
1.
2.
3.
4.

Correct-by-Construction Methodology
CRASH Methodology for Correct-by-construction Attack-tolerant Systems
Also see the: | | | | CRASH Project Home About CRASH Software People Publications

Background

Our method uses formal proofs of high-level system requirements then to synthesize code from the proven specification. Within our work on distributed
systems we use the following concepts:

Logic of Events: a simple formal theory of mathematical structure corresponding to message sequence diagrams
Logic of Events presentation at LADA 2012 by Robert Constable, Mark Bickford, and Vincent Rahli. 2012
Automated Proof of Authentication Protocols in a Logic of Events by Mark Bickford. 2010
A Causal Logic of Events in Formalized Computational Type Theory by Mark Bickford, Robert L. Constable. 2005

Event Classes: abstract description of processes
Investigating Correct-by-Construction Attack-Tolerant Systems by Robert Constable, Mark Bickford, Robbert Van Renesse. 2010
Generating Event Logics with Higher-Order Processes as Realizers by Mark Bickford, Robert L. Constable, David Guaspari. 2010
Component Specification Using Event Classes by Mark Bickford. 2009

The main tool we use is which is a programming and specification language. EventML, built by , cooperates with the Nuprl EventML Vincent Rahli
interactive theorem prover at every stage of program development to help programmers ensure correctness, document the code, and support
modifications and improvements. It generates an that proves the specification and can also automatically synthesize code.Inductive Logical Form

Resources for EventML
EventML documentation and downloads available at http://www.nuprl.org/software/
EventML Tutorial
Example of 2/3 consensus in EventML

Code is created during the process. We can introduce variants at the EventML specification and code synthesis.diversity

Methodology

To create correct-by-construction code we:

Write the specification in EventML
Automatically generate and prove an Inductive Logical Form of the specification
Synthesize code
Diversify and deploy code

For more details about the example below see Mark's .presentation at the May 2012 CRASH meeting

Example with Consensus

In this example we will look at Paxos consensus, focusing on specifying the Scout protocol.

http://www.nuprl.org/crash/
http://www.nuprl.org/crash/introextended.php
http://www.nuprl.org/software/
http://www.nuprl.org/crash/people.php
http://www.nuprl.org/crash/publications.php
http://www.nuprl.org/KB/show.php?ShowPub=BCR12
http://www.nuprl.org/KB/show.php?ShowPub=Bic10
http://www.nuprl.org/KB/show.php?ShowPub=BC05
http://www.nuprl.org/KB/show.php?ShowPub=CBV10
http://www.nuprl.org/KB/show.php?ShowPub=BCG10
http://www.nuprl.org/KB/show.php?ShowPub=Bic09
http://www.nuprl.org/software/
http://www.cs.cornell.edu/~rahli/
http://www.nuprl.org/software/
http://www.nuprl.org/software/eventml/tutorial/
http://www.nuprl.org/software/eventml/tutorial/tutorialse5.html
http://www.nuprl.org/software/
https://confluence.cornell.edu/download/attachments/180881730/Correct-by-Construction-May2012.pdf?version=1&modificationDate=1339075495000&api=v2

Step 1 - We write the Scout specification in EventML

EventML uses classes from the Formal Digital Library to describe events and protocols.

Step 2 - Generate the Inductive Logical Form (ILF)from the Scout specification

Here EventML interfaces with Nuprl's formal library and theorem prover. Using the distributed prover, we generate a proof of the protocol which results in a
readable Inductive Logical Form. If there are any issues with the proof we revise the specification and reiterate the process with the ILF.

https://confluence.cornell.edu/download/attachments/180881730/CRASHmethodology-pseudo.png?version=1&modificationDate=1337870704000&api=v2
https://confluence.cornell.edu/download/attachments/180881730/CRASHmethodology-eml.png?version=1&modificationDate=1337870704000&api=v2

Step 3 - Synthesize Consensus Code

Using EventML's correct-by-construction synthesizer we generate code from the specification.

Step 4 - Diversify & Deploy

Engaging our diversity in classes and state machines we generate multiple verified versions of the code. Then the final step before deployment is to test
the code in the EventML simulator. The result is a correct-by-construction synthesized version of Paxos with multiple code variants.

Example Deployment: ShadowDB

ShadowDB is a replicated database, created by , on top of a synthesized consensus core. The primary defines the order in which Nicolas Schiper
transaction updates are applied. When crashes occur, consensus is used to reconfigure the set of replicas and agree on a prefix of executed transactions.

https://confluence.cornell.edu/download/attachments/180881730/CRASHmethodology-ilf-desc.png?version=1&modificationDate=1337870704000&api=v2
http://www.cs.cornell.edu/~ns672/
https://confluence.cornell.edu/download/attachments/180881730/CRASHmethodology-shadowdb.png?version=1&modificationDate=1337870704000&api=v2

	Correct-by-Construction Methodology

