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ABS'mACT: This paper is concerned with the modifications of the Extended Bell- 
mouth Weir (EBM weir) earlier designed by Keshava Murthy. It is shown that by 
providing inclined sides (equivalent to providing an inward-trapezoidal weir) over 
a sector of a circle of radius R, separated by a distance 2t, and depth d, the 
measurable range of EBM can be considerably enhanced (over 375%). Simulta- 
neously, the other parameters of the weir are optimized such that the reference 
plane of the weir coincides with its crest making it a constant-accuracy linear weir. 
Discharge through the aforementioned weir is proportional to the depths of flow 
measured above the crest of the weir for all heads in the range of 0.5R -< h ~< 
7.9R, within a maximum deviation of -+ 1% from the theoretical discharge. Ex- 
periments with two typical weirs show excellent agreement with the theory by giving 
a constant-average coefficient of discharge of 0.619. 

INTRODUCTION 

Linear-proportional weirs that give a linear head-discharge relationship 
have been extensively studied (Srinivasulu et al. 1970; Venkataraman et al. 
1973; Keshava Murthy et al. 1989, 1990, 1991; Ramamurthy et al. 1977). 
Due to its simple head-discharge relationship, it finds extensive use in ir- 
rigation and hydraulic engineering. It will be very useful as a dosing device 
in chemical engineering and also as a control outlet of grit chambers in 
sanitary engineering because it nearly maintains a constant-average velocity. 

In most proportional weirs, including linear weirs, the datum or reference 
plane (Reddick et al. 1951) does not coincide with the crest making the 
accuracy of  the weir vary-with head, which may be undesirable in a flow- 
measuring device. In the case of conventional weirs such as rectangular, 
triangular, and trapezoidal weirs, the datum coincides with the crest, making 
it a constant-accuracy weir. One such constant-accuracy linear-proportional 
weir has been designed by Keshava Murthy and Gopalakrishna Pillai (1978). 

The exact solutions for the proportional weirs obtained by solving Abel 's  
integral equation result in complex profiles, which, under normal field con- 
ditions, pose problems in fabrication. To overcome this, of  late, many geo- 
metrically simple linear weirs that give near-linear head-discharge relation- 
ship within a certain range of heads have been proposed (Venkataraman 
et al. 1973; Keshava  M u r t h y  et al. 1989, 1990, 1991; R a m a m u r t h y  
et al. 1977). It has been shown that weirs obtained by extending the tangents 
drawn to the quadrants of the quadrant-plate weirs (called EMB weirs) 
(Keshava Murthy et al. 1991) possess linear discharge-head characteristics 
for all heads in the range of 0.2R -< h -< 2.15R within a maximum deviation 
of _ 1% from the exact-theoretical discharge. 

This work extends the linearity range of the EBM without losing its 
geometrical simplicity by modifying the EBM weir with inclined sides over 
the sector of a circle (obtained by curtailing the quadrant by 1.5%R). In 
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addition, the weir is designed to provide constant accuracy. Further, in the 
case of the EBM weir, the profile is asymptotic to the y axis, which makes 
it difficult to cut the weir accurately in the neighborhood of the origin leading 
to erroneous results. This is overcome in the present design by curtailing 
the depth of the quadrant by 1.5%R. The weir parameters, such as linearity 
range and base-flow depth, are optimized by keeping datum with the crest 
to achieve maximum range of applicability of the linear characteristics within 
a specified maximum range of error. 

F O R M U L A T I O N  O F  P R O B L E M  

Fig. 1 is a definition sketch of a practical constant-accuracy linear weir. 
The discharge through a symmetrical sharp-crested weir is defined by the 
profile y = f(x) as shown in Fig. 1, where x and y are vertical and horizontal 
axes. Neglecting velocity of approach is given by 

q = 2 c . V 2 g  X/h - x / ( x )  dx (1) 

where q = discharge through weir; h = head above crest; g = acceleration 
due to gravity; and Ca = coefficient of discharge, which is assumed to be 
constant for streamlined flows through a sharp-crested weir. Similar to con- 
ventional weirs, it has to be ascertained through experiments, which may 
vary within _+ 1% of the aveage Ca. 

X 
A 

I 
J 
I 
t 

1 
I 
I 

n I 
I 
I T Inclined 
I Si S 

a Circle 

FIG. 1. Definit ion: Practical  Constant -Accuracy  Linear  Weir  
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For flows in the base-weir region 

f ( x )  = R + t -  V ' R  e -  ( d -  x) 2 (2) 

and the discharge is given by 

q = 2Cd~v/~ ~ /h  - x [R  + t -  V ' R  z -  ( d -  x) 2]dx; O < - h < - d  

(3at 
When the flow enters the inclined sides (i.e., inward-trapezoidal weir) por- 
tion, the discharge is 

-{f: q = 2CdX/2g ~ /h  - x [R  + t - V ' R  2 - (d - x)  2] dx 

2 [  d)3/2 2 ] }  + g (h - + ~nn (h - d) 5/2 ; 0 --< h -< hma x (3b) 

where R = radius of sector of circle; d = depth of sector of circle; t = 
half-top width of sectors of circle; w = half-crest width of sectors of circle; 
and n = side slope of inclinded sides. 

For convenience, (3a)=-(3b) can be expressed in the nondimensional form 
as 

Q = ( " [ 1  + T -  %/1 - (D - X ) 2 ] N / H -  X d X ;  
J o  

O < _ H < _ D  

(4a) 

and 

Q = f :  V'H - X[1 + T -  V'I - (D - X) 2] d X  

+ ~  ( 1 +  - I + ~ n ( H - D  ) ( H - D ) 3 / 2  ; D < - H < ~ H m a ~  

(4b) 

where Q = q/KRS/2; K = 2 C a V e ;  H = h/R; X = x /R;  T = t/R; W = w~ 
R; and D = d/R.  Evaluating these integrals by Simpson's one-third rule, 
taking a sufficiently small step size, we obtain a high degree of accuracy. 

The discharge-head graph, Q versus H, for various values of T and for 
given values of D and n are shown in Fig. 2. It can be observed that for a 
wide range of head the plot is nearly linear. 

OPTIMIZATION TO OBTAIN LINEAR-DISCHARGE RELATION 

The valid range of the replaced head-discharge relation, termed as lin- 
earity range, is the difference of upper limit (B) and lower limit (A) as 
shown in Fig. 3. 

L R  = B - A (5) 

Consider a point QE either above or below the theoretical head-discharge 
curve adjacent to it. If e is the deviation of Qe from Q,  then 
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FIG. 3. 
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Optimization Procedure to Obtain Maximum-LinearRy Range 

I a  - 
e - Q x 100 <- E (6) 

where E = prescribed maximum limit for e [taken as _ 1%, which is well 
within the maximum allowable weir-indication error of _ 2% (Troskolansky 
1960)]. Rearranging (6) we get 

Qe = Q(1 +_- e/lO0) (7) 

The positive and negative signs in (7) are chosen according to Q < QE or 
Q > Q~. The limits of (7) define the lower and upper-bound curves fl(h) 
and f2(h), respectively, forming a permissible-error region as shown in 
Fig. 3. 

and 

f~(h) = Q(1 - E/IO0) (8a) 

f2(h) = Q(1 + E/100) (8b) 

Now the problem is to find the maximum-horizontal projection of the straight- 
line fit defined by 

QL = mH + C (9) 

within the bound region defined by the curves (8a)-(8b). A systematic- 
optimization procedure was developed to obtain the optimum-linearity range 
as explained in this paper. 

A point P2 is chosen on the extreme right of the fl(h) curve and joined 
to a point P1 on the extreme left of the f2(h) curve. The entire line P~Pz 
may not be in the region. Point Pt is moved successively on the fz(h) curve 
until the entire line is in the region. The horizontal projection of this line 
with any possible extension within the region formed by fl(h) and fz(h) is 
then determined. This procedure is repeated for all possible points P2 on 
the f~(h) curve ensuring each time that a straight line inclusive of any ex- 
tension, which is entirely in the region, is obtained. The line that has the 
maximum-horizontal projection is selected. The same procedure is repeated 
by interchanging P1 and /~ on f~(h) and re(h) curves to get the global- 
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FIG. 5. Laboratory Setup: (a) Plan; (b) Elevation 

maximum-linearity range (LR). A computer software in C programming 
was developed for the aforementioned method on CD4360 Unix system. 

ESTIMATION OF WEIR PARAMETERS 

Fig. 2 shows a theoretical head-discharge curve for particular values of 
D and n with various values of T. It is seen that for each value fo T, there 
exists a distinct head range in which the theoretical head-discharge relation 
is nearly linear. 

To optimize this linear relationship and keep the datum with the crest, 
the range is calculated for each set of D, n, and T values and plotted. Fig. 
4 shows the variation of linearity range with respect to n for particular values 
of D and T. By comparing the plots, we obtain the optimum parameters of 
the designed weir as d = 0.985R; t = 0.14R; and n - 60.5. For further 
values of t/R, the datum lies below the crest as the intercept C is negative. 

The proposed linear head-discharge relationship to replace the theoretical 
one is 

QL = 0.265H; 0.534 <- H -< 7.909 (10) 

which can be dimensionally expressed as 

qL = 2.3476R3/2h; 0.534R ~ h <- 7,909R (11) 

EXPERIMENTAL VERIFICATION 

Owing to the very large linearity range of the weir, weirs of large heights 
could not be tested due to the limitations in the experimental setup. Ex- 
periments were conducted on two weirs having R = 15 cm and 20.5 cm. 
The profiles were fabricated very accurately with a nibbling machine using 
6.5-ram thick mild-steel plates. The laboratory setup is shown in Fig. 5. The 
plate weirs were fixed at the end of a rectangular channel 19.5 m long, 1.2 
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FIG. 6. (a) Front View of Weir Discharging into Tank; (b) Side View of Weir Show- 
ing Nappe 
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m wide, and 1.1 m deep with crest 20 cm above the channel bed. The 
channel had adequate stilling arrangements. The head over the weir was 
measured using a point gage with a 0.025 mm resolution, fixed at 4 m 
upstream of the weir section. Discharges were measured by computing the 
time taken to collect water in a measuring tank of dimensions 4.52 m x 
4.52 m x 1.5 m through readings in a perspex tube of 20 mm internal 
diameter connected to the bottom of the tank. Fig. 6 shows the front and 
side views of the discharging practical constant-accuracy linear weir. A plot 
of the actual discharge versus head measured above the crest is shown in 
the Fig. 7. The variation of Ca, the coefficient of discharge with head above 
the crest is shown in Fig. 8. From Fig. 7, it is seen that discharges vary 
almost linearly with the head in the linearity region fixed by the present 
analysis. Also from Fig. 8, the Cd corresponding to any head does not vary 
by more than +_ 1% of the average Ca, which justifies the assumption of 
constant Ca in the theoretical analysis. 

PRACTICAL APPLICATION 

The weir has a simple geometrical shape consisting of circles and straight 
lines. In addition, the curtailment of the depth of the quadrant at the crest 
by 1.5% R removes the narrow neck, which would otherwise have formed 
at the crest, rendering it capable of being fabricated to a very high degree 
of precision. The ratio Hmax/Hmin and Qmax/Omin is also very high (equal to 
14.57) making it suitable for large-flow measurements in irrigation. Its sim- 
ple head-discharge relation and constant accuracy render it a simple-flow- 
measuring device and a flow recorder. This weir can also be made use of 
as an outlet weir in grit chambers to maintain a near-constant-settling ve- 
locity (Keshava Murthy et al. 1968). 

CONCLUSIONS 

It is shown that the weir with sectors of a circle of radius R and depth d 
followed by inclined sides separated by a distance 2t and inward sideslopes 
n, can be used to give a linear head-discharge relationship within a maximum 
deviation of _ 1% from the theoretical discharge, over a range of heads 
determined by the values of t/R, d/R, and n. 

The weir parameters (namely, linearity range, base flow depth, and datum 
constant) vary with the dimensions of the weir such as d, t, and n. 

With the optimum values of t/R = 0.14; d/R = 0.985; and n = 60.5, the 
discharge through the weir is proportional to the depths measured above 
the crest of the weir for all heads in the region 0.543R -< h - 7.909R. 

The linearity range of the Extended Bellmouth Weir is enhanced by more 
than 375%. 

The datum of the weir lies with the crest, thereby making it a constant- 
accuracy linear weir. 

The curtailment of the quadrant depth by 1.5%R renders it easy to fab- 
ricate the exact profile and thereby avoids error in experiments. 

Experiments are in very good agreement with the theory by yielding a 
constant-average coefficient of discharge of 0.619. 
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APPENDIX I. DESIGN EXAMPLE 

Let us assume that the a forement ioned  weir is to be designed for a channel 
of width 75 cm with a discharge of 0.25 m3/s and the Ca considered as 0.619. 

Solution 
The data used in the design are q = 0.25 m3/s and Ca -- 0.619. From 

(11) 

qLa~, = Cd • 2.3476R3/2h; . . . 0.534R --< h -< 7.909R (12) 

The maximum-measurable  head  is 7.909R, which has to correspond to the 
maximum discharge 0.25 m3/s. Substi tuting for qL and Ca in (12) we get 

0.25 = 0.619 • 2.3476R 3/2 x 7.909R (13) 

hence R = 21.63 cm. Therefore ,  the dimensions and other  parameters  of  
the practical constant-accuracy linear weir  are radius of sector of  circle R 
= 22 cm; depth of sector of  circle d = 0.985R = 21.67 cm; half-top width 
of sectors of circle t = 0.14R = 3.08 cm; base width = 2w = 2(t + 0.8775R) 
-- 44.78 cm; side slope of the inward t rapezium n -- 60.5; maximum- 
measurable head hma x = 7.909R = 174 cm; base-flow depth = 0.534R = 
11.77 cm; l inearity range = 7.375R = 162.25 cm; and minimum-measurable  
range = qm,x = 0.25/14.57 = 0.01716 m3/s. 

APPENDIX II. REFERENCES 

Keshava Murthy, K., and Giridhar, D. P. (1989). "Inverted V-notch: a practical 
proportional weir." J. lrrig, and Drain. Engrg., ASCE, 115(6), 1,035-1,050. 

Keshava Murthy, K., and Giridhar, D. P. (1990). "Improved inverted V-notch or 
chimney weir." J. Irrig. and Drain. Engrg., ASCE, 116(3), 374-386. 

Keshava Murthy, K., and Giridhar, D. P. (199l). "Geometrically simple linear weirs 
using circular quadrants: bell mouth weirs." J. Hydr. Res., 29(4), 497-508. 

Keshava Murthy, K., and Gopalakrishna Pillai, K. (1978). "Design of constant- 
accuracy linear-proportional weirs." J. Hydr. Div., ASCE, 106(4), 527-541. 

Keshava Murthy, K., and Seshagiri, N. (1968). "A generalised mathematical theory 
and experimental verification of proportional notches." J. Franklin Inst., 285(5), 
347-363. 

Ramamurthy, A. S., Subramanya, K., and Pani, B. S. (1977). "Quadrant-plate 
weirs." J. Hydr. Div., ASCE, 103(12), 1,431-l,441. 

Reddick, H. W., and Miller, F. W. (1951). Advanced mathematics for engineers. 
John Wiley & Sons, Inc., New York, N.Y., 174-263. 

Srinivasulu, P., and Raghavendran, R. (1970). "Linear-proportional weirs." J. Hydr. 
Div., ASCE, 96(2), 379-389. 

Troskolanski, A. T. (1960). Hydrometry: theory and practice of hydraulic measure- 
ments. Pergamon Press, New York, N.Y., 301-302. 

Venkataraman, P., and Subramanya, K. (1973). "A practical proportional weir." 
Water Power, 25(5), 189-190. 

561 



APPENDIX III. NOTATION 

The following symbols are used in this paper: 

A ~___ 

B = 

r = 

E =  
e = 

f l(h),  fz(h) = 

g =  
H =  

n ~ . a ~ , / / . , i n  = 

h =  
K =  

LR = 
m = 
n = 

Q= 
QL = 

Q . . . .  Qmin  = 

q = 

q L  = 

q L a c t  = 

R = 

T =  
t = 

W =  
W : 

X =  
X = 

y =  
y = 

base-flow depth or lower limit of linearity range; 
upper limit of linearity range; 
coefficient of discharge; 
intercept constant; 
prefixed maximum percentage of error; 
deviation of Qe from Q; 
curves defining permissible region for Qe to lie in Q versus 
H plot; 
acceleration due to gravity; 
h/R; 
nondimensional heads at upper and lower limit of linearity 
range, respectively; 
head above weir crest; 
2 C a V e ,  a dimensional constant; 
linearity range; 
slope constant; 
side slope of inclined sides of weir; 
q/KR5/2; 
nondimensional replaced linear-discharge relationship; 
nondimensional discharges at upper and lower limit of lin- 
earity range, respectively; 
discharge; 
proposed linear relationship; 
actual discharge computed from qL; 
radius of sector of circle; 
t/R; 
half-top width of base weir (sector of circle); 
w/R; 
half-crest width of practical constant-accuracy-linear weir; 
x/R; 
vertical coordinate; 
y/R; and 
horizontal coordinate. 
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