## FLUENT - Sudden Expansion

This page was moved to https://courses.ansys.com/index.php/courses/sudden-expansion-in-laminar-flow/
Click in the link above if you are not automatically redirected in $\mathbf{1 0}$ seconds.

## Authors: Yong Wang \& Said Elghobashi, UC Irvine

Problem Specification

1. Pre-Analysis \& Start-Up
2. Geometry
3. Mesh
4. Physics Setup
5. Numerical Solution
6. Numerical Results
7. Verification \& Validation

Exercises
Comments

## Sudden Expansion in Laminar Pipe Flow

## Problem Statement



Consider a fluid flow through a sudden expansion in an axisymmetric pipe. The flow is laminar and axisymmetric. Due to symmetry, the computationa domain covers only half of the pipe. $B D$ is the axis of symmetry. The radius $\mathrm{R} 1=1 \mathrm{~m}$ and $\mathrm{R} 2 / \mathrm{R} 1=2$.
$L 1 / R 1=20$ and $L 2 / R 2=50$. The inlet velocity at $A B$ is uniform, $U 1=0.277 \mathrm{~m} / \mathrm{s}$. The fluid exhausts into the ambient atmosphere which is at a pressure of 1 atm at CD. The density $=1 \mathrm{~kg} / \mathrm{m} 3$, and the dynamic viscosity is: $\mu=0.01 \mathrm{~kg} /(\mathrm{ms})$

The Reynolds number Re at $\mathrm{AB}=(2 \mathrm{R} 1 \mathrm{U} 1) / \mu=55.4$.
This Re value is selected to match one of the experimental cases in the paper by Hammad et al. (1999).
Use FLUENT via ANSYS Workbench to predict the flow and validate your results by comparing them with those in the following journal papers:

1. Macagno, E. and Hung, T-K."Computational and experimental study of a captive annular eddy", J. Fluid Mech. vol. 28 (1967) pp. 43-64.
2. Hammad, KJ, Otugun, MV and Arik, EB "A PIV study of the laminar axisymmetric sudden expansion flow", Experiments in Fluids 26 (1999) pp. 266-272

Go to Step 1: Pre-Analysis \& Start-Up
Go to all FLUENT Learning Modules

