Unsteady Flow Past a Cylinder - Physics Setup

Authors: John Singleton and Rajesh Bhaskaran, Cornell University

Problem Specification
1. Pre-Analysis & Start-Up
2. Geometry
3. Mesh
4. Physics Setup
5. Numerical Solution
6. Numerical Results
7. Verification & Validation
Exercises
Comments

Physics Setup

Launch FLUENT.

(Double Click) Setup in "Unsteady Flow", the duplicate project. Select Double Precision, and if using a computer with multiple cores, select parallel, and set the number of cores to be used.

FLUENT Launcher (Setting Edit Only)	
ANSYS	FLUENT Launcher
Dimension 2D 2D 3D Display Options Display Mesh After Reading Display Mesh After Reading Display Mesh After Reading Workbench Color Scheme Do not show this panel again	Options Double Precision Use Job Scheduler Use Remote Linux Nodes Processing Options Serial Parallel (Local Machine) Number of Processes 2
	ancel Help V

Then click OK

Transient

In this step here we will, tell FLUENT to solve for the unsteady flow. As you can see, by default FLUENT will solve for the steady flow.

Problem Setup > General. Set Time to Transient.

General	
Mesh	
Scale	Check Report Quality
Display	
Solver	
Type Pressure-Based Density-Based	Velocity Formulation Absolute Relative
Time Stoody Transient	2D Space Planar Axisymmetric Axisymmetric Swirl
Gravity	Units
Help	

Specify Material Properties

To achieve a Reynolds number of 120, as required in the problem statement, we will change the material viscosity, to 8.333*10^-3 kg/m*s.

Problem Setup > Materials > Fluid > air > Create/Edit.... Set the viscosity to 8.333E-3 (kg/m*s). Click Change/Create.

Properties	
Density (kg/m3)	constant
	1
Viscosity (kg/m-s)	constant
	0.008333

Then click Close.

Save Project

Go to Step 5: Numerical Solution

Go to all FLUENT Learning Modules