Fall 2010 Foam Filtration Reflection Report 2

Foam Filtration Reflection Report

Primary Author: Catherine Hanna, Rachel Philipson, Melissa Shinbein, Kevin Wong

Primary Editor: Rachel Philipson

AguaClara Reflection Report

Cornell University

School of Civil & Environmental Engineering

Ithaca, NY 14853-3501

Date Submitted: 08/10/2010

Abstract

The purpose of the foam filtration team is to create a new and effective way of filtering water for a variety of systems both on large and small scales. Since previous research showed foam filtration is not feasible for an AguaClara plant, we will be designing a point of use filtration unit that can be used in homes, apartment complexes or schools. We will test the performance of foam filtration for a variety of influent turbidities, different foam pore sizes and determine the head loss through the foam. Additionally, we will submit our filtration unit design to the EPA P3 competition.

Introduction

The beginni ng of the semeste r has focused mainly on the design of our pointof-use foam filtratio n unit for submiss ion into EPA's P3 competi tion. Each week, we revise our previou s week' S design in a more

detailed

and

refined manner. Origina lly, each team membe r designe d his or her specific compon ents in as many differen t ways as possibl e. This method was just used to toy around with design scheme s and creative

ideas.

For the past couple

of

weeks,

we

focused

our

efforts

on

generati

ng

concret

e

dimensi

onal

number

s,

given

the

finalize

d (as of

currentl

y)

compon

ent

designs.

These

number

s are

still in

progres

s as all

values

obtaine

d yield

new

insights

into

previou

sly

generat ed ideas. For exampl e, if the diamete r of the foam filters in order to provide water for x amount of people is extreme ly small, then we may decide to increas e the diamete r and recalcul ate other dimensi ons accordi ngly to provide

water

for say

2x

amount

of

people.

Many

of the

equatio

ns used

to

determi

ne

values

stem

from

Monroe

's

"Flow

Control

and

Measur

ement"

lecture

notes

online.

Once

these

design

values

are

perman

ently

finalize

d, we

will

include

them

in our

biweekl

y

reports.

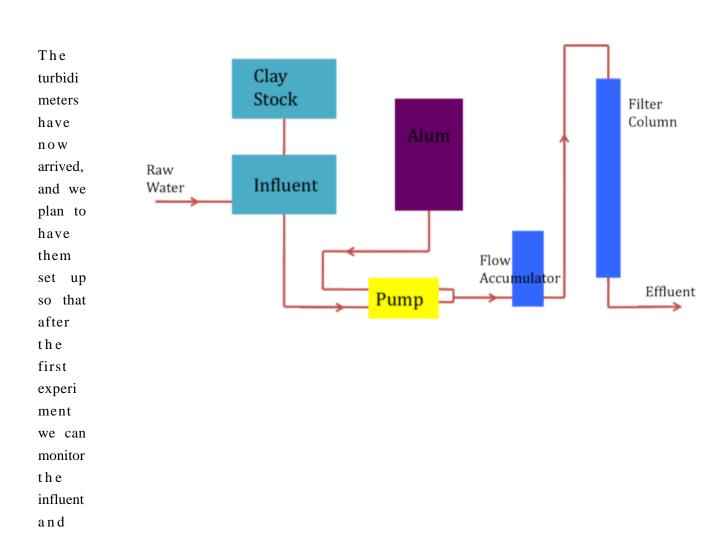
For

now,

we are

still in

the


process of discove ring efficien method s to use in the design of our foam filtratio n unit. Given more experi mental data and analysi S (includ ing head loss and turbidi ty calcula tions), our foam filtrati on team can conver ge on an

optima

l and effectiv e design for a foam filtrati on unit as a pointof-use system.

Experimental Design

Within the last two weeks, the apparatus itself has not changed (Figure 1). Since many parts of the apparatus were delayed in arrival, no experiments have been completed yet with the majority of efforts being focused on P3 designs. The experimental apparatus is now completely set up, the electrical connection to the computer is working, and the process controller method for our experiments has been written. For the experiments in the near future, we will be running water with a constant flow rate through the foam (6 mm/s water velocity). We have also added temperature controlled raw water to the experimental apparatus (Figure 2). Using solenoid valves, we will monitor the temperature of the influent water and keep it constant. Now that our apparatus is ready for experimentation, our primary task in the upcoming weeks will be running experiments. Our first experiment will be to determine the head loss through the foam both with clean water running through it, and when failure occurs (the foam collapses).

effluent turbidit

o f

y

our experi mental runs.

Figure 1: Foam Filtration Experimental Apparatus

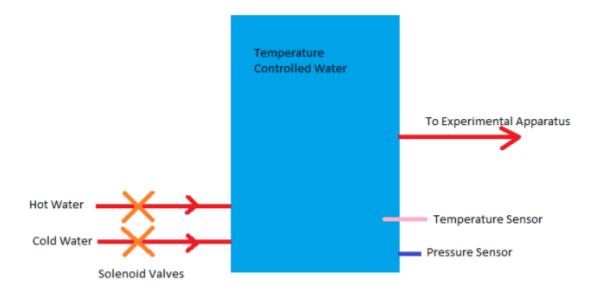


Figure 2: Foam Filtration Raw Water Supply System

Results and Discussion

When designing our filter unit, we are considering four separate situations. First, a filter unit will be designed for a family who has access to a tap of untreated water. Each person in the family (7 to 10 people) will use the filtered water for all of their needs: drinking, cooking, cleaning, and bathing. The second situation is a family without a tap. Since this family must carry all of the water they use to the filter, they will not use the filtered water for cleaning, just drinking and cooking, which will decrease the amount of filtering capacity needed for this design. The third case is a filter unit for an apartment complex, which has access to a tap. This filter will be designed for the same uses as the family with a tap, but will be larger to accommodate more people. Lastly, we will be designing for a village that does not have access to a municipal water distribution system. The filter will be brought to a river or lake and each family will use the filter at the water source. Use of water will be the same as the family with no tap access.

For the situations with a tap, there is no need for a holding tank as the tap would be able to connect directly to the filter. However, if we consider a small village or family units with no tap water source, a holding tank will be required. To control the flow of water through the filter, there will be a float valve on top of the filter to keep a height of water to maintain constant flow through the filter. An alum doser will also be used. The initial design incorporated a linear flow orifice meter, but later considerations deemed this unnecessary since we have not yet determined the range of influent turbidities for which the filter works. At this point it time, it is assumed the filter will only work over a small range of turbidities that would all require the same alum dose. If later research proves the foam can successfully filter water over a large range of turbidities, a linear flow orifice meter will be added to the design.

W e

decided

to use

t h e

base of

t h e

bucket

(or

PVC

tube)

itself

as a

screen

t o

support

t h e

foam

in the

filter

column.

A

MathC

A D

file

was

created

to take

t h e

approac

h

velocity

the

number

o f

people

wanted

t o

provide clean water for, along witht h e

number

o f

liters

per day

those

people

consum

e and

calculat

e the

theoreti

c a l

diamete

r of the

foam

needed.

Then,

t h e

progra

m

looks

a t

availabl

e

diamete

rs for

purchas

e and

finds

t h e

actual

diamete

r

needed.

Using

flow

control

equatio

ns, the

user

inputs

t h e

number

o f

orifices

they

would

like to

drill at

t h e

base of

the

holding

unit

and the

file

determi

ne the

diamete

r of

each of

those

orifices

needed

to keep

t h e

flow

through
the
filter at
constan
t

velocity

.

The

exit

chambe

r of the

Foam

Filtratio

n Unit

will

consist

of a

chlorin

e doser

and a

distribu

tion

tank .

Within

t h e

distribu

tion

tank,

there

will be

either a

platfor

m or

box

that

will

induce

turbule

n c e

betwee

n the

chlorin

e and

filter

effluent

. The

purpose

of this

is to achieve rapid mix to ensure that the chlorin i s e evenly distribu t e d among the effluent

The size of the distribution tank will vary depending on how the filter is being used, however every system will have the rapid mix platform and chlorine doser.

Future Work

Now that our experimental apparatus has been set up, we will run our first experiment next week. We will be determining the head loss through the foam both with clean water running through the filter. We will also monitor how the head loss through the foam changes as the filter approaches collapse with dirty water running through the filter. We will visually document failure occurring by taking pictures while the experiment is running. Once the head loss experiment has been completed, we will move on to layering pore sizes of foam, and testing different influent turbidities to determine the range in which the filter will perform successfully. Since we now have turbidimeters, we will be able to keep track of influent and effluent turbidities of future experiments.

Team Reflections

As our experimental apparatus is being finalized, the team has written the process control file for the experiments. We initially had problems understanding how to write the file because of the many complex states and rules involved. However, after looking at a previous process control file, we were able to determine the correct methods to take when writing it. Writing the process control file was beneficial for our team members who were unfamiliar with process controller, helping us to better understand the program and processes involved.

Although our team has yet to obtain physical data, a lot has been accomplished in our design work. Each of us was able to further develop our design for the point-of-use foam filtration unit by considering a number of different cases where our filter would be applicable. A literature review was done to determine the typical water consumption levels in each of these different cases in a country like Honduras. Discussions on each of our designs have helped to improve each group member's understanding of the design as a whole, allowing us to exchange ideas for improving the overall design of our filter.

Although the experimental apparatus is now complete, we had minor issues with electrical connections. We were unable to get a signal in the stamp box from the computer. However, this is now fixed and we can begin collecting data next week.