
Radiation Between Surfaces - Pre-Analysis & Start-up

Author: Chia-Hsun Hsieh, Cornell University Problem Specification 1. Pre-Analysis & Start-Up 2. Geometry 3. Mesh 4. Physics Setup 5. Numerical Solution 6. Numerical Results 7. Verification & Validation Exercises Comments

Pre-Analysis & Start-Up

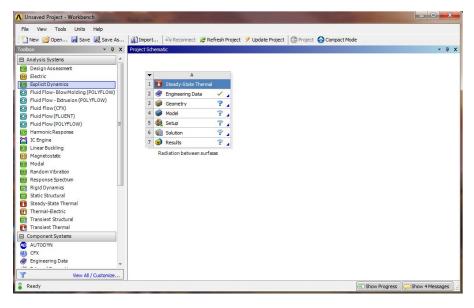
Model

We are interested in finding the radiation exchanged between the shell and the specimen surface. We will run a steady state thermal analysis to set the initial conditions of the model. Then we will transfer the initial conditions to transient thermal to complete the radiation analysis. Symmetry boundary conditions are added to the transient thermal model. This is essential to problems involving radiation because it enables the FEA code to compute the view factor between the surfaces in the full model. It is possible to run a full model without symmetry boundary conditions but this example will run faster with 1 /8 symmetric model. The following picture shows the 1/8 model and the radiating surfaces in green.

Radiation

Radiation heat transfer can be derived from the Stefan-Boltzmann Law:

$$Q_R = \sigma \varepsilon FA \left(T_{surface}^4 - T_{ambient}^4 \right)$$


Where:

- σ = Stefan-Boltzman constant
- ε = Emissivity
- A = Area of radiating surface
- F = Form factor(1)

The above radiation equation provides correlations for radiation to ambient (form factor assumed to be 1) or surface to surface (view factor calculated).

Start-Up

Open ANSYS workbench and drag the Steady State Thermal icon from the toolbox to Project Schematic. Name the project Radiation between surfaces.

Engineering Properties

Double click on Engineering Data to open the Engineering Data page. Check that Structural Steel appears as the default material.

File Edit View Tools Units Help		port 🖓 Reconnect 🟾 🥔	Refre	esh Pr	oject 🍠 Update Project 🛛	Return	to Project 🕜 C	ompact	Mode 🔽 🎬	
Toolbox 🔻 🕂 🗙	Outline	of Schematic A2: Engineerin	g Dat	3	* 4 X	Table o	f Properties Row	2: Isotro	opic Thermal Conduc	tivity 💌 🖡
Thermal		А	В	С	D		A			В
Bortronic Thermal Conductivity Orthotropic Thermal Conductivity	1	Contents of Engineering Data	8	Source	e Description	1	Temperature (c) 🖡	Thermal Conductiv	vity (W m^-1 C^-1)
	2	🗆 Material			4	2	21		60.5	
	3	Structural Steel		8	Fatigue Data at zero mean stress comes from 1998 ASME BPV Code, Section 8, Div 2, Table 5 -110.1					
		Click here to add	-	-						
	*	a new material								
		a new material	ralSt	rel	- u x]
		a new material	ral St	eel		Chart o	f Properties Row	2: Isotro	III Oppic Thermal Conduc	ctwity 👻 🖡
		a new material	ural St		B C D E	Chart o	· -	2: Isotro	opic Thermal Conduc	ctivity v 🖓
	Propert	a new material tes of Outline Row 3: Structs A			B C D E	Chart o) -) -	2: Isotro	opic Thermal Conduc	
	Propert	a new material			B C D E Value Unit 🐼 🙀	Chart o Chart o Chart o Chart o Chart o		2: Isotro	opic Thermal Conduc	

(i) Note

Only the *isotropic thermal conductivity* is specified in steady state analysis. We will need to add additional properties before we proceed to the transient thermal analysis.

Leave the material properties unchanged and move on to create the geometry.

Go to Step 2: Geometry

Go to all ANSYS Learning Modules