Stacked Rapid Sand Filtration Summer 2010 Reflection Report 1

Stacked Filtration Reflection Report

Primary Author: Michael Adelman Michael Liu Anderson Cordero Jonny Ayala

Primary Editor: Sarah Stodter

AguaClara Reflection Report
Cornell University
School of Civil & Environmental Engineering
Ithaca, NY 14853-3501

Date Submitted: 25/06/2010

Abstract

The objective of the Stacked Filtration team is to design and build a vertically stacked filtration system that meets the AguaClara project constrains.

Up until now the Stacked Filtration Team has conducted research on stacked filtration and rapid sand systems, completed a literature review of past research and technology, and developed a robust laboratory filtration system, which meets most of the given constraints. We then proceeded to test some of the fundamental principles governing the system. For example, we have verified the validity of predicted head lost values within the stacked filter-beds by measuring the influent and effluent flow rates. Our main challenges for the future are to test the effect of using 10 NTU influent water to backwash the system, and to determine the filtering capacity of the stacked filtration system.

Introduction

The purpose of adding a filtration system in AguaClara plants is to reduce the turbidity of the water down from 5 NTU to below 1 NTU so that chlorine could be safely used to treat the water coming out of the filtration plant. One of the filtration techniques that the previous semester's filtration team researched was stacked filtration. The previous semesters work focused on preparing an appropriate stacked filtration experiment design and researching many of the aspects behind stacked sand filtration. They have also designed a filtration system addition to the water treatment facilities that AguaClara designs. The previous semester's team came up with the idea that if each filter was stacked on top of the other then all of the filters could be backwashed with the same water. In the design there will be four filters stacked on top of each other, thus four layers of sand. Three slotted influent pipes and two slotted effluent pipes will be placed in 4" inner diameter PVC pipe. This semester we will mostly focus on building the experiment apparatus and testing the effectiveness of stacked sand filtration. We have already encountered some of the challenges the previous team had mentioned in the construction of the apparatus, such as leaks within the system. Troubleshooting the leaks and figuring out how to fix them have been challenges for the past two weeks, as well as achieving uniform flow through the influent pipes. We were able to fluidize the sand while the system is in backwash, which is one of our challenges for the semester. In the coming weeks, we will attempt to test the filtering capacity of the stacked filtration arrangement using 20 cm of sand, and four filter layers, with 5-10 NTU influent and 1.5 mg/L alum dose. It will be a challenge to pump the clay and alum into the line since the required flow rate for the filter is so high that the resulting pressure in the line is difficult for the pumps to overcome.

Literature Review

Rapid sand filtration of Cryptosporidium parvum: effects of media depth and coagulation

The contamination of many surface waters with *Cryptosporidium parvum* cysts provides an important impetus for the inclusion of granular filtration in the water treatment process. *Cryptosporidium* cysts present a danger to public health and are not readily inactivated by conventional chlorine disinfection; however, pilot-scale rapid sand filters have shown good results for removal of these cysts. Peak removal efficiency varied from 1.6 logs for a 10 cm sand bed depth to 4 logs for an 80 cm bed, and appropriate filter ripening time and coagulant dose were found to be important in achieving effective *Cryptosporidium* removal (Gitis, 2008).

Study on backwash wastewater from rapid sand-filter by monolith ceramic membrane

The article shows how the use of membrane technology instead of sand filters could be more beneficial in treating water processes. The article shows how in backwashing with rapid sand filtration protozoan parasites might accumulate in the water. The bacteria that was once removed before is now in the backwash water which is typically redirected again towards the rapid sand filtration. This may cause for dangerously high accumulation of bacteria is the raw water. AguaClara can look into alternatives instead of rapid sand such as membranes to prevent this from occurring.

Slow Sand Filtration: Theory of Biological Filtration

Biological or slow sand filtration consists of running raw water through a bed of sand. Upon contact with the surface of sand grains particulate impurities are retained. There are several different types of particulate impurities, which are removed by different mechanism of the filtration process. Those that consist of inert material are held in the sand until they are removed during the cleaning process. And the other type of impurities are those capable of chemical or biological degradation, which are converted into simpler forms that are then carried away in solution or remain, with the inert material which are later removed.

The mechanisms involved with each step are several. L. Huisman, classifies them into three different mechanisms: Transport, Attachment and Purification.

Transport Mechanism: processes by which particles come into contact with the sand grains, which consist of (a) screening or retention of large particles, (b) sedimentation, (c) centrifugal forces, (d) diffusion, (e) mass attraction or Van der Waals forces, and (f) Coulomb forces or electrostatic and electrokinetic attraction.

Attachment Mechanism: processes by which particles are held in place once they have contact with the sand grains referred to as adsorption.

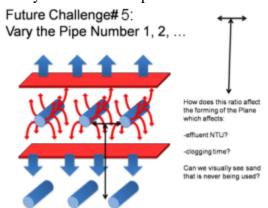
Purification Mechanism: processes by which the trapped impurities within the sand bed are converted to simpler forms by means of chemical and microbiological oxidation.

Purification of Secondary Effluent in a Natural Sand Filter

The Lake George Village Sewage Treatment Plant has been providing treatment of wastes at a much lower cost than that of conventional methods by using rapid sand filtration. The filter effluent, provided with secondary sedimentation, is discharged onto natural deltas and a sand system made up of 21 rapid sand infiltration beds is used to purify the water. Through experiments they concluded that oxidizable substances such as ammonia and organic nitrogen were being subsidized into nitrate in the top 3 m of sand. This nitrate was nearly entirely removed once the water passed through 18 m of sand; however, water had nitrate levels lower than what's recommended for safe drinking water after just 8 m. The optimal depth of our rapid sand filters is something we will have to determine as well.

Detailed Task List

- 1. Complete Construction of the Experimental Apparatus
- 2. Attempt to Backwash the filter:


We need to first determine whether backwashing the filter will actually be possible.

3. Determine the filtering capacity of the stacked filter design:

After we are able to backwash the filter, we will need to then determine if the design is in fact able to achieve an effluent turbidity of less than 1, when using a raw water turbidity of 5-10 NTU. Please see Experimental Design section for more detail.

- 4. Determine if effluent from the sedimentation tank can be used to backwash instead of clean water: Using effluent from the sedimentation tank will negate the need for a clear well. We need to determine if the sedimentation tank effluent (5-10 NTU) will effectively clean the filter, and if the filter will then still perform well.
- 5. Determine if we can model a row of tubes as a plane:

Our modeling of the area of filtration as a plane instead of a row of tubes needs to be tested as well. We can also the number of inlet and outlet tubes per plane to see if our modeling of the layer of tubes as planes of filtration is accurate. We can slowly decrease the space between the tubes to see what the necessary ratio between the sand layer and the space between the tubes needs to be to allow us to model the layer of tubes as a plane.

6. Model performance of the stacked filtration system:

If we can effectively filter water using the stacked filtration system, it will be important to understand under which parameters the system will work. We can vary parameters such as downflow velocity, influent turbidity, and the presence of organic matter. It will also be useful to compare the filter performance to results Po-Hsun has obtained through his filtration experiments.

Experimental Design

This study consid ers a benchscale stacke d rapid sand filter apparat us constru cted as in the diagra m in Figure 1. Thi s filter is built in a 10.16 cm (4")

diamet
er
PVC
pipe
(Charl
otte
Pipe)
with a
total
height
of 1.8
m. Wa
ter is
carried
into
the
filter
for
both
normal
operati
on and
backw
ashing
throug
h three
1.27
cm (1

/2") inlet pipes, each of which is equipp ed with a ball valve (Spear s 150 psi threade d). Th ese valves are all open at once to distrib ute flow evenly

during
the
filtrati
on
cycle,
and
are
closed
selecti
vely
to
fluidiz
e
succes
sive
layers
of the
filter
during
backw
ash. D
uring
filtrati
on, the
water
leaves
the
filter

throug
h two
1.27
cm
outlet
pipes
config
ured
similar
ly to
the
inlets.
Howev
er,
when
the
filter
is
backw
ashed,
the
ball
valves
on the
outlet
side
are
closed,

and
the
water
exits
the
colum
n
throug
h a
3.81
cm
(1.5")
diamet
er
pipe at
the
top
which
acts as
an
outflo
w
weir.

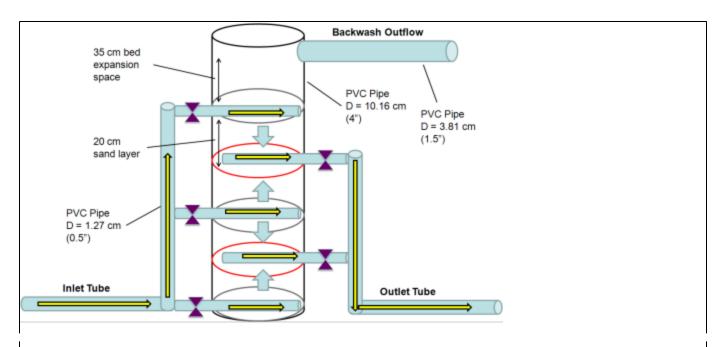


Figure 1. Diagram of the bench-scale stacked rapid sand filtration system to be used for this investigation. Arrows show expected flow directions during normal filtration.

The filter media is sand arrang ed in four stacke d beds, each of which is 20 cm deep. During normal operati on, the total depth of sand in the filter is

include s these four filtrati on beds along with the width of the inlet and outlet pipes and additio nal sand added for suppor t at the bottom of the

about

1 m,

which

colum
n. Dur
ing
backw
ash,
an
additio
nal
0.35
m
height
is
availab
le in
the
colum
n for
bed
expans
ion. T
he
sand
used
in this
study
is a
comme
rcially-

availab
le
silica
quartz
sand
(Ricci
Brothe
rs
Sand
Compa
ny)
with
grain
size
rangin
g from
0.45
to
0.55
mm
and a
maxim
um
unifor
mity
coeffic
ient of
1.65.

Slotted
1/2"
diamet
er
PVC
pipes
are
used
to
distrib
ute
influen
t water
into
the
sand
beds
and
collect
effluen
t water
for the
outlet.
The
slots
in
these
pipes

are
smaller
than
the
diamet
er of
the
sand
grains,
so
sand
will
not
enter
them;
howev
er,
they
have a
large
total
area of
perfora
tions
per
unit
length,
and

the
head
losses
for
water
exiting
these
pipes
is both
theoret
ically
predict
ed and
experi
mental
ly
observ
ed to
be
small
compa
red to
other
head
losses
in the
system
. Thes

during

experi

mental

trials.

The
bench-
scale
experi
ments
will
operate
as
shown
in the
proces
s flow
diagra
m in
Figure
2. The
filter
will
be run
at a
1.4
mm/s
approa
ch
velocit
у
during
filtrati

on and
backw
ashed
at 10
mm
/s. The
se
operati
ons
will
require
flow
rates
of
2000
mL
/min
and
4800
mL
/min
respect
ively,
and a
laborat
ory
faucet
will

be
used
as the
source
of
water
to
provid
e the
large
amoun
t of
flow
require
d for
these
experi
ments.
The
pipes
and
sand
beds
have
been
sized
for
these

flow
conditi
ons
such
that
head
losses
throug
h the
sand
will
be the
govern
ing
head
loss
parame
ter. Th
is
should
allow
the
flow
to be
unifor
mly
distrib
uted

throug

h the

filter

by the

inlet

pipes.

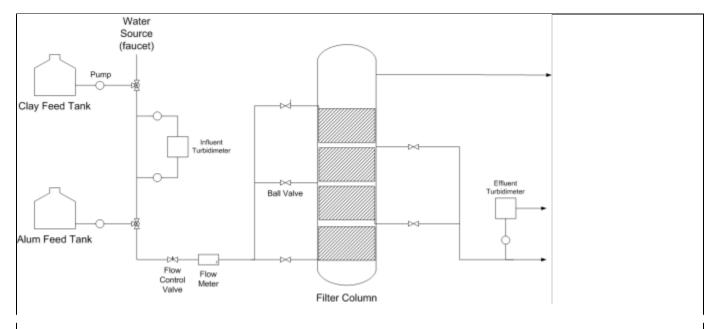


Figure 2. Process-flow diagram showing major system components for the proposed experimental trials.

The influen t water for filtrati on and backw ashing will be prepar ed by adding kaolini te clay and alum (Al ₂ (SO₄)₃ $18H_2$ O, Fisher Scienti fic), which will be fed into

the
source
water
from
stock
tanks
using
peristal
tic
pumps.
The
clay
will
be
added
from a
stock
suspen
sion to
achiev
e an
initial
influen
t
turbidit
y of 5-
10
NTU,

and a 1.5 mg /Lalum dose will be mixed into the influen t water from a stock solutio n. The influen t and effluen t turbidit y will be contin uously measur ed by on-

line
turbidi
meters
(HF
Scienti
fic
Micro
T0L),
which
will
monito
r the
perfor
mance
of the
filter
during
normal
filtrati
on and
backw
ashing
experi
ments.

Future Work

Within the next two weeks we want to continue to test whether backwashing the filter is possible and if 4800 mL/min is feasible from the tap. If hot water is required to reach this flow rate, we also want to determine the effect that this will have on our experiments. Once we are successful at backwashing the filter, we will want to determine if achieving an effluent turbidity of less than 1 is viable and whether effluent from the sedimentation tank can be used to backwash the filter. If within the next two weeks we are able to accomplish these goals, we will also like to start testing the filter capacity with organic matter.

Team Roles and Expectations

Expectations for teammates this semester:

- Treat each other with respect
- No such thing as a stupid question
- Have fun
- Remember lab safety
- Come to meetings when you can

We will have team meetings Wednesdays at Noon. In addition, we will conduct experimental work at 11 on Mondays, and noon on Tuesdays and Thursdays in the Environmental Teaching Lab, (HO 150).

At this point in the semester, our team is still in the construction and set up phase. As a result, we are all performing roles jointly. Later in the semester, we will be able to designate specific roles once they have developed.

Bibliography

Aulenbach, Donald B., Robert R. Harris, Robert C. Reach. "Purification of Secondary

```
Efflue
nt in a
Natura
1 Sand
Filter."

Water

Polluti
on

Contro

1

Federa
tion 50
. 1

(1978): p 86-94 . Web. 24 Jun. 2005.
```

- Gitis, V. (2008). "Rapid sand filtration of Cryptosporidium parvum: effects of media depth and coagulation." *Wa. Sci. Technol.*, 8, p 129-134.
- Huisman, L. and Wood, W.E. "Slow Sand Filtration: Theory of Biological Filtration." World Health Organization Publications, Geneva, 1974. p 27-43.
- Weiying, Li; Yuasa, Akira; Bingzhi, Dong; Huiping, Deng; Naiyun, Gao. "Study on backwash wastewater from rapid sand-filter by monolith ceramic membrane." *Desalination*, v 250, n 2, p 712-715, 15 Jan. 2010.