Hertz Contact Mechanics - Verification & Validation

Authors: Ju Hwan Shin and You Won Park

Problem Specification

- 1. Pre-Analysis & Start-Up
- 2. Geometry
- 3. Mesh
- 4. Physics Setup
- 5. Numerical Solution
- 6. Numerical Results
- 7. Verification & Validation

Exercises

Comments

Verification and Validation

This section contains a few formulae, which made the listed assumptions, found in the Pre-Analysis & Start-Up page.

The analytical formula for computing the radius of contact zone (a) is given as follows:

$$a = \left(\frac{3F\left[\frac{1-\nu_1^2}{E_1} + \frac{1-\nu_2^2}{E_2}\right]}{4\left(\frac{1}{R_1} + \frac{1}{R_2}\right)}\right)^{1/3}$$

The following command for the computation of the contact area can be downloaded here.

• This command was generously provided by Mr. Sean Harvey. (Lead Technical Services Engineer at Ansys Inc.)

	Theoretical	Numerical	Relative Error (%)
Contact radius, a [mm]	1.00964	1.02517	1.538

Using this value of contact radius, we can also compute the normal pressured induced at the contact zone. Theoretically, the maximum pressure (p_{max}) is induced along the *y*-axis, as expected, and is given by the following formula:

$$p_{max} = \frac{3F}{2\pi a^2}$$

	Theoretical	Numerical	Relative Error (%)
Max. Pressure, p_{max} [MPa]	88.290	81.094	8.151

Furthermore, we can derive the following formula for the normal stresses z and r = along the z-axis.

$$\sigma_z = -p_{max} \left(\frac{z^2}{a^2} + 1\right)^{-1}$$

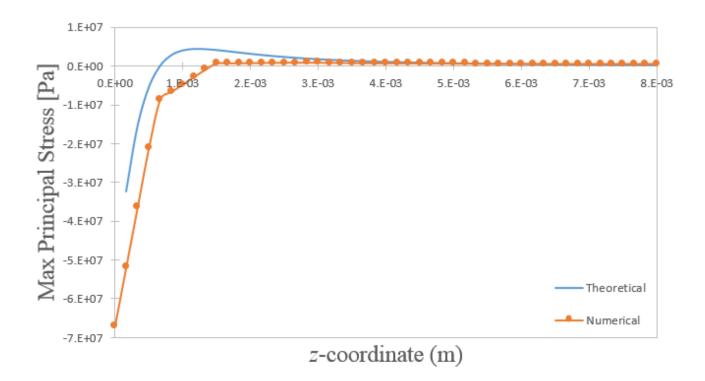
$$\sigma_r = \sigma_\theta = -p_{max} \left[(1 + \nu_1) \left(1 - \left| \frac{z}{a} \right| \tan^{-1} \left| \frac{a}{z} \right| \right) - \frac{1}{2 \left(\frac{z^2}{a^2} + 1 \right)} \right]$$

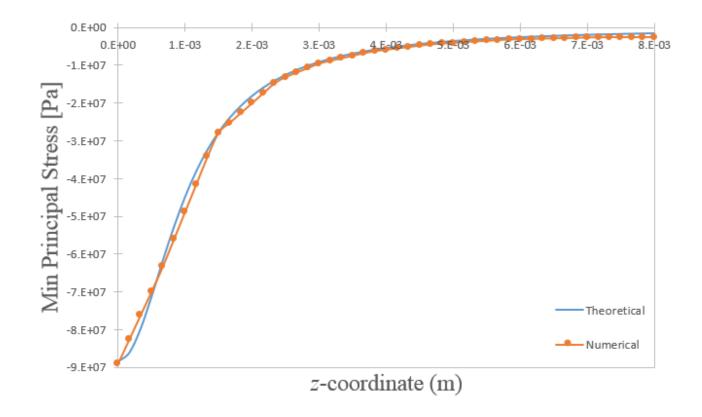
Here we note that the principal normal stresses $_1 = _2 = _r =$ since the *out-of-plane* shear stresses, $_{rz} = _z = 0$ and $_3 = _z$. And we can deduce that $_{max} = |_1| = |_2| = |_1(_{1^{-2}}) / 2|$. The effective stress (using the *Von-Mises criterion*) along the *y*-axis can be computed as the following:

$$\bar{\sigma} = \frac{1}{\sqrt{2}} \sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_1 - \sigma_3)^2}$$

Lastly, we also confirm that the applied load at the top vertex of the sphere matches our numerical contact pressure, integrated along the interface.

Mesh size [m]	2.00E-04	1.00E-04	9.00E-05	Theoretical
Force Reaction (N)	187.95	188.32	188.52	188.50
Relative Error (%)	0.29	0.09	0.01	0.00





Go to Exercises

Go to all ANSYS Learning Modules