FLUENT - Bifurcating Artery

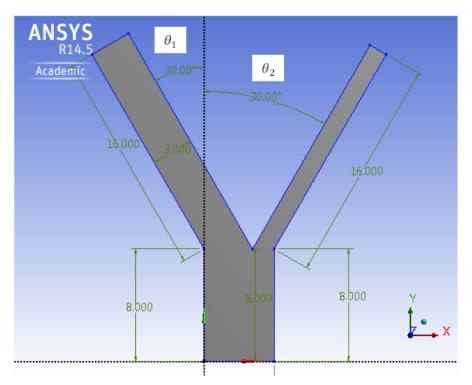
Author: Rajesh Bhaskaran & Sebastien Lachance-Barrett, Cornell University

Problem Specification 1. Pre-Analysis & Start-Up
2. Geometry
3. Mesh
4. Physics Setup
5. Numerical Solution
6. Numerical Results
7. Verification & Validation
Exercises
Comments

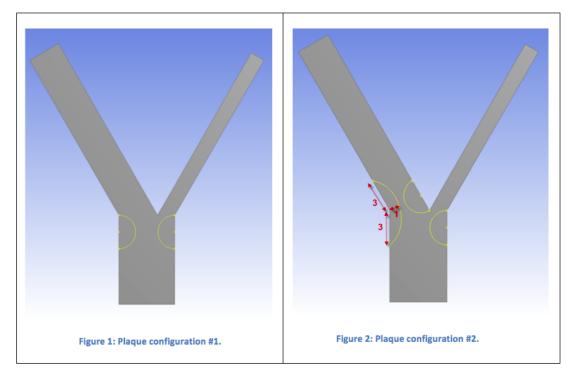
2D Bifurcating Artery

Created using ANSYS 14.5

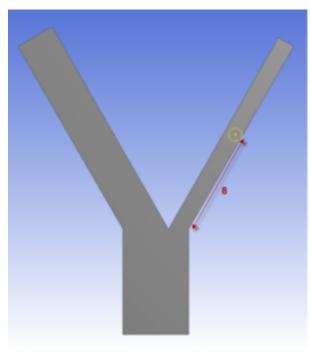
Problem Statement


You will simulate blood flow in an idealized bifurcated blood vessel using ANSYS FLUENT®, a commercially available CFD software package. You will study:

- The effect of fatty plaque on the blood flowThe effect of a blood clot in addition to the fatty plaque


You will be calculating the velocity, wall shear stress and pressure gradient for the cases outlined below.

Geometry


We'll ignore 3D effects and use the following idealized 2D geometry. All dimensions are shown in mm.

Consider the following two plaque configurations. Model the plaque as a circular arc with a diameter of 3 mm except the one that spans two limbs whose dimensions are shown below.

You also need to study the effect of a blood clot in the right branch (in addition to the plaque) as shown in the figure below. Assume that the blood clot has a diameter of 1 mm.

FLUENT Inputs

- Steady 2D flow
- Outlet gauge pressure = 0 Pa

- Density = 1000 kg/m³
 Coefficient of viscosity = 0.001 kg/(m-s)
 Adjust inlet velocity to get a Reynolds no. of 400.

Cases to be studied

- No plaque
 The above two plaque configurations without blood clot
 The above two plaque configurations with blood clot

- 4. Consider two combinations of

Go to Pre-Analysis & Start-Up

Go to all FLUENT Learning Modules