Flocculation Equations

Bernoulli and Navier Stokes Equations	Control Volume Equations	Dimensional Analysis Equations	Equations	Flocculation Equations
Flow Measurement Equations	Open Channel Flow Equations	Pipe Flow Equations	Process Controller equations	Sedimentation Equations
Statics Equations	Using Confluence - Tips and			

Statics Equations

Relationship between velocity gradient and energy dissipation rate

$$G = \sqrt{\frac{\varepsilon}{\nu}}$$

Relationship between velocity gradient and energy loss based on a change in the pressure coefficient. Note that the pressure coefficient here is equivalent to a minor loss coefficient.

$$\varepsilon = C_p \frac{V^2}{2\theta}$$

Energy dissipation estimate for a cell located just downstream from the 180 degree bend in a flocculator.

Tricks

$$\varepsilon_{cell} = \frac{1}{b} \left(\frac{Q}{wb}\right)^3 \frac{C_p}{2\Pi_{cell}}$$

Gcell for hydraulic flocculator

$$G_{cell} = \frac{1}{b^2} \left(\frac{Q}{w}\right)^{\frac{1}{2}} \sqrt{\frac{K_{180}}{2\nu \Pi_{cell}}}$$

G cell for hydraulic flocculator

$$G\theta_{vall} = \sqrt{\frac{\Pi_{vall}QK_{180}}{2\nu w}}$$

Floc Baffle Spacing

$$b = \left(\frac{1}{\bar{G}_{cell}}\right)^{\frac{1}{2}} \left(\frac{Q}{w}\right)^{\frac{1}{4}} \left(\frac{K_{cell}}{2\nu \Pi_{cell}}\right)^{\frac{1}{4}}$$

Shear (Velocity Gradient)

$$\tau = \rho \frac{au}{dy}$$

Relationship between G and Head loss

$$\begin{split} \bar{G} &= \sqrt{\frac{gh_l}{\nu\theta}}_{\text{Suspension Turbidity}} T = 0.3279 \times C_{clow} - 2.0839_{\text{Alum Dose}} D = (1 + \log_{10} T) \times 15_{\text{Alum Flowrate}} \\ Q_{alum} &= \frac{D \times Q_{clow}}{C_{alum}}_{\text{Galum}} \underset{\text{Gaverage (per baffle)}}{\text{Gaussian}} \overline{G}_{baffle} = \sqrt{\frac{g \cdot h_l \cdot Q}{\nu \cdot h + w \cdot b}} G_{\max} = \left(\frac{Q}{w \cdot b}\right)^{\frac{1}{2}} \sqrt{\frac{K}{2 \cdot \nu + b}}_{\text{Maximum shear}} \\ G_{\max,de \cdot igw} \approx \frac{1}{d_{flow}} \sqrt{\frac{8 \cdot \tau_{flow}}{C_D + \rho_w}} \theta_{baffle} = \frac{w \cdot h \cdot b}{Q}_{\text{Degree of Floculator Mixing}} G\theta = \sum_{i} \overline{G}_{baffle,i} + \theta_{baffle,i} \end{split}$$

Height of water as flocculators drain

$$h_{new} = h_{previous} + \frac{(Q_{outflow} - Q_{inflow}) * \Delta t}{base * width}$$

Force on baffle during tank draining

$$Force_{i} = \left(\frac{1}{2}\rho g w_{lamella}\right) \cdot \left[h_{i}^{2} - h_{i-1}^{2}\right]$$

ratio between baffle spacing and height of horizontal channel above or below a baffle (to avoid short circuiting when b is large)

$$f_{new} = \frac{h_{water} - overlap}{2b}$$

Number of baffles based on Gtheta

$$m_{efffic} = \frac{G g_{max} g_{max}}{G_{max} g_{max}}$$

headloss through a floc tank

$$headloss = m_{wffle} \frac{K \sigma^2}{2g}$$

Maximum flow rate our flocculators can deliver

$$Q_{\max} = w \cdot \left(\frac{\hbar}{2b_{ref(v)}}\right)^{\frac{1}{4}} \cdot G_{\min}^{\frac{1}{4}} \cdot \left(\frac{2\nu \Pi_{reff}}{K}\right)^{\frac{1}{4}}$$

Floc baffle spacing - NOT BASED ON ACTIVE VOLUME

$$b = \frac{Q}{w} \cdot \left(\frac{K}{2G_{3,eq}^2 \nu h}\right)^{\frac{1}{2}}$$

Headloss (Only minor loss)

$$h_l = k \cdot \frac{r^2}{2g}$$