{panel}
[Problem Specification|FLUENT - Supersonic Flow Over a Wedge - Problem Specification]\\
[1. Create Geometry in GAMBIT|FLUENT - Supersonic Flow Over a Wedge- Step 1]\\
[2. Mesh Geometry in GAMBIT|FLUENT - Supersonic Flow Over a Wedge- Step 2]\\
[3. Specify Boundary Types in GAMBIT|FLUENT - Supersonic Flow Over a Wedge- Step 3]\\
[4. Set Up Problem in FLUENT|FLUENT - Supersonic Flow Over a Wedge- Step 4 (FLUENT 6.3.26)]\\
[5. Solve|FLUENT - Supersonic Flow Over a Wedge- Step 5 (FLUENT 6.3.26)]\\  {color:#ff0000}{*}6. Analyze Results{*}{color}\\
[7. Verify Results|FLUENT - Supersonic Flow Over a Wedge- Step 7]
{panel}
{info:title=Useful Information}
[Click Here|SIMULATION:FLUENT - Supersonic Flow Over a Wedge - Step 4 *New] for the FLUENT 12 version.
{info} <!--  /* Font Definitions */  @font-face 	{font-family:"Cambria Math"; 	panose-1:2 4 5 3 5 4 6 3 2 4; 	mso-font-charset:1; 	mso-generic-font-family:roman; 	mso-font-format:other; 	mso-font-pitch:variable; 	mso-font-signature:0 0 0 0 0 0;} @font-face 	{font-family:Calibri; 	panose-1:2 15 5 2 2 2 4 3 2 4; 	mso-font-charset:0; 	mso-generic-font-family:swiss; 	mso-font-pitch:variable; 	mso-font-signature:-1610611985 1073750139 0 0 159 0;}  /* Style Definitions */  p.MsoNormal, li.MsoNormal, div.MsoNormal 	{mso-style-unhide:no; 	mso-style-qformat:yes; 	mso-style-parent:""; 	margin-top:0in; 	margin-right:0in; 	margin-bottom:10.0pt; 	margin-left:0in; 	line-height:115%; 	mso-pagination:widow-orphan; 	font-size:11.0pt; 	font-family:"Calibri","sans-serif"; 	mso-ascii-font-family:Calibri; 	mso-ascii-theme-font:minor-latin; 	mso-fareast-font-family:Calibri; 	mso-fareast-theme-font:minor-latin; 	mso-hansi-font-family:Calibri; 	mso-hansi-theme-font:minor-latin; 	mso-bidi-font-family:"Times New Roman"; 	mso-bidi-theme-font:minor-bidi;} .MsoChpDefault 	{mso-style-type:export-only; 	mso-default-props:yes; 	mso-ascii-font-family:Calibri; 	mso-ascii-theme-font:minor-latin; 	mso-fareast-font-family:Calibri; 	mso-fareast-theme-font:minor-latin; 	mso-hansi-font-family:Calibri; 	mso-hansi-theme-font:minor-latin; 	mso-bidi-font-family:"Times New Roman"; 	mso-bidi-theme-font:minor-bidi;} .MsoPapDefault 	{mso-style-type:export-only; 	margin-bottom:10.0pt; 	line-height:115%;} @page Section1 	{size:8.5in 11.0in; 	margin:1.0in 1.0in 1.0in 1.0in; 	mso-header-margin:.5in; 	mso-footer-margin:.5in; 	mso-paper-source:0;} div.Section1 	{page:Section1;} -->*Step 6: Analyze Results*

*Plot Velocity Vectors*

Let's plot the velocity vectors obtained from the FLUENT solution.

*Display > Graphics and Animations{*}or{*}Results > Graphics and Animations*

Select {color:#660099}{*}{_}Vectors{_}{*}{color}, click on the {color:#660099}{*}{_}Set up{_}{*}{color} &nbsp;button. Under {color:#660099}{*}{_}Color by{_}{*}{color}, select {color:#660099}{*}{_}Mach Number{_}{*}{color} in place of {color:#660099}{*}{_}Velocity Magnitud{_}{*}{color}{color:#990066}{*}{_}e{_}{*}{color}since the former is of greater interest in compressible flow. The colors of the velocity vectors will indicate the Mach number. Use the default settings by clicking {color:#660099}{*}{_}Display{_}{*}{color}.

This draws an arrow at the center of each cell. The direction of the arrow indicates the velocity direction and the magnitude is proportional to the velocity magnitude (not Mach number, despite the previous setting). The color indicates the corresponding Mach number value. The arrows show up a little more clearly if we reduce their lengths. Change Scale to 0.2. Click {color:#660099}{*}{_}Display{_}{*}{color}.

!Step6-image1.png|thumbnail,width=221,height=261!
&nbsp;

Zoom in a little using the middle mouse button to peer more closely at the velocity vectors. !step6-image2.png|thumbnail!

{color:blue}&nbsp;{color}


We can see the flow turning through an oblique shock wave as expected. Behind the shock, the flow is parallel to the wedge and the Mach number is 2.2. Save this figure to a file:

*Main Menu > File > Hardcopy*

Select {color:#660099}{*}{_}JPEG{_}{*}{color} and {color:#660099}{*}{_}Color{_}{*}{color}. Uncheck {color:#660099}{*}{_}Landscape Orientation{_}{*}{color}. Save the file as wedge_vv.jpg in your working directory. Check this iimage by opening this file in an image viewer.

!step6-image4.png|thumbnail,width=220,height=111!

Let's investigate how many mesh cells it takes for the flow to turn. To turn on the mesh do the following:

*Display > Graphics and Animations{*}or{*}Results > Graphics and Animations*

Select {color:#660099}{*}{_}Vectors{_}{*}{color}, click on the {color:#660099}{*}{_}Set up{_}{*}{color} button. Under options select the {color:#660099}{*}{_}Display Mesh{_}{*}{color} checkbox and a new window will pop up. Under Surfaces select {color:#660099}{*}{_}default-interior,_{*}{color}click {color:#660099}{*}{_}Display{_}{*}{color}and close it.&nbsp;&nbsp;

!step6-image5.png|thumbnail,width=216,height=183!


The mesh will substitute the arrows and to display both the mesh and the arrows go back to the Vector Set up window click {color:#660099}{*}{_}Display{_}{*}{color} again and now the mesh and arrows will appear on the same picture.

We see that it takes 2-3 mesh cells for the flow to turn. According to inviscid theory, the shock is a discontinuity and the flow should turn instantly. In the FLUENT results, the shock is "smeared" over 2-3 cells. In the discrete equations that FLUENT solves, there are terms that act like viscosity. This introduced viscosity contributes to the smearing. A more thorough explanation would have to go into the details of the numerical solution procedure.

*Plot Mach Number Contours*

Let's take a look at the Mach number variation in the flowfield.

*Display > Graphics and Animations{*}or{*}Results > Graphics and Animations*

Select {color:#660099}{*}{_}Contours{_}{*}{color}, click on the {color:#660099}{*}{_}Set up{_}{*}{color} &nbsp;button. Under {color:#660099}{*}{_}Contours of{_}{*}{color}, choose {color:#660099}{*}{_}Velocity.._{*}{color} and {color:#660099}{*}{_}Mach Number{_}{*}{color}. Select the {color:#660099}{*}{_}Filled{_}{*}{color} option. Increase the number of contour levels plotted: set {color:#660099}{*}{_}Levels{_}{*}{color}to 100.

!step6-image7.png|thumbnail!
&nbsp;

Click {color:#660099}{*}{_}Display{_}{*}{color}.

We see that the Mach number behind the shockwave is uniform and equal to 2.2. Compare this to the corresponding analytical result.

*Plot Pressure Coefficient Contours*

Let's set the reference values necessary to calculate the pressure coefficient.

*Report > Reference Values*

Select {color:#660099}{*}{_}pressure-farfield{_}{*}{color} under {color:#660099}{*}{_}Compute From{_}{*}{color}.

!step6-image9.png|thumbnail,width=159,height=240!

The above reference values of density, velocity and pressure will be used to calculate the pressure coefficient from the pressure.

*Display > Graphics and Animations{*}or{*}Results > Graphics and Animations*

Select {color:#660099}{*}{_}Contours{_}{*}{color}, click on the {color:#660099}{*}{_}Set up{_}{*}{color} &nbsp;button. Select {color:#660099}{*}{_}Pressure..._{*}{color} and Static Pressure from under{color:#660099}{*}{_}Contours Of{_}{*}{color}. Then select {color:#660099}{*}{_}Pressure Coeffient{_}{*}{color}.

The pressure coefficient after the shockwave is 0.293, very close to the theoretical value of 0.289. The pressure increases after the shockwave as we would expect.

Go to Step 7: Verify Results

See and rate the complete Learning Module

Go to all FLUENT Learning Modules