Cantilever Beam - Pre-Analysis & Start-Up

Tro / mary or a start op
Author: John Singleton, Cornell University
Problem Specification 1. Pre-Analysis & Start-Up
2. Geometry 3. Mesh
4. Physics Setup 5. Numerical Solution
6. Numerical Results 7. Verification & Validation
Exercises Comments
Pre-Analysis
Handout
Powerpoint slides used in the following videos can be downloaded here.
What's Under the ANSYS Blackbox?
To understand the framework of what's under the ANSYS blackbox, go through the videos in the "What's Under the Blackbox" section of our free online course on ANSYS-based simulations. Registration is required to access this course. We'll be using this framework in this tutorial.
Mathematical Model
Euler-Bernoulli Beam Theory
Strains and Stresses
Potential Energy
Potential Energy Minimization
Discretization
Interpolation
Algebraic Equations Derivation

Check Your Understanding

Hand Calculations

One or more of the following statements is/are true. Select which statements are true.

- 3D Elasticity theory makes the assumption that plane sections remain plane whereas the Euler-Bernoulli beam theory doesn't make this assumption.
- In Euler-Bernoulli beam theory, the Poisson's ratio is assumed to be zero.
- If we have 4 nodes instead of 3, ANSYS will need to determine 8 parameters (4 y-displacements and 4 rotations) either from the essential boundary conditions or by solving a set of algebraic equations.

- If we have 4 nodes instead of 3, the number of algebraic equations that ANSYS will need to solve simultaneously will be 5.
 We have to determine the y-displacement of the midline at locations between the nodes using interpolation. This interpolation is given by a second-order polynomial.

Go to Step 2: Geometry

Go to all ANSYS Learning Modules