A Differential relates the angular positions and forces of three gears on a common axis of rotation. They are commonly used in car steering systems to make sure that when a car rounds a corner, the inside wheel spins less than the outside wheel. In our erg, we use the differential to split an input force from the handle to the two output forces that act on flywheel and the tires.
...
Subscripts
Latex |
---|
\large L, R, M |
...
...
the
...
left
...
half-shaft,
...
right
...
half-shaft,
...
and
...
middle
...
gear,
...
respectively.Three
...
observations:
- When we hold the right axle fixed and turn the left axle one revolution, the middle sprocket makes half a revolution in the same angular direction.
- Holding the middle sprocket in place and turning the left axle one revolution causes the right axle to make one revolution in the opposite direction.
- The above observations are the same if the left and right axle are switched.
The results can be summarized as such:
Latex |
---|
* When we hold the right axle fixed and turn the left axle one revolution, the middle sprocket makes half a revolution in the same angular direction. * Holding the middle sprocket in place and turning the left axle one revolution causes the right axle to make one revolution in the opposite direction. * The above observations are the same if the left and right axle are switched. The results can be summarized as such: {latex} \large\begin{align*} \theta_{\text{M}} = \frac{1}{2}\theta_{\text{L}} + \frac{1}{2}\theta_{\text{R}} \end{align*} {latex} where {latex} |
where
Latex |
---|
\large $\theta$ |
...
...
angular
...
position.
...
In
...
other
...
words,
...
the
...
position
...
of
...
the
...
middle
...
gear
...
is
...
half
...
the
...
sum
...
of
...
the
...
left
...
and
...
right
...
gears
...
.
...
Say
...
that
...
Latex |
---|
...
\large $\omega$ |
...
...
angular
...
velocity,
...
Latex |
---|
...
\large $\alpha$ |
...
...
angular
...
acceleration,
...
and
...
Latex |
---|
...
\large $\tau$ |
...
...
torque.
...
Latex |
---|
...
\large $r$ |
...
...
the
...
radius
...
of
...
the
...
gear,
...
and
...
Latex |
---|
...
\large $v$ |
...
...
the
...
linear
...
velocity
...
at
...
the
...
edge
...
of
...
a
...
gear.
...
From
...
the
...
first
...
equation,
...
we
...
can
...
find
...
the
...
relationships
...
between
...
the
...
angular
...
and
...
linear
...
velocities
...
of
...
the
...
gears.
Latex |
---|
{latex} \large \begin{align*} \omega_{\text{M}} =& \frac{1}{2} \left( \omega_{\text{L}} + \omega_{\text{R}} \right) \\ \omega_{\text{M}} r_{\text{M}} =& \frac{1}{2} ( \omega_{\text{L}} r_{\text{M}} + \omega_{\text{R}} r_{\text{M}}) \\ v_{\text{M}} =& \frac{1}{2} \left( \omega_{\text{L}} r_{\text{M}} \frac{r_{\text{L}}}{r_{\text{L}}} + \omega_{\text{R}} r_{\text{M}} \frac{r_{\text{R}}}{r_{\text{R}}} \right) \\ v_{\text{M}} =& \frac{1}{2} \left( v_{\text{L}} \frac{r_{\text{M}}}{r_{\text{L}}} + v_{\text{R}} \frac{r_{\text{M}}}{r_{\text{R}}} \right) \end{align*} {latex} |
We
...
assume
...
that
...
these
...
ideal
...
gears
...
are
...
...
and
...
massless.
...
Therefore,
...
we
...
can
...
use
...
conservation
...
of
...
energy
...
to
...
say
...
that
...
input
...
power
...
equals
...
output
...
power.
...
Say
...
Latex |
---|
...
\large $P$ |
...
...
power
...
as
...
a
...
function
...
of
...
time.
Latex |
---|
} \large \begin{align*} &P_{\text{M}} = P_{\text{L}} + P_{\text{R}} \\ &\tau_{\text{M}} \cdot \omega_{\text{M}} = \tau_{\text{L}} \cdot \omega_{\text{L}} + \tau_{\text{R}} \cdot \omega_{\text{R}} \\ &\tau_{\text{M}} \cdot \left[ \frac{1}{2} \left( \omega_{\text{L}} + \omega_{\text{R}} \right) \right] = \tau_{\text{L}} \cdot \omega_{\text{L}} + \tau_{\text{R}} \cdot \omega_{\text{R}} \end{align*} {latex} |
If
...
we
...
consider
...
Latex |
---|
...
\large $\omega_{\text{L}}$ |
...
Latex |
---|
$\omega_{\text{R}}$ |
...
...
we
...
find
...
that
Latex |
---|
} \large \begin{align*} \frac{1}{2} \tau_{\text{M}} \omega_{\text{L}} &= \tau_{\text{L}} \omega_{\text{L}}, \;\;\; \frac{1}{2} \tau_{\text{M}} \omega_{\text{R}} = \tau_{\text{R}} \omega_{\text{R}} \\ \frac{1}{2} \tau_{\text{M}} &= \tau_{\text{L}}, \;\;\;\;\;\;\; \;\; \; \;\; \frac{1}{2} \tau_{\text{M}} = \tau_{\text{R}} \end{align*} {latex} |
Therefore,
...
we
...
can
...
conclude
...
that
...
the
...
relationships
...
between
...
torques
...
is
...
the
...
same
...
as
...
the
...
relationships
...
between
...
angular
...
position;
...
a
...
torque
...
on
...
the
...
middle
...
gear
...
is
...
evenly
...
divided
...
between
...
the
...
torque
...
on
...
the
...
left
...
gear
...
and
...
the
...
torque
...
on
...
the
...
right
...
gear.
...
Latex |
---|
...
\large
\begin{align*}
\tau_{\text{M}} &= \tau_{\text{L}} + \tau_{\text{R}} \\
\tau_{\text{L}} &= \tau_{\text{R}} = \frac{1}{2} \tau_{\text{M}}
\end{align*}
|
...
Widget Connector | ||
---|---|---|
|