
1.

2.

3.

4.

1.
2.

3.

Drupal Capistrano - Cookbook for using CUL Development
Server
The development server is capdev.library.cornell.edu (aka sf-lib-web-006.serverfarm.cornell.edu). Each developer maintains a site, [netid].capdev.library.
cornell.edu, on capdev. Look in /libweb/sites/ for your site.

Prepare the site for deployment

The deployment is based on the git repository for this site stored on git.library.cornell.edu. You have to make sure the repository accurately reflects your
development environment before deploy.

Update the drush make file.

cd mysite
cul_capistrano/update_enabled_modules_list.sh

This script ends showing the differences between an automatically generated drush make file and your local.make.
Be sure the versions of contributed modules match between these two files. Edit the versions in drupal_config/local.make
to make them match.
(The generated make use * for the drupal core version. You should use a specific core version in your local.make)

Run the make file to be sure all changes are in your dev site.

cd mysite
cul_capistrano/do_make.sh

Commit all changes to your local git repo

git status
git add --all
git commit drupal_config/ -m 'my enabled modules, themes and make files'
git commit public/ -m 'my new drupal core, module, and theme changes'
git commit --all -m 'anything else, like maybe config/ changes'

In real life you'll be committing each change as you go with an informative message attached to each commit, right?

Push the local git repo to it's origin

git status
git push

git status should return something like:
On branch master
nothing to commit, working directory clean

Deploy a site

You can specify as many target remote machines as you like in your cinfig/deploy.rb set :stages directive, but normally there'll be staging (victoria02) and
production (victoria01). Normally staging is set as the :default_stage so you don't have to specify anything on the cap command to target the staging
server.

follow the steps in "Prepare the site for deployment"
deploy to the staging server (victoria02)

cap deploy

or deploy to the production server (victoria01 or victoria03)

3.

cap production deploy

What this does is clones the git repo to the target machine, moves all the site code to a timestamped directory there, updates a symbolic link pointing the
document root at the new code, does the Drupal update.php procedure, reverts all features, enables all the modules enabled in the dev site, clears the
cache, and a few other Drupal things. It makes a snapshot of the Drupal database before all this, but leaves the target database intact (except for the
module updates), so the target site's new content is preserved.

Update Drupal modules

You can use several methods to update the modules. In Drupal, go to admin/modules/update and follow the instructions. On the command line do this:

cd mysite
cd public
drush up

You can also update the version numbers in drupal_config/local.make, then

cd mysite
cul_capistrano/do_make.sh

Update Drupal core & modules

The best way is to update the Drupal core version number in drupal_config/local.make then run the make file:

cd mysite
cul_capistrano/do_make.sh

Apply patches

The best way is to update the drupal_config/local.make file with the patch info:

projects[kaltura][version] = "2.0"
projects[kaltura][patch][] = "http://drupal.org/files/kaltura-1567302-dispaly.patch"

then run the make file:

cd mysite
cul_capistrano/do_make.sh

Copy a remote database to the dev machine

cd mysite
cap production drupal:db:grab

Install a database dump on remote machine

cd mysite
ls backup/

README.txt staging-snapshot-20140114162844.sql

cap staging drupal:db:install -s file=backup/staging-snapshot-20140114162844.sql

Install a database dump on the dev machine

cd mysite

ls backup/

db-features.test.library.cornell.edu staging-snapshot-2013-10-23-16-5-59.sql staging-snapshot-2013-10-28-11-44-
8.sql
local-snapshot-2013-10-24-16-19-52.sql staging-snapshot-2013-10-24-11-32-41.sql staging-snapshot-2013-10-29-10-
57-19.sql
production-snapshot-2013-10-30-12-35-22.sql staging-snapshot-2013-10-24-9-24-42.sql
staging-snapshot-2013-10-23-14-17-14.sql staging-snapshot-2013-10-25-13-17-23.sql

cul_capistrano/local_db_install.sh production-snapshot-2013-10-30-12-35-22.sql

Create a development branch

Merge a development branch

Prepare a new site on the dev machine

Make a git repo for the site on git.library.cornell.edu. Use the test site name, e.g. seadina.test.library.cornell.edu.

Run the script to create the initial site directory.

cd my_cap_dev_area
setup_cap_dev_site.sh seadina_test_library_cornell_edu.git

Create the database, make a symbolic link from htdocs to the public directory (where Drupal is), install Drupal.

Then add everything to git, commit, and push.

Prepare a new site on a remote machine

cd mysite
cap staging deploy:setup
cap staging drupal:site_setup_permissions
cap staging drupal:install -s db=databasename -s dbu=databaseuser -s dbpw=databasepassword \
 -s d_user=Drupal_user#1 -s d_pw=Drupal_user#1_password -s d_email=Drupal_user#1_email

Update cul_capistrano

The cul_capistrano directory is a 'git subtree'. If the separate git repo cul_capistrano comes from has been updated you can update your copy:

cd mysite
git subtree pull --prefix cul_capistrano git@git.library.cornell.edu:cul_capistrano.git master --squash -m
'merge cul_capistrano updates'

Undo a site deploy

cd mysite
cap staging deploy:rollback

Note: this also restores the database to the state it was at before the previous deploy.

List all the capistrano commands

cd mysite
cap -T

Enable passwordless login to remote machines

drush dl drush_extras
drush pushkey victoria02.library.cornell.edu
drush pushkey victoria01.library.cornell.edu
drush pushkey victoria03.library.cornell.edu

	Drupal Capistrano - Cookbook for using CUL Development Server

