ANSYS AIM Learning Modules

What is ANSYS AIM?

ANSYS AIM is a simulation package that offers single and multiphysics solutions for thermal, modal, structural, fluid, and electrical analyses. ANSYS AIM uses finite-element and related methods to solve the underlying governing equations and the associated problem-specific boundary conditions.

List of Learning Modules

In this short course you will be taken through ANSYS AIM and learn how to solve a variety of problems. The learning modules lead the user through the steps involved in solving a selected problem or set of problems. We not only provide the solution steps but also the rationale behind them. It is worthwhile for you to understand the underlying concepts as you travel through the learning modules in order to be able to correctly apply ANSYS AIM to other situations that you may encounter. You would be ill-served by clicking through the learning modules in zombie-mode. Each learning module is followed by problems which are geared towards strengthening and reinforcing the knowledge and understanding gained in the learning modules. Working through the problem sets is an intrinsic part of the learning process and shouldn't be skipped.

Analysis Using ANSYS AIM

The following ANSYS tutorials show you how to obtain a solution from scratch using *ANSYS AIM*.

<table>
<thead>
<tr>
<th>Bike Crank</th>
<th>Static Structural</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I Beam</th>
<th>Static Structural</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stress Due to Gravity</th>
<th>Static Structural</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3D Sign Post</th>
<th>Static Structural</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cantilever Beam Modal Analysis</th>
<th>Modal Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Image</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Modal Analysis of a Wing</td>
</tr>
<tr>
<td></td>
<td>Satellite Modal Analysis</td>
</tr>
<tr>
<td></td>
<td>3D Convection through an Electronics Box</td>
</tr>
<tr>
<td></td>
<td>Heat Conduction in a Bar</td>
</tr>
<tr>
<td></td>
<td>Heat Conduction in a Hollow Cylinder</td>
</tr>
<tr>
<td></td>
<td>Thermal Stresses in a Bar</td>
</tr>
<tr>
<td>Image</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Plate with a Hole</td>
</tr>
<tr>
<td></td>
<td>Stepped Shaft in Axial Tension</td>
</tr>
<tr>
<td></td>
<td>3D Lid Driven Cavity - Cube</td>
</tr>
<tr>
<td></td>
<td>3D Backwards Facing Step</td>
</tr>
<tr>
<td></td>
<td>Fluid Flow Through a Transition Duct</td>
</tr>
<tr>
<td></td>
<td>Compressible Flow in a Nozzle</td>
</tr>
<tr>
<td>Image</td>
<td>Compressible Flow Over an Airfoil</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Image</td>
<td>Steady Flow over a Cylinder</td>
</tr>
<tr>
<td>Image</td>
<td>Taylor-Couette Flow between Rotating Cylinders</td>
</tr>
<tr>
<td>Image</td>
<td>Flow Through U-Duct</td>
</tr>
<tr>
<td>Image</td>
<td>Flow Through an Aortic Aneurysm</td>
</tr>
<tr>
<td>Image</td>
<td>Compressible Flow over a Wing-Body Junction</td>
</tr>
<tr>
<td>Image</td>
<td>Fluid Flow over a Bluff Body</td>
</tr>
<tr>
<td>Image</td>
<td>Flow in a S-Duct</td>
</tr>
<tr>
<td>Image</td>
<td>Flow over an Ahmed Body</td>
</tr>
<tr>
<td>Transonic Flow over a Wing</td>
<td>Fluid Flow</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>3D Static Force Computation</td>
<td>Magnetostatics</td>
</tr>
<tr>
<td>Permanent Magnetic Circuit with Air Gap</td>
<td>Magnetostatics</td>
</tr>
<tr>
<td>Forces in Permanent Magnets</td>
<td>Magnetostatics</td>
</tr>
<tr>
<td>Eddy Current / Magnetic Frequency Response</td>
<td>Magnetics</td>
</tr>
<tr>
<td>Thermal Analysis of an Electrical Wire</td>
<td>Electrical Conduction & Thermal</td>
</tr>
</tbody>
</table>