
1.  

2.  
3.  
4.  

Hertz Contact Mechanics - Pre-Analysis & Start-Up
Authors: Ju Hwan Shin and You Won Park

Problem Specification
1. Pre-Analysis & Start-Up
2. Geometry
3. Mesh
4. Physics Setup
5. Numerical Solution
6. Numerical Results
7. Verification & Validation
Exercises
Comments

Pre-Analysis & Start-Up
In the  step, we will review the following:Pre-Analysis

Assumptions:  Assumptions for classical Hertz contact mechanics are discussed.
Mathematical model:  Governing equations and boundary conditions, as well as additional relations will be discussed.
FEM approach:  We will discuss solution strategy used in solving a nonlinear problem in FEM.

Assumptions

This problem is a classic example of  , and hence, makes the following assumptions:Hertz Contact Mechanics*

Surfaces are continuous and non-conforming, which means that initial contact is a point or a line.  In our example of sphere-plate, the initial 
contact interface is in a form of a point.
Strains are small.
Solids are elastic.  This means that the material response of stress and strain behaves linearly.
Surfaces are frictionless and cannot penetrate into each other.

For analytical solution, the following additional assumption is made.

Both objects (in our case, sphere and plate) are semi-infinitely large bodies (R ,R  >> , where  is contact radius).1 2 a a

Reference* S. Timoshenko and J.N. Goodier: “Theory of Elasticity” --  Chap. 13: Sect. 125, “ "Pressure between Two Spherical Bodies in Contact

Mathematical Model

As in any static analysis, the fundamental governing equations that we must keep in mind are the stress equilibrium equations (i.e. ).governing equation
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In the above set of equations, it can be shown that   =   due to moment balance!  Furthermore, we begin by making valid assumptions with regards to our ij ji
problem of interest.  First, we assume that there is no body force (  = ) anywhere in our model.  In addition, we model our problem as a plane stress b 0
problem, which means that all of the  stress components involving -direction, can be assumed to equal zero ( =   =   = 0).  These assumptions out-of-plane r z
lead to the following simplifications:

Next we list the relevant boundary conditions of our problem.  The two types of boundary conditions, essential and natural, will be specified for all 
boundaries in our model.  It must be noted that  boundary conditions refer to displacement conditions and  boundary conditions represent essential natural
traction conditions.  It is also important to observe that only one of these boundary conditions may be specified at a given boundary.  In addition, only one 
of these boundary conditions is sufficient for a given boundary point.



Along the frictionless contact interface, we specify the following boundary conditions.

Here,  represents the radial position away from the axis of symmetry and a denotes the contact radius.  We note that, due to the nonlinear nature of our  r
problem, the contact radius  will change throughout the loading process.  Even though the contact interface between the sphere and the surface is initially a
a single point, the contact interface will grow to become a surface as the sphere deforms.

Since the top of sphere is subjected to a point load, traction condition is specified at this location.  We observe that since the load is being applied to a 
point, traction will be infinitely large.

Along the  surface of the sphere, the boundary condition may be specified as follows.free

With symmetry condition, the following boundary condition is prescribed along the axis of symmetry.

By identifying the governing equations and defining the boundary conditions, we have set up the mathematical model.  We will now establish several 
additional relationships, which are used in the postprocessing step for computing stress and strain fields using these nodal displacements.  These 
relationships are commonly referred to as the constitutive equations.  One of these equations is the  relationship.strain-displacement



Second relationship is called Hooke’s law.  For our model, we assume isotropic material under plane stress, and so further simplifying the Hooke’s law 
results in the following equations.

FEM Approach

In this section, we discuss the general methods that ANSYS uses in solving for the desired results.  As the name suggests, finite element method first 
requires meshing the system that is to be analyzed into a finite number of elements.  In ANSYS, one can manually create the mesh configuration, or can 
alternatively let the software use a special algorithm to generate the mesh profile, which will not be discussed in this tutorial.  Depending on the level of 
accuracy of the results that is desirable, one can choose to refine the mesh, so that there will be more elements near any region in the model.  Having 
greater number of elements in the system can allow the results to converge within appropriate bounds.  It should also be noted that an element is generally 
comprised of multiple nodes.  Configuration of the nodes in each element can vary for different element types.  As an example, an element, , PLANE183
has the configuration, as shown below.

Each of the eight nodes shown above can be described by displacement vectors (translational and rotational components, depending on the element type) 
and by force vectors.  Finite element method first solves for the nodal displacement field with the specified boundary conditions.  The underlying system of 
equations that ANSYS solves for is shown below.

Here, [ ] is also referred to as the global stiffness matrix, and contains  by  components, where  is equal to the total degrees of freedom of the K n n n
system.  On the other hand, { } and { } are column matrices with  components, which represent nodal displacement fields and nodal force fields, u f n
respectively.  After specifying the appropriate boundary condition in ANSYS, it then solves for these displacement and force fields simultaneously.



However, in the case of our Hertz contact example, we note that the system is a highly nonlinear problem, due to the mechanical interactions between 
multiple components of the system.  The fact that the boundary condition at the contact interface between the sphere and the rigid plate changes 
throughout the loading process indicates that an iterative approach is necessary to converge the solutions.  More specifically, we observe that the state of 
traction and the stiffness of the system depend on the displacement near the contact interface.

By default, ANSYS requires that force reaction balance be satisfied within a given tolerance level.  If the method of linear analysis is selected, solution 
would most likely fail to converge for a system that contains a variable contact interface since only a single iteration would be performed.  To overcome this 
issue, we introduce the Newton-Raphson ( ) method in solving for the solution.  Given an initial guess,  method generates a sequence of guesses NR NR
that converges to a root of the equation.  This method is based on making successive approximations to solution using the previous value of  to u
determine ( ).K u

In addition to the Newton-Raphson method, other techniques can be applied, in order to help convergence issues that might arise.  This method, known as 
Incremental Loading technique, makes subdivisions of the load into smaller steps.  While increasing the number of substeps may require more 
computation, it helps to linearize the solution by making smaller loads, such that the residuals between iterative solution and true solution also become 
smaller.  It must be noted that these two techniques can be applied to our finite element analysis individually or can be used simultaneously.  Using both of 
these, however, is most recommended, since Incremental loading technique can help decrease the number of iterations required to obtain a converged 
solution.



Once the solution has converged, the nodal displacement fields obtained from the final equilibrium iteration can be further used to generate the strain and 
stress distribution at each node.  In FEM, analyses, similar to the ones found under   section, are adopted to compute these nodal Mathematical Model
fields.  However, we have to modify our approach slightly to take into account the fact that we now have a finite number of elements.  This calls for a linear, 
first-order approximation method among the neighboring elements in computing strain distribution.  In other words, the nodal strain and stress fields are 
calculated in the following manner.

Start-Up

The following video shows how to create a project and set up Engineering Data for our problem. 
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