zip file) the code for your best-and
performing submission, such that we could reproduce your results if
necessary for grading. (In order to do so, we need to know the values of
any parameters you set; please include these in your README and
writeup.) But more importantly you need to also submit a writeup/report
(“writeup.pdf”) of the things you tried and why you tried them
(irrespective of whether they worked or failed). The writeup will count
for at least as much of the grade as the empirical results of the final
labels you submit.

Here are a few other remarks:

0. We are declining to pre-specify too many regulations on your writeup
because we want this competition to be somewhat open-ended, so with
respect to format, our intent is just that you submit "something we find
reasonable". To that end, we do require that

this report is at least 5 pages long and not more than 15 pages,
but with font sizes, spacing, etc., we just expect you to do
something reasonable. (See item 6 below.)

http://www.cs.cornell.edu/Courses/cs4786/2015sp/assignments/competition_2.zip

2. you include all of your names, netids, and the name of your
Kaggle team at the beginning of your document

1. Include visualizations of both successful and unsuccessful trials.

2. Make a note of all successful and unsuccessful methods you tried.
Explain why you made the choices you made and why you expected
them to work both for successful and not-so-successful choices and
take a shot at explaining why the less successful ones were in fact not
so successful.

3. Organize your writeup into sections where each section (and its title)
corresponds to a particular method.

4. You are certainly encouraged to try methods you might have picked
up outside those covered in class and maybe even extensions you
develop on your own for the problem!. If you use methods other than
ones covered in class, do compare the performance both empirically
and conceptually with (a reasonable choice of) methods covered in
class.

5. We will definitely award karma points for work that goes above and
beyond, and have made this competition somewhat open-ended to that
end. Our definition of "work" emphasizes novelty and well-foundedness
of methods tried, but also includes presentation aspects of your writeup,
and we are hoping to see some striking visualizations (for instance, that
demonstrate a clever analysis of an algorithm or its failings/successes.)

6. Your ranking on Kaggle will form a small part of your grade for this
assignment. Much more importantly, you can (and, really, ought to) get
feedback on how good your approaches are by getting them judged on
Kaggle. The earlier you start, the more tries you get, since your group is
limited to two Kaggle submissions a day! However unlike competition 1,
you have a training sample provided to you. You can set aside some
percentage of this data for validation of your algorithm or model without
having to submit to kaggle everytime.

8. Please check for new/edited drafts of this instruction document,
as it will keep getting updated. (a) We recommend you set things up
so that you get emailed an update when this page pages: to do
this, log in to confluence using your netid and netid password and then s
et a "watch" on this page by clicking the "Watch" option near the top
right (it has an "eye" icon next to it). (b) Regardless of whether you set
a watch or not, the right-hand side of this page shows when the page
has been changed and, hopefully, a comment documentation what the
changes were. Even better, you can see a diff of what changes have
been made between different versions ---- a handy feature that is the
main reason we switched to a wiki format for these instructions. To do
so, click on the link indicated at the top of the right-hand side of this
page. This will bring you to the "Page History" page. There, you can
select checkboxes to select any two current or past versions of this
page; then, click on "Compare selected versions".

9. The zipfile of code you submit needs to include a README.txt file
that explains how we can run your code. Include in the README the
exact values of any parameters you set to achieve your best result. The
code should be "standalone" in the sense you should include any extra
modules, libraries, etc. that you wouldn't expect our standard installs of
R, Matlab, python, numpy, etc. to necessarily have.

10. Include in your writeup the values of any parameters you set for your
best results. These values should also be in your README, as stated in
point 9.

11. So that this competition exercises some of the graphical-models
material we have covered, we that you experiment with HMMs require
and describe your experiments in your writeup.

Matlab provides an . I've heard some recommendations of HMM Toolbox
Kevin Murphy's Matlab/Octave code: , older general toolbox HMM toolbox
(page also list some other HMM packages). Here is some discussion of

. TA 's basic python HMM Python libraries for HMMs Jack Hessel
implementation uses hmmlearn and is under 100 lines long (with about
twenty lines being devoted to a progress bar).

Since a progress bar might be of general interest, we show Jack's
implementation here.

https://confluence.atlassian.com/display/DOC/Watch+Pages,+Spaces+and+Blogs
https://confluence.atlassian.com/display/DOC/Watch+Pages,+Spaces+and+Blogs
https://confluence.atlassian.com/display/DOC/Page+History+and+Page+Comparison+Views
https://confluence.atlassian.com/display/DOC/Page+History+and+Page+Comparison+Views
http://www.mathworks.com/help/stats/hidden-markov-models-hmm.html
https://github.com/probml/pmtk3
http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html
http://www.quora.com/What-is-the-best-Python-library-for-Hidden-Markov-Models
http://www.quora.com/What-is-the-best-Python-library-for-Hidden-Markov-Models
http://www.cs.cornell.edu/~jhessel/

print "Running Classification"
 lb = LoadBar(30); lb.setup()
 with open(args.output, 'w') as f:
 f.write("Id,Prediction\n")
 for ind, t in enumerate(test):
 if lb.test(ind, len(test)): lb += 1
 curMaxInd = -1
 curMax = np.finfo('f').min
 for i in range(7):
 curProb = hmms[i].score(t)
 if curProb > curMax:
 curMax = curProb
 curMaxInd = i
 f.write(str(ind) + "," + str(curMaxInd) +
"\n")
 lb.clear()

#Fancy things for the loading bar
class LoadBar():
 def __init__(self, width):
 self.width = width

def setup(self):
 sys.stdout.write("[%s]" % (" " * self.width))
 sys.stdout.flush()
 sys.stdout.write("\b" * (self.width+1))

def __iadd__(self, amnt):
 sys.stdout.write("*"*amnt)
 sys.stdout.flush()
 return self

def test(self, i, length):
 try:
 return i!=0 and i%(length/self.width)==0
 except ZeroDivisionError:
 return True
 def clear(self):
 sys.stdout.write("\n")

	CS 4786 Spring 2015 - Competition 2

