
Introduction to CFD Basics

Baidurja Ray

Rajesh Bhaskaran
Lance R Collins

February 7, 2012

This is a quick-and-dirty introduction to the basic concepts underlying CFD. The concepts are
illustrated by applying them to simple 1D model problems. We will invoke these concepts while
performing ‘case studies’ in FLUENT. Happily for us, these model-problem concepts extend to
the more general situations in the case studies in most instances. Since we will keep returning to
these concepts while performing the FLUENT case studies, it is worth your time to understand
and digest these concepts.

We discuss the following topics briefly. These topics are the minimum necessary to perform
and validate the FLUENT calculations to come later.

1. Need for CFD

2. Applications of CFD

3. Strategy of CFD

4. Discretization using the finite-difference method

5. Discretization using the finite-volume method

6. Example problem

i. Governing equations

ii. Discretization using finite-volume method

iii. Assembly of discrete system and application of boundary conditions

iv. Solution of discrete system

v. Grid convergence

vi. Discretization error

vii. Dealing with nonlinearity

viii. Direct and Iterative solvers

ix. Iterative convergence

x. Numerical stability

7. Explicit and Implicit schemes

8. Turbulence modeling

1

1 Need for CFD

Applying the fundamental laws of mechanics to a fluid gives the governing equations for a fluid.
The conservation of mass equation is

∂ρ

∂t
+∇ · (ρ~V) = 0

and the conservation of momentum equation is

ρ
∂~V

∂t
+ ρ(~V · ∇)~V = −∇p+ ρ~g +∇ · τij

These equations along with the conservation of energy equation form a set of coupled, nonlinear
partial differential equations. It is not possible to solve these equations analytically for most
engineering problems.

However, it is possible to obtain approximate computer-based solutions to the governing equa-
tions for a variety of engineering problems. This is the subject matter of Computational Fluid
Dynamics (CFD).

2 Applications of CFD

CFD is useful in a wide variety of applications and here we note a few to give you an idea of its
use in industry. The simulations shown below have been performed using the FLUENT software.

CFD can be used to simulate the flow over a vehicle. For instance, it can be used to study
the interaction of propellers or rotors with the aircraft fuselage. The following figure shows the
prediction of the pressure field induced by the interaction of the rotor with a helicopter fuselage
in forward flight. Rotors and propellers can be represented with models of varying complexity.

The temperature distribution obtained from a CFD analysis of a mixing manifold is shown below.
This mixing manifold is part of the passenger cabin ventilation system on the Boeing 767. The
CFD analysis showed the effectiveness of a simpler manifold design without the need for field
testing.

2

Bio-medical engineering is a rapidly growing field and uses CFD to study the circulatory and
respiratory systems. The following figure shows pressure contours and a cutaway view that reveals
velocity vectors in a blood pump that assumes the role of heart in open-heart surgery.

CFD is attractive to industry since it is more cost-effective than physical testing. However, one
must note that complex flow simulations are challenging and error-prone and it takes a lot of
engineering expertise to obtain validated solutions.

3 Strategy of CFD

Broadly, the strategy of CFD is to replace the continuous problem domain with a discrete domain
using a chosen mesh or grid. In the continuous domain, each flow variable is defined at every point
in the domain. For instance, the pressure p in the continuous 1D domain shown in the figure below
would be given as

p = p(x), 0 < x < 1

In the discrete domain, each flow variable is defined only at the grid points. So, in the discrete
domain shown below, the pressure would be defined only at the N grid points.

pi = p(xi), i = 1, 2, . . . , N

Continuous Domain Discrete Domain

x=0 x=1 x
1
 x

i
 x

N

0 ≤ x ≤ 1 x = x
1
, x

2
, …,x

N

Grid point
Coupled PDEs + boundary
conditions in continuous
variables

Coupled algebraic eqs. in
discrete variables

In a CFD solution, one would directly solve for the relevant flow variables only at the grid points.
The values at other locations are determined by interpolating the values at the grid points.

The governing partial differential equations and boundary conditions are defined in terms of
the continuous variables p, ~V etc. One can approximate these in the discrete domain in terms of
the discrete variables pi, ~Vi etc. The discrete system is a large set of coupled, algebraic equations
in the discrete variables. Setting up the discrete system and solving it (which is a matrix inversion
problem) involves a very large number of repetitive calculations, a task we humans palm over to
the digital computer.

3

This idea can be extended to any general problem domain. The following figure shows the grid
used for solving the flow over an airfoil. We’ll take a closer look at this airfoil grid soon while
discussing the finite-volume method.

4 Discretization using the finite-difference method

To keep the details simple, consider a simple 1D equation:

du

dx
+ u = 0; 0 ≤ x ≤ 1; u(0) = 1 (1)

We will derive a discrete representation of the above equation on the following grid:

x
1
=0 x

2
=1/3 x

3
=2/3 x

4
=1

∆x=1/3

This grid has four equally-spaced grid points with ∆x being the spacing between successive points.
Since the governing equation is valid at any grid point, we have

(

du

dx

)

i

+ ui = 0 (2)

where the subscript i represents the value at grid point xi. In order to get an expression for
(du/dx)i in terms of u at the grid points, we expand ui−1 in a Taylor’s series:

ui−1 = ui −∆x

(

du

dx

)

i

+O(∆x2)

Rearranging gives
(

du

dx

)

i

=
ui − ui−1

∆x
+O(∆x) (3)

4

The error in (du/dx)i due to the neglected terms in the Taylor’s series is called the truncation
error. Since the truncation error above is O(∆x), this discrete representation is termed first-order
accurate.

Using (3) in (2) and excluding higher-order terms in the Taylor’s series, we get the following
discrete equation:

ui − ui−1

∆x
+ ui = 0 (4)

Note that we have gone from a differential equation to an algebraic equation!
This method of deriving the discrete equation using Taylor’s series expansions is called the

finite-difference method. However, most commercial CFD codes use the finite-volume or finite-
element methods which are better suited for modeling flow past complex geometries. For example,
the FLUENT code uses the finite-volume method whereas ANSYS uses the finite-element method.
In what follows, we will illustrate the CFD solution process using the finite-volume method, which
is the most popular method used in practice.

5 Discretization using the finite-volume method

If you look closely at the airfoil grid shown earlier, you’ll see that it consists of quadrilaterals.
In the finite-volume method, such a quadrilateral is commonly referred to as a “cell”. In 2D,
one could also have triangular cells. In 3D, cells are usually hexahedrals, tetrahedrals, or prisms.
In the finite-volume approach, the integral form of the conservation equations are applied to the
control volume defined by a cell to get the discrete equations for the cell. The integral form of the
continuity equation for steady, incompressible flow is

∫

S

~V · n̂ dS = 0 (5)

The integration is over the surface S of the control volume and n̂ is the outward normal at the
surface. Physically, this equation means that the net volume flow into the control volume is zero.

Consider the rectangular cell shown below.

face 1

(u
1
,v

1
)

face 2

face 3

face 4

(u
2
,v

2
)

(u
3
,v

3
)

(u
4
,v

4
)

Cell center

∆x

x

y

∆y

The velocity at face i is taken to be ~Vi = ui î+ vi ĵ. Applying the mass conservation equation (5)
to the control volume defined by the cell gives

−u1∆y − v2∆x+ u3∆y + v4∆x = 0

5

This is the discrete form of the continuity equation for the cell. It is equivalent to summing up
the net mass flow into the control volume and setting it to zero. So it ensures that the net mass
flow into the cell is zero i.e. that mass is conserved for the cell. Usually, though not always, the
values at the cell centers are solved for directly by inverting the discrete system. The face values
u1, v2, etc. are obtained by suitably interpolating the cell-center values at adjacent cells.

Similarly, one can obtain discrete equations for the conservation of momentum and energy for
the cell. We will describe how to implement the finite-volume method for the momentum equations
in the 1D example problem below. One can readily extend these ideas to any general cell shape
in 2D or 3D and any conservation equation.

Look back at the airfoil grid. When you are using FLUENT, it’s useful to remind yourself that
the code is finding a solution such that mass, momentum, energy and other relevant quantities are
being conserved for each cell. Also, the code directly solves for values of the flow variables at the
cell centers; values at other locations are obtained by suitable interpolation.

6 Example problem

6.1 Governing equations

Let us consider the classic problem of a viscous fluid flowing in a channel (figure 1) under a
constant applied pressure gradient dp/dx. We consider a fully developed, unidirectional flow so
that the velocity u is only a function of the vertical coordinate y. Under these assumptions, the
Navier-Stokes equations can be simplified to the following single governing equation (x-momentum)

0 = −dp/dx+ µ
d2u(y)

dy2
− 1 ≤ y ≤ 1 (6)

with boundary conditions given by the no-slip condition at the two channel walls as follows:

u(y) = 0 at y = ±1 (7)

Equations (6) and (7) constitute a boundary value problem (BVP) which is to be solved numer-
ically. Most steady-state problems you will encounter will be BVPs and in the next sections, we
will illustrate how to discretize and solve this problem.

x
y

h=2

y =1

y = -1

u(y)

Figure 1: Example problem

6

(a)

∆y

∆x

j

j+1

N

j-1

1

j-½

j+½

(b)

j

j+1

j-1

j-½

j+½

∆x

∆y

(c)

j

j-½

j+½

τxy

τxy

Figure 2: Example problem: discretization

6.2 Discretization using finite-volume method

In this section, we will describe the discretization of equation (6) using the finite-volume (FV)
scheme, similar to what FLUENT would do. Let us divide the vertical extent of the domain into
N cells each having a height ∆y and arbitrary width ∆x as shown in figure 2(a). The FV method
involves writing out the integral form of the governing equations over a discrete control volume
j (CVj) and then using the divergence theorem to convert it into a surface integral around the
control surface (CSj), which we then evaluate using discrete values of the variable at the center
of each cell (note that this is the cell-centered approach employed by FLUENT. A node-centered
approach also exists but we will not talk about it here). Referring to figure 2(a), we can write
equation (6) as

0 =

∫

CVj

(−dp/dx)dVj +

∫

CVj

µ
d2u(y)

dy2
dVj (8)

Here, we have used the symbol V for volume, to distinguish it from the velocity vector ~V . Since
dp/dx is a constant, the first-term on the RHS is really simple to deal with and we will come back
to it later. Let us for the moment concentrate on the second term

µ

∫

CVj

d2u(y)

dy2
dVj

Using the divergence theorem,

∫

CVj

d2u(y)

dy2
dVj =

∫

CVj

∇2udVj =

∫

CSj

∇u · n̂dSj

where n̂ is the outward normal to the control surface. Let us now traverse the the control surfaces
of CVj in CCW sense. Referring to figure 2(b), we have

∫

CSj

∇u · n̂dSj =

∫

CS1

∇u · n̂dS1 +

∫

CS2

∇u · n̂dS2 +

∫

CS3

∇u · n̂dS3 +

∫

CS4

∇u · n̂dS4

With respect to the axes provided in figure 1, we see that the outward normal n̂ to the surface
is opposite to the direction of gradient for surfaces 1 and 2 and aligned with it for surfaces 3 and

7

4. Also, since the flow is fully developed, there are no net fluxes in the horizontal direction, i.e,
through surface 1 and 3. Therefore, we can now write for any interior cell j,

∫

CSj

∇u · n̂dSj = 0 +

∫

CS2

∇u · n̂dS2 + 0 +

∫

CS4

∇u · n̂dS4

= −

(

du

dy

)

j− 1

2

∆x+

(

du

dy

)

j+ 1

2

∆x

= −
uj − uj−1

∆y
∆x+

uj+1 − uj

∆y
∆x

= (uj−1 − 2uj + uj+1)
∆x

∆y

This term (multiplied by µ) is essentially a sum of the shear forces acting on the control volume CVj

as shown in figure 2(c), which is balanced by the pressure force. Notice that we have used a central
differencing scheme to evaluate the fluxes at the interface of adjacent cells. You can use other
schemes as well but it is worth noting that this choice may influence your spatial discretization
error. More on that in a bit. But first let us complete our discretization of equation (8) by
considering the first term on the LHS. Since dp/dx is a constant, we can write

∫

CVj

(−dp/dx)dVj = (−dp/dx)Vj

= (−dp/dx)∆x∆y

Therefore, putting everything together we get the discretized form of equation (8) as

0 = (−dp/dx)∆x∆y + µ(uj−1 − 2uj + uj+1)
∆x

∆y

Dividing by ∆x∆y, we have the final discretized form as

0 = (−dp/dx) + µ
uj−1 − 2uj + uj+1

(∆y)2
(9)

6.3 Assembly of discrete system and application of boundary condi-

tions

In order to make our calculations simple, let us assume dp/dx = −1 corresponding to a flow in
the postive x direction and µ = 1 and consider a discretization involving N = 3 cells as shown in
figure 3(a). Then, our final discretized form for an interior cell becomes

uj−1 − 2uj + uj+1 = −(∆y)2 (10)

As discussed earlier, this equation is true as long as our cell (or control volume) is not adjacent
to the boundary. For the boundary cells (j = 1 and j = N in figure 2(a)), we need to slightly
modify the way we calculate the fluxes in order to accomodate the boundary points N + 1

2
and

8

(a)

∆y

∆x

1

2

3

(b)

∆y N

N-½

N+½

∆y

2

Figure 3: Example problem: discretization

1− 1
2
. Referring to figure 3(b), we can see that for j = N ,

∫

CSN

∇u · n̂dSN = −
uN − uN−1

∆y
∆x+

uN+ 1

2

− uN

∆y/2
∆x

= (uN−1 − 3uN + 2uN+ 1

2

)
∆x

∆y

Since for j = N , there are no points corresponding to N + 1, we have used the boundary point
N + 1

2
to compute the flux. We can employ the same tactic for the bottom boundary cell j = 1.

Therefore, for N = 3 cells, our final discretized set of equations corresponding to the governing
equation (6) is

2u1− 1

2

− 3u1 + u2 = −(∆y)2 (j = 1) (11)

u1 − 2u2 + u3 = −(∆y)2 (j = 2) (12)

u2 − 3u3 + 2u3+ 1

2

= −(∆y)2 (j = 3) (13)

Equations (11)-(13) form a system of three simultaneous algebraic equations in the three unknowns
u1, u2 and u3 with specified boundary values u1− 1

2

and u3+ 1

2

, for which we can immediately apply
the no-slip boundary conditions u1− 1

2

= u3+ 1

2

= 0. In this case, you can solve these equations
by inspection, but for practical systems we need to use a large number of cells. Therefore, it is
generally convenient to write this system in matrix form:





−3 1 0
1 −2 1
0 1 −3









u1

u2

u3



 = −(∆y)2





1
1
1



 (14)

Now, you can easily see how the system would look like as we add more and more cells. For
example, if we have N = 5, we would have the following system:













−3 1 0 0 0
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
0 0 0 1 −3

























u1

u2

u3

u4

u5













= −(∆y)2













1
1
1
1
1













(15)

9

Make sure that you see how we get this. In a general situation therefore, one would apply the
discrete equations to the cells in the interior of the domain. For the cells adjacent to the boundary
(or in some cases, near the boundary), one would apply a combination of the discrete equations and
boundary conditions. In the end, one would obtain a system of simultaneous algebraic equations
with the number of equations being equal to the number of independent discrete variables.

FLUENT, like other commercial CFD codes, offers a variety of boundary condition options
such as velocity inlet, pressure inlet, pressure outlet, etc. It is very important that you specify the
proper boundary conditions in order to have a well-defined problem to solve numerically. Also,
read through the documentation for a boundary condition option to understand what it does before
you use it (it might not be doing what you expect). A single wrong boundary condition can give
you a totally wrong result.

6.4 Solution of discrete system

The discrete system (14) for our 1D example can be easily inverted to obtain the unknowns at the
grid points. Using ∆y = 2/3, we can solve for u1, u2 and u3 in turn and obtain

u1 = 1/3 u2 = 5/9 u3 = 1/3

The exact or analytical solution for this problem is easily calculated to be

uexact(y) = −y2/2 + 1/2

The figure below shows the comparison of the discrete solution obtained on the three-cell grid
along with the exact solution. Verify that the relative error is largest at the cells 1 and 3 each
being equal to 20%.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

u(y)

y

Numerical solution
Analytical solution

In a practical CFD application, one would have thousands to millions of unknowns in the
discrete system and if one uses, say, a Gaussian elimination procedure naively to invert the matrix,
you’d probably graduate before the computer finishes the calculation! So a lot of work goes into
optimizing the matrix inversion in order to minimize the CPU time and memory required. The
matrix to be inverted is usually sparse i.e., most of the entries in it are zeros since the discrete

10

equation at a grid point or cell will contain only quantities at the neighboring points or cells; verify
that this will indeed be the case for our matrix system (15) as we increase the number of cells
N . A CFD code would store only the non-zero values to minimize memory usage. It would also
generally use an iterative procedure to invert the matrix; the longer one iterates, the closer one
gets to the true solution for the matrix inversion.

6.5 Grid convergence

We will show later that the spatial discretization error in our finite-volume approximation of
equation (6) is O(∆y2). This means that as we increase the number of cells, we decrease ∆y which
should lead to reduction in the numerical discretization error.

Let us consider the effect of increasing the number of cells N on the numerical solution. We will
consider N = 5, N = 10 and N = 20 in addition to the N = 3 case solved previously. We repeat
the above assembly and solution steps on each of these additional grids. The resulting discrete
system was solved using MATLAB. The following figure compares the results obtained on the four
grids with the exact solution. As you can see by inspection, the numerical solution becomes better
and better as the number of cells is increased.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

u(y)

y

N = 3
N = 5
N = 10
N = 20
Analytical solution

When the numerical solutions obtained on different grids agree to within a level of tolerance
specified by the user, they are referred to as ‘grid converged’ solutions. It is very important that
you investigate the effect of grid resolution on the solution in every CFD problem you solve. Never
trust a CFD solution unless you have convinced yourself that the solution is grid converged to an
acceptable level of tolerance (which would be problem dependent).

6.6 Discretization error

We mentioned earlier that the discretization error for our scheme is O(∆y2). We can see that this
is so using a Taylor series expansion. Recall that the flux at interface j + 1

2
of cell j was given by

(

du

dx

)

j+ 1

2

=
uj+1 − uj

∆y

11

Let us now consider the Taylor series expansions of uj+1 and uj about some value uj+ 1

2

.

uj+1 = uj+ 1

2

+ (∆y/2)

(

du

dx

)

j+ 1

2

+
(∆y/2)2

2

(

d2u

dx2

)

j+ 1

2

+O(∆y3)

uj = uj+ 1

2

+ (−∆y/2)

(

du

dx

)

j+ 1

2

+
(−∆y/2)2

2

(

d2u

dx2

)

j+ 1

2

+O(∆y3)

Here, O(∆y3) indicates that in the series of terms that follow, the term containing the cubic power
of ∆y will dominate. This is because ∆y << 1, which is a necessary condition to write a Taylor
series expansion. Subtracting the two, terms with even powers of ∆y cancel and odd powers of
∆y add up to give,

uj+1 − uj = 2(∆y/2)

(

du

dx

)

j+ 1

2

+O(∆y3)

⇒

(

du

dx

)

j+ 1

2

=
uj+1 − uj

∆y
+O(∆y2)

Hence, we see that our discretization scheme is second-order accurate in space i.e., it has an error
that is of O(∆y2). Notice that we have essentially computed the error in a finite-difference approx-
imation (in this case, a central difference scheme) used as part of the finite volume discretization.

6.7 Dealing with nonlinearity

Just for a moment, consider the above flow but now in the developing region of the channel i.e.,
the flow is not yet fully developed but still steady under a constant pressure gradient. All channel
flows will contain a section near the entrance where the flow is not fully developed. Boundary
layers start growing on the upper and lower channel walls and the flow can become fully developed
only after those two layers have merged. The Navier-Stokes equations along the x-direction for the
velocity field (now 2D, ~V = [u, v]) for such a developing flow can be written as

u
∂u

∂x
+ v

∂u

∂y
= −(1/ρ)dp/dx+ ν

(

∂2u

∂x2
+

∂2u

∂y2

)

Such an equation is non-linear due to the convection terms u∂u
∂x

and v ∂u
∂y
, where we have a product

of two functions of the dependent variable. Therefore, we have to almost always deal with non-
linearity when dealing with the momentum conservation equation for a fluid due to the convection
term, which in vector form looks like (~V ·∇)~V . Phenomena such as turbulence and chemical reaction
introduce additional nonlinearities. The highly nonlinear nature of the governing equations for a
fluid makes it challenging to obtain accurate numerical solutions for complex flows of practical
interest.

In our example, we can demonstrate the effect of non-linearity and how to handle it, by con-
sidering an additional body force per unit volume −αu2 acting on the fluid, where α is a constant.
Such forces are not common for normal fluids, but can be observed for exotic fluids like ferrofluids
which respond to magnetic fields. Our governing equation, therefore, is modified to

0 = −dp/dx+ µ
d2u(y)

dy2
− αu(y)2 − 1 ≤ y ≤ 1 (16)

12

We can determine the finite-volume approximation to this equation following the method described
previously. The additional non-linear term can be discretized assuming a constant value of u in
each cell i.e.,

∫

CVj

−αu2dVj = −αu2
jVj

= −αu2
j∆x∆y

Therefore, the discretized equation for each interior cell is given by

0 = (−dp/dx) + µ
uj−1 − 2uj + uj+1

(∆y)2
− αu2

j (17)

This is a nonlinear algebraic equation with the u2
j term being the source of the nonlinearity.

The strategy that is adopted to deal with nonlinearity is to linearize the equations about a
guess value of the solution and to iterate until the guess agrees with the solution to a specified
tolerance level. We will illustrate this on the above example. Let ugj be the guess for uj. Define

∆uj = uj − ugj

Rearranging and squaring this equation gives

u2
j = u2

gj
+ 2ugj∆uj + (∆uj)

2

Assuming that ∆uj ≪ ugj (we want to iterate until this condition is satisfied), we can neglect the
∆u2

j term to get

u2
j ≃ u2

gj
+ 2ugj∆uj = u2

gj
+ 2ugj(uj − ugj)

Thus,
u2
j ≃ 2ugjuj − u2

gj

After linearization, the discretized equations become

0 = (−dp/dx) + µ
uj−1 − 2uj + uj+1

(∆y)2
− α(2ugjuj − u2

gj
) (18)

Since the error due to linearization is O(∆u2) (remember that is the term we neglected), it will
tend to zero as ug → u.

In order to calculate the finite-volume approximation (18), we need guess values ug at the grid
points. We start with an initial guess value in the first iteration. For each subsequent iteration,
the u value obtained in the previous iteration is used as the guess value.

Iteration 1: u
(1)
g = Initial guess

Iteration 2: u
(2)
g = u(1)

...

Iteration m: u
(m)
g = u(m−1)

The superscript indicates the iteration level. We continue the iterations until they converge. We
will defer the discussion on how to evaluate convergence until a little later.

This is essentially the process used in CFD codes to linearize the nonlinear terms in the con-
servations equations, with the details varying depending on the code. The important points to
remember are that the linearization is performed about a guess and that it is necessary to iterate
through successive approximations until the iterations converge.

13

6.8 Direct and Iterative solvers

We saw that we need to perform iterations to deal with the nonlinear terms in the governing
equations. We next discuss another factor that makes it necessary to carry out iterations in
practical CFD problems.

Verify that the discrete equation system resulting from the finite-volume approximation (18)
on our three-cell grid is





−3 − 2αugj∆y2 1 0
1 −2 − 2αugj∆y2 1
0 1 −3− 2αugj∆y2









u1

u2

u3



 = −(∆y2)





1 + αu2
gj

1 + αu2
gj

1 + αu2
gj





Au = b (19)

Note that we can write the discretized system of equations as the standard linear system with
the coefficient matrix A, vector of unknowns u and the RHS vector b. In a practical problem,
one would usually have thousands to millions of grid points or cells so that each dimension of the
above matrix would be of the order of a million (with most of the elements being zeros). Inverting
such a matrix directly would take a prohibitively large amount of memory. So instead, the matrix
is inverted using an iterative scheme as discussed below.

We can rearrange the finite-volume approximation (19) on an interior cell j so that uj is
expressed in terms of the values at the neighboring cells and the guess values:

uj =
∆y2(1 + αu2

gj
) + uj−1 + uj+1

2 + 2αugj∆y2

We can write a similar equation for the boundary cells as well. Here, we consider the Gauss-Siedel

iterative technique for solving the linear system of equations (19) one at a time starting from a
guessed solution and using results from the most recent iteration as soon as they become available.
For example, if a neighboring value at the current iteration level is not available, we use the value
at the previous iteration but if it has already been computed for the present iteration, we use the
current value. Let’s say that we sweep from the bottom to the top of our grid i.e., we update u1

first, based on the value of u1 and u2 at the previous iteration. In the next step, when we update
u2, we use the previous iteration for u3 and u2, but for u1 we would use the value already computed
in the current iteration, and so on. Thus, in the mth iteration, um

j+1 and um
j is not available while

um
j−1 is. Therefore, we use the previous iteration values as our guess values um

gj
= um−1

j and um−1
j+1

to get for the interior cells

um
j =

∆y2(1 + α(um−1
j)2) + um

j−1 + um−1
j+1

2 + 2αum−1
j ∆y2

(20)

It is easy to see that for a boundary cell (for example j = 1), the update looks like

um
j =

∆y2(1 + α(um−1
j)2) + um−1

j+1

3 + 2αum−1
j ∆y2

(21)

Note that we use um
gj

= um−1
j to iterate for the non-linear terms whereas we use um−1

j+1 and um
j−1

to iterate for the matrix inversion. Since we are using some chosen guess values to start our
iteration (and previous iteration values as our guesses thereafter) at neighboring points, we are

14

effectively obtaining only an approximate solution for the inversion of the coefficient matrix A
in (19) during each iteration. But in the process, we have greatly reduced the memory required
for the inversion. This tradeoff is good strategy since it does not make sense to expend a great
deal of resources to do an exact matrix inversion when the matrix elements depend on guess values
which are continuously being refined. Notice that ‘in an act of cleverness’, we have combined the
iteration to handle nonlinear terms with the iteration for matrix inversion into a single iteration
process. Most importantly, as the iterations converge and ug → u, the approximate solution for
the matrix inversion tends towards the exact solution for the inversion since the error introduced
by using ug instead of u in (20) tends to zero.
Once again, remember that in this case the iteration serves two purposes:

1. It allows for efficient matrix inversion with greatly reduced memory requirements.

2. It is necessary to solve nonlinear equations.

In steady problems, a common and effective strategy used in CFD codes is to solve the unsteady
form of the governing equations and ‘march’ the solution in time until the solution converges to
a steady value. In this case, each time step is effectively an iteration, with the the guess value at
any time step being given by the solution at the previous time step.

6.9 Iterative convergence

Recall that as ug → u, the linearization and matrix inversion errors tends to zero. So we continue
the iteration process until some selected measure of the difference between ug and u, refered to
as the residual, is ‘small enough’. We could, for instance, define the residual R as the absolute
value of the difference between u at time-step (or iteration number) ‘m’ with that at the previous
time-step ‘m− 1’ summed over all the cells:

R ≡

N
∑

j=1

|um
j − um−1

j |

It is useful to scale this residual in some way because an unscaled residual of, say, 0.01 would be
relatively small if the average value of u in the domain is 5000 but would be relatively large if
the average value is 0.1. Scaling ensures that the residual is a relative rather than an absolute
measure. Scaling the above residual by dividing by the absolute sum of u over all the cells gives

Ru ≡

N
∑

j=1

|um
j − um−1

j |

N
∑

j=1

|um−1
j |

(22)

In fact, this is the form of the residual that FLUENT uses for its pressure-based solver for momen-
tum and scalar-transport equation. For full details on how FLUENT computes residuals in other
cases, please refer to the user manual.

For the nonlinear example problem we have, we will take the initial guess at each cell to be
equal to zero (arbitrarily) i.e., u

(1)
gj = 0 for all j and consider N = 10 cells. In each iteration from

here on, we update u, going from cell j = 1 to j = N using equation (20) for the interior cells and

15

equation (21) for the boundary cells. We can calculate the residual using (22) at each time-step
and monitor it to determine convergence. We usually terminate the iterations when the residual
falls below some threshold value (for example, 10−6), which is referred to as the convergence
criterion. Take a few minutes to implement this procedure in MATLAB which will help you gain
some familiarity with the mechanics of the implementation. The variation of the residual with
iterations obtained from MATLAB is shown below. Note that a logarithmic scale is used for the
ordinate. Verify that the iterative process converges to residual level smaller than 10−6 in about
105 iterations. In more complex problems and/or with a more stringent convergence criterion, a
lot more iterations would be necessary for achieving convergence.

10
0

10
1

10
2

10
310

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Iteration number

R
u

The solution after 30, 60 and 90 iterations and the converged solution (105 iterations) are shown
below along with the linear solution obtained previously. The solutions for iterations 90 and 105
are indistinguishable on the graph. This is another indication that the solution has converged. We
can see that the negative force (in the x-momentum equation) on the sytem leads to a drag that
reduces the velocities across the channel. Unfortunately, we do not have an analytical solution for
this problem. Therefore, we should be careful not to trust our numerical solution blindly. The topic
of verification and validation of the numerical solution is critically important to a CFD engineer.
We will discuss it in class later on. For now, we can at least see that our solution is converged.
Also, you can easily evaluate whether your solution is grid converged or not by varying the number
of cells N . Checking for solution convergence and grid convergence are the two most simple checks
you can do to determine whether your numerical solution is correct or not. Further methods of
validating your solution will be discussed in class. Another consideration is the comparison of
the iterative convergence error, which is of order 10−6, and the truncation error which is of order
∆y2 ∼ 10−2. So, although we drive the residual down to 10−6, the accuracy of our solution is
limited by the truncation error (of order 10−2), which is a waste of computing resources. In a good
calculation, both errors would be of comparable level and less than a tolerance level chosen by the
user. Therefore, our numerical solution would get better on refining the grid so that truncation
error does not dominate.

16

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

u(y)

y

Iteration 30

Iteration 60

Iteration 90

Iteration 105

Linear solution

Some points to note:

1. Different codes use slightly different definitions for the residual. Read the documentation to
understand how the residual is calculated.

2. In the FLUENT code, residuals are reported for each conservation equation. The calculation
of the residual is similar for the momentum and energy equations (which is similar to what
we have described) but different for the continuity equation. It also depends on whether we
are solving compressible or incompressible flows (i.e., the solver used). Please refer to the
FLUENT user manual for detailed descriptions.

3. The convergence criterion you choose for each conservation equation is problem and code-
dependent. It is a good idea to start with the default values in the code. One may then have
to tweak these values based on the problem.

6.10 Numerical stability

In our example problem, the iterations converged very rapidly with the residual falling below
the convergence criterion of 10−6 in just 105 iterations. In more complex problems, the iterations
converge more slowly and in some instances, may even diverge. One would like to know a priori the
conditions under which a given numerical scheme converges. This is determined by performing a
stability analysis of the numerical scheme. A numerical method is referred to as being stable when
the iterative process converges and as being unstable when it diverges. It is not possible to carry
out an exact stability analysis for the Euler or Navier-Stokes equations. But a stability analysis
of simpler, model equations provides useful insight and approximate conditions for stability. A
common strategy used in CFD codes for steady problems is to solve the unsteady equations and
march the solution in time until it converges to a steady state. A stability analysis is usually
performed in the context of time-marching.

While using time-marching to a steady state, we are only interested in accurately obtaining the
asymptotic behavior at large times. So we would like to take as large a time-step ∆t as possible to
reach the steady state in the least number of time-steps. There is usually a maximum allowable
time-step ∆tmax beyond which the numerical scheme is unstable. If ∆t > ∆tmax, the numerical

17

errors will grow exponentially in time causing the solution to diverge from the steady-state result.
The value of ∆tmax depends on the numerical discretization scheme used. Two major classes of
numerical shemes are explicit and implicit, with very different stability characteristics as we will
briefly discuss next.

7 Explicit and Implicit schemes

The difference between explicit and implicit schemes can be most easily illustrated by applying
them to the wave equation

∂u

∂t
+ c

∂u

∂x
= 0

where c is the wavespeed. One possible way to discretize this equation at grid point i and time-
level n is

un
i − un−1

i

∆t
+ c

un−1
i − un−1

i−1

∆x
= O(∆t,∆x) (23)

The crucial thing to note here is that the spatial derivative is evaluated at the n − 1 time-level.
Solving for un

i gives

un
i =

[

1−

(

c∆t

∆x

)]

un−1
i +

(

c∆t

∆x

)

un−1
i−1 (24)

This is an explicit expression i.e. the value of un
i at any grid point can be calculated directly from

this expression without the need for any matrix inversion. The scheme in (23) is known as an
explicit scheme. Since un

i at each grid point can be updated independently, these schemes are easy
to implement on the computer. On the downside, it turns out that this scheme is stable only when

C ≡
c∆t

∆x
≤ 1

where C is called the Courant number. This condition is refered to as the Courant-Friedrichs-Lewy
or CFL condition. While a detailed derivation of the CFL condition through stability analysis is
outside the scope of the current discussion, it can seen that the coefficient of un−1

i in (24) changes
sign depending on whether C > 1 or C < 1 leading to very different behavior in the two cases.
The CFL condition places a rather severe limitation on ∆tmax.

In an implicit scheme, the spatial derivative term is evaluated at the n time-level:

un
i − un−1

i

∆t
+ c

un
i − un

i−1

∆x
= O(∆t,∆x)

In this case, we can’t update un
i at each grid point independently. We instead need to solve a

system of algebraic equations in order to calculate the values at all grid points simultaneously. It
can be shown that this scheme is unconditionally stable for the wave equation so that the numerical
errors will be damped out irrespective of how large the time-step is.

The stability limits discussed above apply specifically to the wave equation. In general, explicit
schemes applied to the Euler or Navier-Stokes equations have the same restriction that the Courant
number needs to be less than or equal to one. Implicit schemes are not unconditonally stable for
the Euler or Navier-Stokes equations since the nonlinearities in the governing equations often limit
stability. However, they allow a much larger Courant number than explicit schemes. The specific
value of the maximum allowable Courant number is problem dependent.

Some points to note:

18

1. CFD codes will allow you to set the Courant number (which is also referred to as the CFL
number) when using time-stepping. Taking larger time-steps leads to faster convergence to
the steady state, so it is advantageous to set the Courant number as large as possible, within
the limits of stability, for steady problems.

2. You may find that a lower Courant number is required during startup when changes in the
solution are highly nonlinear but it can be increased as the solution progresses.

8 Turbulence modeling

There are two radically different states of flows that are easily identified and distinguished: laminar
flow and turbulent flow. Laminar flows are characterized by smoothly varying velocity fields in
space and time in which individual “laminae” (sheets) move past one another without generating
cross currents. These flows arise when the fluid viscosity is sufficiently large to damp out any
perturbations to the flow that may occur due to boundary imperfections or other irregularities.
These flows occur at low-to-moderate values of the Reynolds number. In contrast, turbulent flows
are characterized by large, nearly random fluctuations in velocity and pressure in both space and
time. These fluctuations arise from instabilities that grow until nonlinear interactions cause them
to break down into finer and finer whirls that eventually are dissipated (into heat) by the action
of viscosity. Turbulent flows occur in the opposite limit of high Reynolds numbers.

A typical time history of the flow variable u at a fixed point in space is shown in Fig. 4(a).
The dashed line through the curve indicates the “average” velocity. We can define three types of
averages:

1. Time average

2. Volume average

3. Ensemble average

The most mathematically general average is the ensemble average, in which you repeat a given
experiment a large number of times and average the quantity of interest (say velocity) at the
same position and time in each experiment. For practical reasons, this is rarely done. Instead, a
time or volume average (or combination of the two) is made with the assumption that they are
equivalent to the ensemble average. For the sake of this discussion, let us define the time average
for a stationary flow1 as

u(y) ≡ lim
τ→∞

1

2τ

∫ τ

−τ

u(y, t)dt (25)

The deviation of the velocity from the mean value is called the fluctuation and is usually defined
as

u′ ≡ u− u (26)

Note that by definition u′ = 0 (the average of the fluctuation is zero). Consequently, a better
measure of the strength of the fluctuation is the average of the square of a fluctuating variable.
Figures 4(b) and 4(c) show the time evolution of the velocity fluctuation, u′, and the square of
that quantity, u′2. Notice that the latter quantity is always greater than zero as is its average.

1A stationary flow is defined as one whose statistics are not changing in time. An example of a stationary flow
is steady flow in a channel or pipe.

19

2.3

2.2

2.1

2.0

1.9

1.8

1.7

100
80
60
40
20
0

(a)

uvu

utime

-0.4

-0.2

0.0

0.2

100
80
60
40
20
0

(b)

uvu'

utime

0.12

0.10

0.08

0.06

0.04

0.02

0.00

100
80
60
40
20
0

(c)

utime

u (u')2

Figure 4: Example of a time history of a component of a fluctuating velocity at a point in a
turbulent flow. (a) Shows the velocity, (b) shows the fluctuating component of velocity u′ ≡ u− u
and (c) shows the square of the fluctuating velocity. Dashed lines in (a) and (c) indicate the time
averages.

The equations governing a turbulent flow are precisely the same as for a laminar flow; however,
the solution is clearly much more complicated in this regime. The approaches to solving the flow
equations for a turbulent flow field can be roughly divided into two classes. Direct numerical
simulations (DNS) use the speed of modern computers to numerically integrate the Navier Stokes
equations, resolving all of the spatial and temporal fluctuations, without resorting to modeling. In
essence, the solution procedure is the same as for laminar flow, except the numerics must contend
with resolving all of the fluctuations in the velocity and pressure. DNS remains limited to very
simple geometries (e.g., channel flows, jets and boundary layers) and is extremely expensive to
run.2 The alternative to DNS found in most CFD packages (including FLUENT) is to solve the
Reynolds Averaged Navier Stokes (RANS) equations. RANS equations govern the mean velocity
and pressure. Because these quantities vary smoothly in space and time, they are much easier to
solve; however, as will be shown below, they require modeling to “close” the equations and these

models introduce significant error into the calculation.
To demonstrate the closure problem, we consider fully developed turbulent flow in a channel

2The largest DNS to date was recently published by Kaneda et al., Phys. Fluids 15(2):L21–L24 (2003); they
used 40963 grid point, which corresponds roughly to 0.5 terabytes of memory per variable!

20

of height 2H . Recall that with RANS we are interested in solving for the mean velocity u(y) only.
If we formally average the Navier Stokes equations and simplify for this geometry we arrive at the
following

du′v′

dy
+

1

ρ

dp

dx
= ν

d2u(y)

dy2
(27)

subject to the boundary conditions

y = 0
du

dy
= 0 , (28)

y = H u = 0 , (29)

The kinematic viscosity ν=µ/ρ. The quantity u′v′, known as the Reynolds stress,3 is a higher-
order moment that must be modeled in terms of the knowns (i.e., u(y) and its derivatives). This is
referred to as the “closure” approximation. The quality of the modeling of this term will determine
the reliability of the computations.4

Turbulence modeling is a rather broad discipline and an in-depth discussion is beyond the
scope of this introduction. Here we simply note that the Reynolds stress is modeled in terms of
two turbulence parameters, the turbulent kinetic energy k and the turbulent energy dissipation
rate ǫ defined below

k ≡
1

2

(

u′2 + v′2 + w′2
)

(30)

ǫ ≡ ν

[

(

∂u′

∂x

)2

+

(

∂u′

∂y

)2

+

(

∂u′

∂z

)2

+

(

∂v′

∂x

)2

+

(

∂v′

∂y

)2

+

(

∂v′

∂z

)2

+

(

∂w′

∂x

)2

+

(

∂w′

∂y

)2

+

(

∂w′

∂z

)2
]

(31)

where (u′, v′, w′) is the fluctuating velocity vector. The kinetic energy is zero for laminar flow and
can be as large as 5% of the kinetic energy of the mean flow in a highly turbulent case. The family
of models is generally known as k–ǫ and they form the basis of most CFD packages (including
FLUENT). We will revisit turbulence modeling towards the end of the semester.

Acknowledgements

The authors acknowledge Sam Smith for helping with the schematic figures.

3Name after the same Osborne Reynolds from which we get the Reynolds number.
4Notice that if we neglect the Reynolds stress the equations reduce to the equations for laminar flow; thus, the

Reynolds stress is solely responsible for the difference in the mean profile for laminar (parabolic) and turbulent
(blunted) flows.

21

