GEOMETRICALLY SIMPLE LOGARITHMIC WEIR

By K. Keshava Murthy,! H. S. Ramesh,? and M. N. Shesha Prakash?

AsstracT: This paper discusses the design and experimental verification of a geometrically simple logarithmic
weir. The weir consists of an inward trapezoidal weir of slope 1 horizontal to n vertical, or 1 in n, over two
sectors of a circle of radius R and depth d, separated by a distance 2s. The weir parameters are optimized
using a numerical optimization algorithm. The discharge through this weir is proportional to the logarithm of
head measured above a fixed reference plane for all heads in the range 0.23R < h =< 3.65R within a maximum
deviation of +2% from the theoretical discharge. Experiments with two weirs show excellent agreement with
the theory by giving a constant average coefficient of discharge of 0.62. The application of this weir to the
field of irrigation, environmental, and chemical engineering is highlighted.

INTRODUCTION AND BACKGROUND

Sensitivity is a very important characteristic of a flow-mea-
suring device in hydrometry (Troskolanski 1960). Logarith-
mic weirs, which give a discharge proportional to the loga-
rithm of the head, are a sensitive flow-measuring device, be-
cause the error caused in the discharge for the same error
committed in the head is less than in linear, exponential, and
conventional weirs.

It is clear from the works of Cowgill (1944) and Banks
(1954) that the logarithmic weirs belong to the class of “com-
pensating weirs” (Keshava Murthy and Gopalakrishna Pillai
1978), invariably requiring a base for their design. Govinda
Rao and Keshava Murthy (1966) designed logarithmic weirs
with a rectangular base of width 2W and depth a, over which
the designed complementary weir is fitted. The discharge
through this weir is proportional to the logarithm of head
measured above a fixed reference plane, which is unique for
every weir fixed according to the slope-discharge continuity
theorem (Keshava Murthy and Seshagiri 1968). This weir was
improved by the universalization of its coordinates by Chan-
drasekaran and Lakshmana Rao (1970). However, these ex-
act weirs have bases, and the curved profile designed by the
application of Abel’s integral equation (Govinda Rao and
Keshava Murthy 1966) is complex and often difficult to fab-
ricate under field conditions. In the case of exact weirs, the
width of the weir becomes zero at comparatively low heights,
restricting the range of measurements, and this height can be
raised only by enlarging the size of the base weir. This type
of enlargement is not desirable because considerable dis-
charge passes through the base weir itself before the flow
enters the proportional portion of the weir. Further, it may
not always be possible to accommodate any size of the base
weir in a given channel section. The present investigation is
an attempt to overcome the foregoing difficulties. A geo-
metrically simple weir in the form of an inverted V-notch was
theoretically analyzed for its linear head-discharge charac-
teristics by Keshava Murthy and Giridhar (1989). In this paper
a geometrically simple weir in the form of two sectors, over
which there is an inward trapezium, is analyzed with regard
to its logarithmic relationship, including its range of appli-
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cability. A new numerical optimization algorithm is devel-
oped to design the parameters of the weir to maximize the
range of applicability within a prefixed maximum allowable
€rIor.

FORMULATION OF PROBLEM

Fig. 1 is a definition sketch of a geometrically simple log-
arithmic weir. The discharge through a symmetrical sharp-
crested weir is defined by the profile y = f(x) (as shown in
Fig. 1) where x and y are vertical and horizontal axes, ne-
glecting the velocity of approach and surface tension effects
(as the flow measurement starts beyond a certain minimum
base-flow depth), described by Weisbach as

g = 2073 [ VE= o ds )

where g = discharge through the weir; # = head above the
crest; g = acceleration due to gravity; and C; = coefficient
of discharge. C, is assumed to be constant for streamlined
flows through sharp-crested weirs. Similar to conventional
weirs, the constant has to be ascertained through experi-
ments, which may vary within = 1% of the average C,. The
coefficient of discharge depends on parameters such as the
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FIG. 1. Geometrically Simple Logarithmic Weir
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FIG. 2. Variation of Theoretical Head-Discharge Curves

ratio of the flow depth to the crest height from the bed, ratio
of the width of the weir to the breadth of the channel, vis-
cosity, and surface tension. The exact value of C, has to be
ascertained by detailed experiments, necessary for the stan-
dardization of the weir, which are beyond the scope of this

paper.
For flows in the base weir region
fO) =R +1t—- VR —(d - x)

and the discharge is given by

g =2CN72g J:, Vh — x[R +t = VR* — (d — x)?] dx
.0=h=d (2a)

When the flow enters the inclined sides (i.e., inward trape-
zoidal weir), the discharge is

g = 2C,\V2g {Ll Vh - x[R+t—- VR —(d - x)] dx

2 2
— — (3/12) — - (5/2)
+ 3 [(h d) + o (h — d) ]}
. 0=h=h,,, (2b)

where R = radius of the sector of the circle; d = depth of
the sector of the circle; ¢ = half top width of sectors of the
circle; and n = sideslope of the inclined sides.

For the sake of convenience, (24) and (2b) can be expressed
in the nondimensional form as

Q=L”[l+T—\/1—(D—X)2]\/H—XdX
...0=H=D (3a)

and

Q=]:)D\/H—X[1+T—\/1—(D—X)2]dX

+ %{(l + TYH®? — [1 + 5—2’;(H — D)] (H — D)(m;}

...D=H=H_, (3b)

where Q = ¢/KR®?; K = 2C,\/2g; H = W/R; X = x/R;
T = t/R;and D = d/R.

Evaluating the foregoing integrals by Simpson's one-third
rule, taking a sufficiently small step size (1/1,000), we obtain
a high degree of accuracy. The discharge graphs of Q versus
In(1 + H) for various values of T for a given value of n, are
shown on a semilog plot in Fig. 2. The graph is almost linear
for a wide range of heads, which supports the assumption of
a near-logarithmic relation between Q and H over a certain
range of head within a prefixed maximum error.

ANALYSIS

Let a logarithmic relationship between the head and dis-
charge be of the nondimensional form

On.=bIn(l + HY + C 4

where b = a constant of proportionality; and C = discharge
intercept, such that Q,, represents the same discharge char-
acteristics within a certain range and within a prescribed max-
imum percentage deviation of error, E [usually taken as *2
Troskolanski (1960) which has been adopted in our analysis)
from the theoretical one.

Let K, = [t + (E/100)] and K, = [1 — (E/100)], such
that

fi(H) = K,Q; fAH) = K,Q (5a.b)

define two explicit curves forming the upper and lower bounds
for the logarithmic function to lie within, as shown in Fig. 3.
The f(H) and f,(H) curves are plotted against H,[H, =
In(1 + H)]. Each point on the f,(H) curve (b;) is joined to
every point of the f,(H) curve (a;) successively and for each
line (a,—b;), the proportionality range (PR), i.e., the horizontal
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FIG. 3. Optimization Procedure to Obtain Proportionality Range (PR)

TABLE 1. Numerical Optimization Algorithm

Point on|Point on
lower | upper Slope Intercept Maximum
curve | curve |computed |computed PR of
Trial set{ fy(H) f.(H) | [Eq. (7)] | [Eq. (8)] PR trial set
number| A B m, " PR; PR;
] (2 (3) 4 (5) (6) 0]
1 a, by, m, Ci PR,, PR,
n— | Min-n wn-n  |PRuw-ny
by, my; C PR,
by, my, Cy PR,
2 a, b, m,, C,, PR,, PR,
ban—1y | Moy Cau-ty |PRyu—yy
by, ms; Cy, PR,
by, msy, Cy PR,
1 a, b, m, Ch PR, PR,
blm—n My 1y Cin-1y | PRyu—1)
by my Cy PR,
b, my Cy PR,

Note: where i » 1, [; / = n/2;and j — n, 1.

projection of the portion of the line in the bound region of
Fig. 3 on the abscissa, is calculated. The maximum propor-
tionality range (PR) and its applicable limits are

i (6

where A, = e — 1;and B = e¢® — 1, o, and B, being the
starting and ending points of the proportionality range pro-
jected on the logarithmic axis. The slope m and the discharge
intercept C of the straight line are evaluated as

PR, =B, - A

. = fuj(H) — f>{H)
v Hd,, - HI,

d

@)

and

Cij = flij(H) - mind, 8

OPTIMIZATION OF WEIR PARAMETERS

From the preceding section, the near-logarithmic relation-
ship in the head-discharge plot is simplified to

f(H) = mIn(1 + H) + C 9)

between the error curves with the maximum horizontal pro-
jection on a semilog plot. On comparing (4) and (9) we get

Qn=fH); B=m; C=C (10a—c)
To obtain the greatest projection in the region formed by the
two monotonically increasing curves f>5(Q) and f,(Q) shown
in Fig. 3, a systematic optimization procedure was developed
in “Fortran 77" and run on an IBM RISC machine. The
algorithm is given in Table 1.

ESTIMATION OF WEIR PARAMETERS

Fig. 2 shows the theoretical head-discharge curve on a
semilog graph for particular values of n and D for four values
of T. For each value of T, there is a distinct head range in
which the theoretical head-discharge relation is nearly loga-
rithmic.

To optimize the range of the aforementioned logarithmic
relationship, the proportionality range is calculated for each
set of D, n, and T values and plotted. Fig. 4 shows the var-
iation of proportionality range with respect to n for a partic-
ular value of D and T. By comparing the plots, we obtain
the optimum parameters of the designed weir as d = 0.95R,
t = 0.02R, and n = 135. The proposed logarithmic head-
discharge relationship to replace the theoretical relationship
is
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FIG. 5. Variation of Sensitivity with Head
Q.. = 0.26186 In(1 + H) — 0.01521, 0.23 = H=3.65 (lla) Dimensionally, the proposed logarithmic head-discharge
relationship can be expressed as
- ha) _ L2
0, = 0.26186 In (0.9436 R) = 0.26186 In <R,) G = 2Cd\/ﬁR(5’2)0.26186 In(h,/R,) (11c)
0-23R = h = 3.65% (118)  sensmIVITY OF WEIR
where h, = (R + h); R, = 1.0598R; and h = depth of flow Sensitivity o of a weir is defined (Troskolanski 1960) as
measured above the crest of the weir. the elementary increase in head over the elementary increase
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FIG. 9. Discharging Weirs: (a) Front; (b) Side

in the rate of flow. For the designed weir, the o is obtained EXPERIMENTAL VERIFICATION

from (11a) as X )
The laboratory setup used to conduct experiments on the

designed weirs is shown in Fig. 6. The dimensions of the weirs

s dH _(Q+H) 3.82(1 + H) (12) chosen for the experiments were R = 425 mm and R = 350

dQ  0.26186 ’ mm, respectively. The profile of the weir was cut on a nibbling

machine using 914.4 mm X 609.6 mm X 6.5 mm thick mild

The sensitivity of the designed weir increases with the head steel (MS) sheets. The experimental weirs were fixed at the
as shown in Fig. 5. end of the channel with their crest 150 mm above the channel
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bed. The head above the weir was measured using an elec-
tronic point gauge with a least count of 0.01 mm, located 4
mm upstream of the weir section. The time required to collect
a fixed volume of water in the measuring tank (4.52 m X
452 m x 1.5 m) was computed from an electronic timer
triggered automatically by signals from an electronic switch
attached to the level indicators.

ANALYSIS OF RESULTS

Fig. 7 shows the Q,... versus In H, plot. Above a certain
minimum depth, the plot is almost linear, which confirms the
theory. The variation of the coefficient of discharge with re-
spect to the head is plotted in Fig. 8. The coefficient of dis-
charge for any head within the fixed range does not deviate
more than +0.7% from the average coefficient of discharge
C, = 0.62; this supports the assumption of a constant C, in
our analysis. The measuring capacity of the weir is indicated
by the ratio of Q,,../Omin = 10. Fig. 9 shows the front and
side views of the discharging weirs.

PRACTICAL APPLICATION

For field measurements in lined irrigation canals, it is very
difficult to measure the head accurately, which results in er-
roneous discharge computations. For the designed weir, the
error in the discharge for the same error committed in the
head is less than the error in linear, exponential, and con-
ventional weirs. In addition, the simple geometrical shape of
the weir and the elimination of the narrow neck portion at
the crest, with the curtailment of the depth of the quadrant,
makes it easy to fabricate under general field condition. Thus,
the weir can be used in practice as a simple and accurate flow-
measuring device in lined irrigation canals. It is also useful
as an automatic flow recorder as it gives a relatively lower
variation of discharge corresponding to higher variations in
the head. This weir is very sensitive because of its logarithmic
head-discharge relationship. Therefore, it can be used as a
dosing device in automatic sampling chemical plants, where
the discharge fluctuations are low and the required head var-
iations are very high, to regulate the flow automatically through
a float-regulated mechanism. A design example is given in
Appendix 1.

SUMMARY

It was shown that the weir formed by the two sectors of a
circle of radius R and depth d separated by a distance 2¢, with
an inward trapezium of sideslopes 1 in n (1 horizontal to n
vertical) above it, can be used for a logarithmic head-dis-
charge relationship within a maximum deviation of +2% from
the theoretical discharge, over a range of head determined
by the values of (#R), d, and n.

The curtailment of the quadrant depth above the crest by
5%R removes sharp angles and errors in fabrications.

The weir parameters, i.e., proportionality range, base-flow
depth, and datum constant vary with such dimensions of the
weir as ¢, d, and n.

Fort = 0.02R,d = 0.95R, and n = 135, a maximum range
of proportionality was achieved. The discharge through the
weir is proportional to the logarithm of the depth measured
above the datum for all flows in the range 0.23R < /& < 3.65R.

The measuring capacity of the designed weir is relatively
hlgh Qmax/Qmin = 10.

The weir has a finite width within the measuring range.

Experiments with typical weirs of radii R = 425 mm and
350 mm show good agreement with the theory by giving a
constant average coefficient of discharge C, = 0.62.

With its geometrical simplicity and high sensitivity, the weir

could be used in practice as a flow recorder in irrigation canals
and a float-regulated dosing device in chemical plants.
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APPENDIX |. DESIGN EXAMPLE

To design a geometrically simple logarithmic weir, let it be
required for an open channel of width 1 m to pass a maximum
discharge of 0.25 m%s.

Solution
@i = 0.25 m¥s. Assume C, = 0.62. From (11a), the di-

mensional form is given by

h
qin = 2C,V2gR*?0.26186 In [0.9436 <1 + ﬁ)] (13)

where q,, is in m%/s, and A and R are in meters. The maximum
measurable head is 3.65R, which has to correspond with the
maximum discharge 0.25 m¥s. Substituting for ¢, and C,, we
get

0.25 = 0.62 x 8.8589 x R¥2 x 0.26186 In[0.9436(1 + 3.65)],
R = 0.4246 m (14)

For the sake of convenience let us assume R = 425 mm.
The dimensions and other parameters of the gcometrically
simple logarithmic weir are:

1. Depth of the sectors of the circle = d = 403.75 mm.
2. Half crest width of the weir = w = 300.80 mm.
3. Distance between sectors of the circle = 2t = 17.00

mm.

4. The side slope of the inward trapezoidal weir = n =
135.

5. Proportionality range = PR = 3.42R.

6. Base-flow depth = A,;, = 97.75 mm.

7. Maximum measurable head = k,,,, = 1,551.25 mm.

8. Minimum measurable discharge = ¢, = 0.025227
m3/s,

9. Maximum measurable discharge = ¢, = 0.250447
m’/s.

10 Qmux/Qmin = 10
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APPENDIX il

NOTATION

The following symbols are used in this paper:

A

B
b

11 | R | I I I

f(H
fi(H), f(H)

g
H

H,
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[

[}

W

LT

base-flow depth or lower limit of proportion-
ality range;

upper limit of the proportionality range;
proportionality constant in the logarithmic head-
discharge relationship;

discharge intercept;

coefficient of discharge;

d/R;

depth of the sector of the circle;

relative error in discharge;

head-discharge function;

curves defining the permissible region for Q,,
to lie in Q versus In(1 + H) plot;
acceleration due to gravity;

h/R

h,/R;

nondimensional heads at the upper and lower
limit of the logarithmic range, respectively;
head above the weir crest;

(R + h);

(t x n) = maximum head in the weir;
subscripts used to indicate the position of head-
discharge points;

[

i

[l

i i I

= 2C,\/2g, a dimensional constant;

[1 - (EN00)];

{1 + (E/100)];

slope constant;

side slope of the inclined sides of the weir;
proportionality range;

G/ KRS,

proposed nondimensional logarithmic head-dis-
charge relationship;

nondimensional discharges at the upper and lower
limit of the logarithmic range, respectively;
discharge;

proposed logarithmic head-discharge relation-
ship;

radius of the sector of a circle;

constant = 1.0598R;

t/R;

= half top width of the base weir (sector of a cir-

cle);

= w/R;
= half crest width of practical constant-accuracy

linear weir;

x/R and y/R, respectively,

vertical and horizontal coordinates, respec-
tively;

lower limit of proportionality range on the log-
arithmic axis;

upper limit of the proportionality range on the
logarithmic axis; and

sensitivity.



