Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Migration of unmigrated content due to installation of a new plugin

Differential relates the angular positions and forces of three gears on a common axis of rotation. They are commonly used in car steering systems to make sure that when a car rounds a corner, the inside wheel spins less than the outside wheel. In our erg, we use the differential to split an input force from the handle to the two output forces that act on flywheel and the tires.


 
Subscripts

Wiki Markup
Latex
{latex} \large L, R, M{latex}
correspond the left half-shaft, right half-shaft, and middle gear, respectively.Three observations:

...

The results can be summarized as such: 

Latex
Wiki Markup
{latex}
\large\begin{align*}
\theta_{\text{M}} = \frac{1}{2}\theta_{\text{L}} + \frac{1}{2}\theta_{\text{R}}
\end{align*} 
{latex}

where

Wiki Markup
Latex
{latex} \large $\theta$ {latex}
represents angular position. In other words, the position of the middle gear is half the sum of the left and right gears. Say that
Wiki Markup
Latex
{latex} \large $\omega$ {latex}
represents angular velocity,
Wiki Markup
Latex
{latex} \large $\alpha${latex}
represents angular acceleration, and
Wiki Markup
Latex
{latex} \large $\tau$ {latex}
represents torque.
Wiki Markup
Latex
{latex} \large $r$ {latex}
is the radius of the gear, and
Wiki Markup
Latex
{latex} \large $v$ {latex}
is the linear velocity at the edge of a gear. From the first equation, we can find the relationships between the angular and linear velocities of the gears. 

Latex
Wiki Markup
{latex}
\large

\begin{align*}
\omega_{\text{M}} =& \frac{1}{2} \left( \omega_{\text{L}} + \omega_{\text{R}} \right)
\\
\omega_{\text{M}} r_{\text{M}} =& \frac{1}{2} ( \omega_{\text{L}} r_{\text{M}} +
\omega_{\text{R}} r_{\text{M}})
\\
v_{\text{M}} =& \frac{1}{2} \left( \omega_{\text{L}} r_{\text{M}} \frac{r_{\text{L}}}{r_{\text{L}}} +
\omega_{\text{R}} r_{\text{M}} \frac{r_{\text{R}}}{r_{\text{R}}} \right)
\\
v_{\text{M}} =& \frac{1}{2} \left( v_{\text{L}} \frac{r_{\text{M}}}{r_{\text{L}}} +
v_{\text{R}} \frac{r_{\text{M}}}{r_{\text{R}}} \right)
\end{align*}
{latex}

We assume that these ideal gears are frictionless and massless. Therefore, we can use conservation of energy to say that input power equals output power. Say

Wiki Markup
Latex
{latex} \large $P$ {latex}
represents power as a function of time.

Latex
Wiki Markup
{latex}
\large
\begin{align*}
&P_{\text{M}} = P_{\text{L}} + P_{\text{R}} \\
&\tau_{\text{M}} \cdot \omega_{\text{M}} = \tau_{\text{L}} \cdot \omega_{\text{L}} +
\tau_{\text{R}} \cdot \omega_{\text{R}} \\
&\tau_{\text{M}} \cdot \left[ \frac{1}{2} \left( \omega_{\text{L}} + \omega_{\text{R}} \right) \right]
= \tau_{\text{L}} \cdot \omega_{\text{L}} +
\tau_{\text{R}} \cdot \omega_{\text{R}}
\end{align*}
{latex}

If we consider

Wiki Markup
Latex
{latex}\large $\omega_{\text{L}}$ {latex}
and
Wiki Markup
Latex
{latex} $\omega_{\text{R}}$ {latex}
separately, we find that

Latex
Wiki Markup
{latex}
\large
\begin{align*}
\frac{1}{2} \tau_{\text{M}} \omega_{\text{L}} &= \tau_{\text{L}} \omega_{\text{L}}, \;\;\;
\frac{1}{2} \tau_{\text{M}} \omega_{\text{R}} = \tau_{\text{R}} \omega_{\text{R}}
\\
\frac{1}{2} \tau_{\text{M}} &= \tau_{\text{L}}, \;\;\;\;\;\;\; \;\; \; \;\; \frac{1}{2} \tau_{\text{M}} = \tau_{\text{R}}
\end{align*}
{latex}

Therefore, we can conclude that the relationships between torques is the same as the relationships between angular position; a torque on the middle gear is evenly divided between the torque on the left gear and the torque on the right gear.

Latex
Wiki Markup
{latex}
\large
\begin{align*}
\tau_{\text{M}} &= \tau_{\text{L}} + \tau_{\text{R}} \\
\tau_{\text{L}} &= \tau_{\text{R}} = \frac{1}{2} \tau_{\text{M}}
\end{align*}
{latex}
Prof Ruina's favorite video on how a differential works

...