Compressible Flow in a Nozzle

Consider air flowing at high-speed through a convergent-divergent nozzle having a circular cross-sectional area, \(A \), that varies with axial distance from the throat, \(x \), according to the formula

\[A = 0.1 + x^2; \quad -0.5 < x < 0.5 \]

where \(A \) is in square meters and \(x \) is in meters. The stagnation pressure \(p_o \) at the inlet is 101,325 Pa. The stagnation temperature \(T_o \) at the inlet is 300 K. The static pressure \(p \) at the exit is 3,738.9 Pa. We will calculate the Mach number, pressure and temperature distribution in the nozzle using FLUENT and compare the solution to quasi-1D nozzle flow results. The Reynolds number for this high-speed flow is large. So we expect viscous effects to be confined to a small region close to the wall. So it is reasonable to model the flow as inviscid.

Go to Step 1: Pre-Analysis & Start-Up

Go to all FLUENT Learning Modules