
Linux CheatSheet

Working with files and directories from the Linux commandline:

Command Line Tricks for Data Scientists
ICONV
HEAD
TR
WC
SPLIT
SORT & UNIQ
CUT
PASTE
JOIN
GREP
SED
AWK

On linux, unlike the VAX, file names and directory names are case sensitive. You can tab complete instead of typing in the whole filename/directory name.
Press tab twice to list possible completions.

Working with files and directories from the Linux commandline:

Command Description

pwd Show current directory

cd ~ Change to your home directory (same as your W: drive on WIndows)

cd dirname Change directory to a subfolder named dirname

cd .. Go up a directory

ls List files and folders in the current directory (with color highlighting)

dir List files and folders in the current directory without color highlighting

mkdir dirname Make a new subfolder named dirname

rmdir dirname Deletes the subfolder name (forlder must be empty)dirname

rm filename Deletes the file named filename

rm -rf dirname Recursively deletes the non-empty folder name and all contained files and foldersdirname

mv oldname newname Rename a file or directory from to oldname newname

mv src destination Move a file or directory from to src destination

cp src destination Copies a from to file src destination

cp -av destinationsrc Recursively copies a from to folder src destination

xdg-open . Open a gui file browser in the current directory

xdg-open file Open a file

Command Line Tricks for Data Scientists
This is reproduced from: .https://medium.com/@kadek/command-line-tricks-for-data-scientists-c98e0abe5da

ICONV

File encodings can be tricky. For the most part files these days are all UTF-8 encoded. To understand some of the magic behind UTF-8, check out this exc
. Nonetheless, there are times where we receive a file that isn’t in this format. This can lead to some wonky attempts at swapping the encoding ellent video

schema. Here, is a life saver. Iconv is a simple program that will take text in one encoding and output the text in another.iconv

https://medium.com/@kadek/command-line-tricks-for-data-scientists-c98e0abe5da
https://www.youtube.com/watch?v=MijmeoH9LT4
https://www.youtube.com/watch?v=MijmeoH9LT4

Converting -f (from) latin1 (ISO-8859-1)
-t (to) standard UTF_8
iconv -f ISO-8859-1 -t UTF-8 < input.txt > output.txt

Useful options:

List all known encodings
iconv -l

Silently discard characters that cannot be converted
iconv -c

HEAD

Often when dealing with new data the first thing we want to do is get a sense of what exists. Head, without any flags, will print out the first 10 lines of a file.
The true power of head lies in testing out cleaning operations. For instance, if we wanted to change the delimiter of a file from commas to pipes.

Prints out first 10 lines
head filename.csv

Prints first 3 lines
head -n 3 filename.csv

Useful options:

Print a specific number of lines
head -n

Print a specific number of bytes
head -c

TR

Tr is analogous to translate. This powerful utility is a workhorse for basic file cleaning. An ideal use case is for swapping out the delimiters within a file.

Converting a tab delimited file into commas
cat tab_delimited.txt | tr "\\t" "," comma_delimited.csv

Another feature of tr is all the built in [:class:] variables at your disposal. These include:

[:alnum:] all letters and digits
[:alpha:] all letters
[:blank:] all horizontal whitespace
[:cntrl:] all control characters
[:digit:] all digits
[:graph:] all printable characters, not including space
[:lower:] all lower case letters
[:print:] all printable characters, including space
[:punct:] all punctuation characters
[:space:] all horizontal or vertical whitespace
[:upper:] all upper case letters
[:xdigit:] all hexadecimal digits

You can chain a variety of these together to compose powerful programs. The following is a basic word count program you could use to check your
READMEs for overuse.

cat README.md | tr "[:punct:][:space:]" "\n" | tr "[:upper:]" "[:lower:]" | grep . | sort | uniq -c | sort -nr

Another example using basic regex:

Converting all upper case letters to lower case
cat filename.csv | tr '[A-Z]' '[a-z]'

Useful options:

Delete characters
tr -d

Squeeze characters
tr -s

Backspace
\b

Form feed
\f

Vertical tab
\v

Characters with octal value NNN
\NNN

WC

Word count. Its value is primarily derived from the -l flag, which will give you the line count.

Will return number of lines in CSV
wc -l gigantic_comma.csv

This tool comes in handy to confirm the output of various commands. So, if we were to convert the delimiters within a file and then run wc -l we would
expect the total lines to be the same. If not, then we know something went wrong.

Useful options:

Print the byte counts
wc -c

Print the character counts
wc -m

Print length of longest line
wc -L

Print word counts
wc -w

SPLIT

File sizes can range dramatically. And depending on the job, it could be beneficial to split up the file—thus split. The basic syntax for split is:

We will split our CSV into new_filename every 500 lines
split -l 500 filename.csv new_filename_

filename.csv

new_filename_aaa
new_filename_aab
new_filename_aac

Two quirks are the naming convention and lack of file extensions. The suffix convention can be numeric via the -d flag. To add file extensions, you’ll need
to run the following command. It will change the names of ALL files within the current directory by appending .csv, so be careful.find

find . -type f -exec mv '{}' '{}'.csv \;

filename.csv.csv
new_filename_aaa.csv
new_filename_aab.csv
new_filename_aac.csv

Useful options:

Split by certain byte size
split -b

Generate suffixes of length N
split -a

Split using hex suffixes
split -x

SORT & UNIQ

The preceding commands are obvious: they do what they say they do. These two provide the most punch in tandem (i.e. unique word counts). This is due
to , Thus, the reason to sort before piping the output through. One interesting note is that sort -u will uniq which only operates on duplicate adjacent lines.
achieve the same results as the typical pattern.sort file.txt | uniq

Sort does have a sneakily useful ability for data scientists: the ability to sort an entire CSV based on a particular column.

Sorting a CSV file by the second column alphabetically
sort -t, -k2 filename.csv

Numerically
sort -t, -k2n filename.csv

Reverse order
sort -t, -k2nr filename.csv

The -t option here is to specify the comma as our delimiter. More often than not spaces or tabs are assumed. Furthermore, the -k flag is for specifying our
key.

Useful options:

Ignore case
sort -f

Reverse sort order
sort -r

scramble order
sort -R

Count number of occurrences
uniq -c

Only print duplicate lines
uniq -d

CUT

Cut is for removing columns. To illustrate, if we only wanted the first and third columns:

cut -d, -f 1,3 filename.csv

To select every column other than the first:

cut -d, -f 2- filename.csv

In combination with other commands, serves as a filter:cut

Print first 10 lines of column 1 and 3, where "some_string_value" is present
head filename.csv | grep "some_string_value" | cut -d, -f 1,3

Finding out the number of unique values within the second column:

cat filename.csv | cut -d, -f 2 | sort | uniq | wc -l

Count occurences of unique values, limiting to first 10 results
cat filename.csv | cut -d, -f 2 | sort | uniq -c | head

PASTE

Paste is a niche command with an interesting function. If you have two files that you need merged, and they are already sorted, paste has you covered.

names.txt
adam
john
zach

jobs.txt
lawyer
youtuber
developer

Join the two into a CSV
paste -d ',' names.txt jobs.txt > person_data.txt

Output
adam,lawyer
john,youtuber
zach,developer

JOIN

Join is a simplistic, quasi-tangential, SQL. The largest differences being that joinwill return all columns and matches can only be on one field. By default,
join will try and use the first column as the match key. For a different result, the following syntax is necessary:

Join the first file (-1) by the second column
and the second file (-2) by the first
join -t, -1 2 -2 1 first_file.txt second_file.txt

The standard join is an inner join. However, an outer join is also viable through the flag. Another noteworthy quirk is the flag, which can be used to -a -e
substitute a value if a missing field is found.

Outer join, replace blanks with NULL in columns 1 and 2
-o which fields to substitute - 0 is key, 1.1 is first column, etc...
join -t, -1 2 -a 1 -a2 -e ' NULL' -o '0,1.1,2.2' first_file.txt second_file.txt

Useful options:

Print unpairable lines
join -a

Replace missing input fields
join -e

Equivalent to -1 FIELD -2 FIELD
join -j

GREP

Global search for a regular expression and print, or grep; likely, the most well known command, and with good reason. Grep has a lot of power, especially
for finding your way around large codebases. Within the realm of data science, it acts as a refining mechanism for other commands. Although its standard
usage is valuable as well.

Recursively search and list all files in directory containing 'word'
grep -lr 'word' .

List number of files containing word
grep -lr 'word' . | wc -l

Count total number of lines containing word/pattern

grep -c 'some_value' filename.csv

Same thing, but in all files in current directory by file name
grep -c 'some_value' *

Grep for multiple values using the operator – or \|

grep "first_value\|second_value" filename.csv

Useful options:

Make grep output colorful
alias grep="grep --color=auto"

Use extended regular expressions
grep -E

Only match whole words
grep -w

Print name of files with match
grep -l

Inverted matching
grep -v

SED

At its core sed is a stream editor that operates on a line-by-line basis. It excels at substitutions, but can also be leveraged for all out refactoring.

The most basic command consists of . This translates to search for old value, replace all occurences in-line with new. Without the our sed s/old/new/g /g
command would terminate after the first occurrence on the line.

To get a quick taste of the power lets dive into an example. In this scenario you’ve been given the following file:

balance,name
$1,000,john
$2,000,jack

The first thing we may want to do is remove the dollar signs. The flag indicates in-place. The two single quotes are to indicate a zero-length file -i
extension, thus overwriting our initial file. Ideally, you would test each of these individually and then output to a new file.

sed -i '' 's/\$//g' data.txt

balance,name
1,000,john
2,000,jack

Next up, the commas in our balance column values:

sed -i '' 's/\([0-9]\),\([0-9]\)/\1\2/g' data.txt

balance,name
1000,john
2000,jack

Lastly, Jack up and decided to quite one day. So, removing him:

sed -i '' '/jack/d' data.txt

balance,name
1000,john

AWK

The best for last. Awk is much more than a simple command: it is a full-blown language. Of everything covered in this article, awk is by far the coolest.

Common use cases for include:awk

Text processing
Formatted text reports
Performing arithmetic operations
Performing string operations

Awk can parallel in its most nascent form:grep

awk '/word/' filename.csv

Or with a little more magic the combination of and . Here, prints the third and fourth column, tab separated, for all lines with our word. , grep cut awk -F
merely changes our delimiter to a comma:

awk -F, '/word/ { print $3 "\t" $4 }' filename.csv

Awk comes with a lot of nifty variables built-in. For instance, - number of fields - and - number of records. To get the fifty-third record in a file:NF NR

awk -F, 'NR == 53' filename.csv

An added wrinkle is the ability to filter based off of one or more values. The first example, below, will print the line number and columns for records where
the first column equals .string

awk -F, ' $1 == "string" { print NR, $0 } ' filename.csv

Filter based off of numerical value in second column
awk -F, ' $2 == 1000 { print NR, $0 } ' filename.csv

Multiple numercial expressions:

Print line number and columns where column three greater
than 2005 and column five less than one thousand

awk -F, ' $3 >= 2005 && $5 <= 1000 { print NR, $0 } ' filename.csv

Sum the third column:

awk -F, '{ x+=$3 } END { print x }' filename.csv

The sum of the third column, for values where the first column equals “something”.

awk -F, '$1 == "something" { x+=$3 } END { print x }' filename.csv

Get the dimensions of a file:

awk -F, 'END { print NF, NR }' filename.csv

Prettier version
awk -F, 'BEGIN { print "COLUMNS", "ROWS" }; END { print NF, NR }' filename.csv

Print lines appearing twice:

awk -F, '++seen[$0] == 2' filename.csv

Remove duplicate lines:

Consecutive lines
awk 'a !~ $0; {a=$0}']

Nonconsecutive lines
awk '! a[$0]++' filename.csv

More efficient
awk '!($0 in a) {a[$0];print}

Substitute multiple values using built-in function :gsub()

awk '{gsub(/scarlet|ruby|puce/, "red"); print}'

This awk command will combine multiple CSV files, ignoring the header and then append it at the end.

awk 'FNR==1 && NR!=1{next;}{print}' *.csv > final_file.csv

Need to downsize a massive file? Welp, can handle that with help from . Specifically, this command breaks one big file into multiple smaller ones awk sed
based on a line count. This one-liner will also add an extension.

sed '1d;$d' filename.csv | awk 'NR%NUMBER_OF_LINES==1{x="filename-"++i".csv";}{print > x}'

Example: splitting big_data.csv into data_(n).csv every 100,000 lines
sed '1d;$d' big_data.csv | awk 'NR%100000==1{x="data_"++i".csv";}{print > x}'

	Linux CheatSheet

