ANSYS - Hertz Contact Mechanics

Authors: Ju Hwan Shin and You Won Park Problem Specification 1. Pre-Analysis & Start-Up 2. Geometry 3. Mesh 4. Physics Setup 5. Numerical Solution 6. Numerical Results 7. Verification & Validation Exercises Comments

> This page has been moved to https://courses.ansys.com/index.php/courses/hertz-contact-mechanics/ Click in the link above if you are not automatically redirected in 10 seconds.

Hertz Contact Mechanics

Created using ANSYS 14.5

Problem Specification

For an electronic copy (PDF) of the relevant report, click here.

Consider a simple problem that illustrates a comparison between the analytical and numerical results. As shown in the diagram below, consider a problem where we apply a downward force (F) of 60 N to a spherical object with a radius (R_1) of 8 mm. This isotropic sphere has an axial modulus (E_1) of 1 GPa and a Poisson's ratio ($_1$) of 0.3. In addition, this sphere is fixed vertically at the contact interface with a rigid wall. Since we are modeling the wall as a rigid body, we assume axial modulus (E_2) equals + and Poisson's ratio ($_2$) equals 0. Also, the radius of curvature of the wall (R_2) can be assumed to be zero.

Go to Step 1: Pre-Analysis & Start-Up

Go to all ANSYS Learning Modules