You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 14 Next »


 
Subscripts

Unknown macro: {latex}

\large L, R, M

correspond the left half-shaft, right half-shaft, and middle gear, respectively.Three observations:

  •  When we hold the right axle fixed and turn the left axle one revolution, the middle sprocket makes half a revolution in the same angular direction.
  • Holding the middle sprocket in place and turning the left axle one revolution causes the right axle to make one revolution in the opposite direction.
  • The above observations are the same if the left and right axle are switched.

The results can be summarized as such: 

Unknown macro: {latex}

\large\begin

Unknown macro: {align*}

\theta_{\text{M}} = \frac

Unknown macro: {1}
Unknown macro: {2}

\theta_{\text{L}} + \frac

Unknown macro: {2}

\theta_{\text{R}}
\end

 

where

Unknown macro: {latex}

\large $\theta$

represents angular position. In other words, the position of the middle gear is half the sum of the left and right gears. Say that

Unknown macro: {latex}

\large $\omega$

represents angular velocity,

Unknown macro: {latex}

\large $\alpha$

represents angular acceleration, and

Unknown macro: {latex}

\large $\tau$

represents torque.

Unknown macro: {latex}

\large $r$

is the radius of the gear, and

Unknown macro: {latex}

\large $v$

is the linear velocity at the edge of a gear. From the first equation, we can find the relationships between the angular and linear velocities of the gears. 

Unknown macro: {latex}

\large

\begin

Unknown macro: {align*}

\omega_{\text{M}} =& \frac

Unknown macro: {1}
Unknown macro: {2}

\left( \omega_{\text{L}} + \omega_{\text{R}} \right)
\omega_{\text{M}} r_{\text{M}} =& \frac

Unknown macro: {2}

( \omega_{\text{L}} r_{\text{M}} +
\omega_{\text{R}} r_{\text{M}})
v_{\text{M}} =& \frac

Unknown macro: {1}

\left( \omega_{\text{L}} r_{\text{M}} \frac{r_{\text

Unknown macro: {L}

}}{r_{\text

}} +
\omega_{\text{R}} r_{\text{M}} \frac{r_{\text

Unknown macro: {R}

}}{r_{\text

}} \right)
v_{\text{M}} =& \frac

Unknown macro: {1}
Unknown macro: {2}

\left( v_{\text{L}} \frac{r_{\text

Unknown macro: {M}

}}{r_{\text

Unknown macro: {L}

}} +
v_{\text{R}} \frac{r_{\text

}}{r_{\text

Unknown macro: {R}

}} \right)
\end

We assume that these ideal gears are frictionless and massless. Therefore, we can use conservation of energy to say that input power equals output power. Say

Unknown macro: {latex}

\large $P$

represents power as a function of time.

Unknown macro: {latex}

\large
\begin

Unknown macro: {align*}

&P_{\text{M}} = P_{\text{L}} + P_{\text{R}}
&\tau_{\text{M}} \cdot \omega_{\text{M}} = \tau_{\text{L}} \cdot \omega_{\text{L}} +
\tau_{\text{R}} \cdot \omega_{\text{R}}
&\tau_{\text{M}} \cdot \left[ \frac

Unknown macro: {1}
Unknown macro: {2}

\left( \omega_{\text{L}} + \omega_{\text{R}} \right) \right]
= \tau_{\text{L}} \cdot \omega_{\text{L}} +
\tau_{\text{R}} \cdot \omega_{\text{R}}
\end

If we consider

Unknown macro: {latex}

\large $\omega_{\text{L}}$

and

Unknown macro: {latex}

$\omega_{\text{R}}$

separately, we find that

Unknown macro: {latex}

\large
\begin

Unknown macro: {align*}

\frac

Unknown macro: {1}
Unknown macro: {2}

\tau_{\text{M}} \omega_{\text{L}} &= \tau_{\text{L}} \omega_{\text{L}}, \;\;\;
\frac

Unknown macro: {2}

\tau_{\text{M}} \omega_{\text{R}} = \tau_{\text{R}} \omega_{\text{R}}
\frac

Unknown macro: {1}

\tau_{\text{M}} &= \tau_{\text{L}}, \;\;\;\;\;\;\; \;\; \; \;\; \frac

Unknown macro: {1}
Unknown macro: {2}

\tau_{\text{M}} = \tau_{\text{R}}
\end

Therefore, we can conclude that the relationships between torques is the same as the relationships between angular position; a torque on the middle gear is evenly divided between the torque on the left gear and the torque on the right gear.

Unknown macro: {latex}

\large
\begin

Unknown macro: {align*}

\tau_{\text{M}} &= \tau_{\text{L}} + \tau_{\text{R}}
\tau_{\text{L}} &= \tau_{\text{R}} = \frac

Unknown macro: {1}
Unknown macro: {2}

\tau_{\text{M}}
\end

  • No labels