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Volitional activation of remote place representations
with a hippocampal brain–machine interface
Chongxi Lai1*†‡, Shinsuke Tanaka1†‡, Timothy D. Harris1, Albert K. Lee1,2*

The hippocampus is critical for recollecting and imagining experiences. This is believed to involve voluntarily
drawing from hippocampal memory representations of people, events, and places, including maplike
representations of familiar environments. However, whether representations in such “cognitive maps” can
be volitionally accessed is unknown. We developed a brain–machine interface to test whether rats can
do so by controlling their hippocampal activity in a flexible, goal-directed, and model-based manner.
We found that rats can efficiently navigate or direct objects to arbitrary goal locations within a virtual
reality arena solely by activating and sustaining appropriate hippocampal representations of remote
places. This provides insight into the mechanisms underlying episodic memory recall, mental simulation
and planning, and imagination and opens up possibilities for high-level neural prosthetics that use
hippocampal representations.

T
he ability to simulate scenarios in one’s
mind is a hallmark of intelligence, as it
facilitates the evaluation of past exper-
iences and future plans. For instance, we
can imagine walking around our previ-

ous workplace, or imagine how our current
workplacemight function if we rearranged the
furniture. Such imagination requires an inter-
nal world model that can be flexibly accessed
to construct possible scenarios (1–3).
The hippocampus is a brain region that is

critical for memory and imagination (1, 4–6).
It holds amodel of the environment (also called
a cognitive map) (7, 8) that could potentially
be mentally traversed for the purpose of recall
or simulation. In particular, the hippocampus
contains spatial maplike representations of
previously explored environments. Each envi-
ronment’s representation consists of place
cells—neurons that fire selectively whenever
an animal moves through specific locations
(called the “place fields” of those cells) in that
environment (9, 10). This selective firing re-
sults in a distinct multicell activity pattern at
each location in the environment,which, during
physical navigation, can be used to decode the
animal’s current location from the ongoing
pattern of neural activity (11). In contrast, a
key aspect of imagination is the activation of
neural representations that deviate from cur-
rent sensory input, such as those that are non-
local (i.e., represent locations away from one’s
current location). Previous work has shown
brief and intermittent activation of nonlocal

hippocampal spatial representations sugges-
tive of the planning of specific paths within a
cognitivemap (12–21). However, it is unknown
whether this activity is volitionally controlled
or rather reflects passive memory–related
processes that are presumably nonvolitional
(22, 23).
To test whether an animal can directly con-

trol its hippocampal activity according to its
model of the world, we used a brain–machine
interface (BMI) approach because, unlike with
humans, we cannot simply ask animals to
imagine scenarios.WithBMImethods,we could
reward animals for generating neural activity
resembling the simulation of specific scenar-
ios. More precisely, we could reward them for
the volitional activation of specific nonlocal
representations from the cognitive map—a
fundamental building block of scenario simu-
lation. BMI research has a rich history of di-
rectly testing for volitional control of activity
patterns of neuronal ensembles in the motor
cortex and related areas (24–35). In the hippo-
campus, it has been shown that the activity
level of individual neurons (36, 37) or the pop-
ulation activity related to individual stimuli
(38) can be controlled. However, a real-time
BMI that allows humans or animals to con-
trol their hippocampal population activity in
terms of the content of their cognitive map
(e.g., location representations) has never been
demonstrated.

A hippocampal map–based BMI

We designed a real-time hippocampal BMI
and two BMI tasks to investigate whether rats
could navigate to goals (“jumper” navigation
task), or move external objects to goals while
remaining stationary (“Jedi” object location
control task), within an immersive virtual real-
ity (VR) environment solely by controlling the
activity of a population of place cells. Each
jumper or Jedi BMI experiment consisted of
three phases (Fig. 1A). In phase 1, rats ran to a

succession of arbitrary locations marked by a
tall, visible goal cue placed in a familiar two-
dimensional virtual arena (“running” task).
Upon reaching each cue, liquid reward was
delivered, the trial ended, and the cue moved
to another location for the next trial. Animals
were secured in a harness and could freely
rotate their body and head direction on top of
a spherical treadmill (39) while hippocampal
CA1 neural activity was recorded (Fig. 1B, fig.
S1, and movie S1). We applied a recently de-
veloped field-programmable gate array (FPGA)–
based neural signal processor to perform low-
latency (1ms) assignment of extracellular spikes
(recorded from 128 channels) to a population
of hippocampal units (40, 41). In the running
task, treadmill movement updated the ani-
mal’s location in the virtual environment, and
many hippocampal units (i.e., place units) dis-
played spatiallymodulated activity (39, 42–44)
(Fig. 1B, blue arrows) similar to that in real-
world environments (8–11). In phase 2, the
binned spike counts from themost recent 1.5
or 5 s of activity of these place units and the
animal trajectory from the running task
were used to train a decoder (Fig. 1B, green
arrows) that estimates the animal’s current
location from the neural data every 100 ms.
We used a deep neural network for decoding
(fig. S2), allowing the use of data augmenta-
tion for training—a method that improves
both the decoder’s performance given limited
data and its noise robustness. In phase 3, the
treadmill was disconnected from the VR sys-
tem, and the animal’s ability to control its own
or an object’s translational movement was
limited to controlling its hippocampal activity,
which was converted by the decoder into a
specific location output every 100 ms (Fig. 1C).
Note that the decoder was trained to estimate
the animal’s current location in the running
task only, not its location in the subsequent
BMI tasks, but, during BMI periods, the ani-
mal needed to generate activity corresponding
to locations away from its current location.

BMI navigation task

In the jumper task, we tested whether animals
could navigate to arbitrary goal locations as
in the running task, except here by means of
BMI-based first-person teleportation. After
rats performed the running task for ~40 min
(~120 trials) (Fig. 2, A and B, and movie S1),
the data were used to train the decoder, which
accurately estimated the rat’s current location
in the running task [validation set coefficient
of determination (R2) = 0.78 to 0.88] (Fig. 2C).
Jumper trials were identical to running trials,
except the animal’s location was updated to
the BMI-decoded location (smoothed with a
3-s sliding window to help reduce potential
high-frequency visual jitter of the VR updates)
(Fig. 2, D and E, and movie S1). If an animal
did not reach the goal within 62 s, the trial
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Fig. 1. Hippocampal map–based brain–machine interface in a virtual reality
system. (A) Steps for performing the two different BMI experiments in this study.
Rats first physically ran to a series of goals (running task), while their hippocampal
neural activity and (virtual) location in a square arena were recorded. This data
was used to train a decoder to take neural activity as input and output the animal’s
current location in the running task. In BMI task 1 (jumper task), animals needed
to generate neural activity that would be decoded as locations they wanted to move
to so that they could reach each goal (to obtain a reward). In BMI task 2 (Jedi
task), animals were fixed at the center of the virtual arena (but could rotate) and
needed to generate activity corresponding to locations where they wanted an
external object to move to so that the object reached the goal, then they needed
to sustain that activity to maintain the object there (to maximize reward).

(B) Schematic of the VR system (left). The animal was free to rotate its body in
the horizontal plane. In the running task, the animal’s location in the virtual arena
environment was updated according to treadmill movement. Simultaneously
recorded spiking from a population of hippocampal CA1 units expressed place
fields—the basis of the cognitive map of the environment (right). Decoder was
then trained using binned spiking activity and location data. (C) In both BMI tasks,
the treadmill no longer updated VR. Instead, the animal or object location was
controlled solely by real-time hippocampal activity. A neural signal processor rapidly
assigned activity to individual units, whose spike counts were fed into the decoder.
VR projection was updated according to locations output by the decoder. In the
jumper (Jedi) task, the animal’s (object’s) virtual location was moved toward the
most recent decoded locations. PC, personal computer.
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Fig. 2. Rats can navigate to goals by controlling their hippocampal activity.
In both the running and jumper BMI tasks, animals were rewarded when they reached
each goal. (A) Animal trajectories in the virtual arena for consecutive running task
trials. Trial duration (time to reach goal) in seconds is shown. (B) Example running
task trial. From top: trajectory, firing rate (z-scored) of individual units (units were
ordered by time of peak activity), treadmill speed, and LFP from one recording channel
and corresponding wavelet spectrogram during trial. (C) Accuracy of trained decoder
of animal’s current location for held-out running task data. Actual and decoded
trajectories during example trial (top left) and across several trials (for x and y
coordinates separately, bottom left). Median decoding error (distance between actual
and decoded locations) with range and quartiles (bottom right). (D) Example jumper
BMI trial with similar trajectory as the running trial in (B). From top: trajectory generated

by the animal controlling its hippocampal activity and the decoder output (animal is
teleported toward decoded location; each gray circle represents the decoded location at
the time the animal is at the corresponding point in the trajectory connected by the
dark line, sampled here every 1 s), firing rate of individual units [using same order of
units as in (B)], treadmill speed, LFP, and spectrogram. (E) Example jumper BMI trial
in which animal did not move the treadmill. Trajectory (left) as in (D). Right, from top: unit
activity, treadmill speed, LFP, and spectrogram. See fig. S10 for all 10 nonmovement
trials. (F) BMI-generated trajectories for consecutive jumper trials. (G) Mean jumper
trial duration (magenta vertical line) is significantly lower than distribution of expected
mean duration for simulated trials if goals were in random locations. (H) Polar distribution
of angle between direction of movement and direction to goal during running and
jumper tasks. Zero corresponds to animal movement directly toward the goal center.
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Fig. 3. Rats can move objects to remote goal locations and maintain
them there by controlling their hippocampal activity. In the Jedi BMI task,
trials did not end when the external controlled object first reached the goal;
instead, animals were rewarded as long as the object was in the goal region
(white circle), for up to 3 min per trial. The animal was always fixed at center of
the virtual arena but could rotate its body and generally turned toward each
goal. (A) Distribution of real-time decoded locations (output every 100 ms)

generated by the animal controlling its hippocampal activity across eight
consecutive Jedi BMI trials for rats 1, 2, and 3. Panels show decoded locations
during each trial (up to 3 min; fig. S11). Periods when the animal’s body
rotated >12°/s were excluded. See text and methods for details. The external
controlled object (which was visible for rats 1 and 2 but invisible for rat 3)
was moved toward the decoded location (fig. S11 shows that the distribution
of object locations was essentially the same as the distribution of decoded
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ended and a new goal cue appeared at a ran-
dom location.
Rats successfully navigated by controlling

their hippocampus, generating efficient paths
to each goal (Fig. 2F; see figs. S3 to S5 for all
trials of three rats, and figs. S6 to S8 for all
trials re-decoded using a shorter decoding
window and without smoothing). To check
whether this performance could be attributed
to non-spatially-specific neural activity (e.g.,
modulating global firing rate), we randomly
shuffled the spike trains across place units, ran
the shuffled data through the original decoder
to produce simulated trajectories, then deter-
mined how long it would have taken to reach
the same sequence of goal locations as in the
original experiment. Shuffled-unit mean trial
durations were much longer than the actual
means (P < 10−100, three rats, one session each),
suggesting that performance depended on
generating place field–related activity. To test
whether generating non-goal-directed sequen-
ces of location-specific activity (e.g., random
movement within the cognitive map) could
explain the performance, we randomly shuffled
the goal locations in each trial while preserv-
ing the original BMI trajectories and then de-
termined the time that would have been
needed to reach the shuffled goals. Shuffled-
goal mean trial durations were again much
longer than actual means (P = 2.8 × 10−15 to
1.5 × 10−7) (Fig. 2G), indicating that animals’
BMI trajectories were clearly goal-directed.
Goal-directedness was also apparent from the
distribution of angles between the animal’s
instantaneous direction of BMI-generated
movement and the direction from the animal’s
current location to the goal, which was con-
centrated around a value near 0° (Fig. 2H).
Thus, even though jumper trials took longer
than running trials (mean trial duration across
animals: 15.1 s versus 6.9 s; note, however, that
BMI decoding and smoothing added a few sec-
onds to jumper durations), the animals’ routes
revealed effective, goal-directed,map-based BMI
navigation. Furthermore, such performance
was achieved without extensive BMI training
(Fig. 2F; figs. S3 to S5 show sessions 3, 9, and
2 for rats 1, 2, and 3, respectively; table S1; a
fourth rat failed to perform either BMI task).
Although animals were free to physically run

during the jumper task, such movement was
not necessary for task performance. Initially,
animals ran as in the running task, but in later
trials, animals ran less (fig. S9). In a subset of
trials (10 out of 161 trials) (Fig. 2E and fig. S10),

animals remained still, yet in all cases they
efficiently reached the goal. Moreover, this suc-
cessful navigation did not depend on activity
in population burst events (PBEs), which often
appear during immobility and during which
brief activation of place cell representations
for remote locations has been shown to occur
(13–16, 18, 20, 21, 23).

BMI object location control task

Although episodic memories are encoded and
often retrieved using a first-person perspective,
individuals can also imagine scenarios from a
third-person perspective, with other animate
and inanimate players taking part. Further-
more, imagination often involves holding a
single thought in mind for extended periods.
Therefore, our second BMI task, the Jedi task,
tested whether animals—while remaining in
the same place—could use the same map of
the arena to control the location of a virtual
object, guide it to the goal cue location, and
maintain it nearby. The jumper and Jedi tasks
thus used different forms of feedback: self-
location and the location of an object, respec-
tively. After the same running task and decoder
training phases as in the jumper experiment, the
animals in Jediwere fixed (but could freely turn)
at the arena’s center, and the object’s location
was updated to theBMI-decoded location (with
a 2-s smoothing window). In each trial, the goal
cue remained in the same place, providing re-
ward as long as the object touched it. After 3min
or the rat having received 0.5 ml of reward in
total, whichever came first, a new goal cue ap-
peared at a distant random location for the
next trial.
Rats could activate and sustain a remote lo-

cation’s representation around the goal for
long periods, until the trial ended, and then
shift attention to the next goal (Fig. 3, A and B;
fig. S11; and movie S1). Performance was mea-
sured using the mean distance (over time) be-
tween thedecoded locations andgoals. Shuffling
spike trains across units yielded much greater
meandistances than the actualmeans (P=2.2 ×
10−5 to 2.6 × 10−3, three rats, one session
each). To assess the goal-directedness of BMI-
generated activity, we shuffled the goal loca-
tions while preserving the locations output
by the decoder. The decoded (and controlled
object’s) location was far more concentrated
around the actual remote goal cue than shuffled
goal locations (P = 1.8 × 10−22 to 5.2 × 10−10)
(Fig. 3C and fig. S11), indicating clear goal-
directed control of activity. Again, such per-

formance occurred without extensive training
(Fig. 3A shows sessions 7, 6, and 3 for animals
1, 2, and 3, respectively). Task performance
was not dependent on PBEs, as there was no
change in performancewhen all activity in PBEs
was eliminated and the decoder was rerun post
hoc (fig. S11).
Animal movement was generally low when

engaged in the Jedi task (Fig. 3D), and move-
ment was not required for successful perform-
ance. There were many longer periods (≥8 s
long with a treadmill speed of ≤1 cm/s, 38
periods, mean: 17.3 s, maximum: 44.0 s) during
which the animal did not move the treadmill
while it directed the object to the goal and/or
held it there (34 of 38 periods) (Fig. 3B and fig.
S12). Activity during PBEs was also generally
not necessary for performance in these non-
movement segments (fig. S12).

Features of volitionally generated spiking and
local field potential activity

What characteristics did the volitionally gen-
erated activity have? First,mean firing rates per
unit were similar between jumper and run-
ning tasks (fig. S13A). Mean firing rates per
unit were correlated across Jedi and running
tasks, but lower in Jedi (fig. S13B)—consistent
with the decreased physicalmovement in Jedi.
We then investigated the hypothesis that, to

move themselves or the object toward a given
(decoded) location in the jumper and Jedi
tasks, animals generated a pattern of firing
rates across units (i.e., a population vector, or
PV) similar to the mean PV at that location
over the entire running task (called the refer-
ence PV, or rPV) (Fig. 4A). (Note that the set of
rPVs for all locations is thus equivalent to the
standard place field map across the popula-
tion.) We examined the correlation between
the PV generated at each moment (in every
500-ms window) during jumper or Jedi and
the rPV of the decoded location at that mo-
ment. As a benchmark, we computed the cor-
relation between the 500-ms PVs during the
running task with the rPVs corresponding
to the animal’s actual location at those times
(Fig. 4, B and C, “Run”) as well as the correla-
tion between the running task PVs and the
rPVs of random locations (Fig. 4, B and C,
“randRun”). We then correlated jumper or
Jedi PVswith the rPVs of the decoded locations
at each moment (Fig. 4B for “jumper” and Fig.
4C and fig. S14 for “Jedi”) and with rPVs of ran-
dom locations (“randJumper” and “randJedi”).
Jumper and Jedi PVswere significantly correlated

locations). (B) A 40-s-long period during an example trial during which the
animal did not move the treadmill. From top: summed activity across all
units with PBEs identified, treadmill speed, distance of decoded location from
goal (0 means inside goal region), and close-ups of two 5-s periods [as
animal moves object to goal (left) and as animal maintains object at goal
(right); points in the arena represent sequence of decoded locations] with

spike trains of units, LFP, and spectrogram. See fig. S12 for additional
example periods. (C) Mean distance of decoded location from goal across
all trials (magenta vertical line) is significantly lower than mean distance
expected for randomized goal locations. (D) Treadmill speed distribution
during periods shown in (A), illustrating that the animal was generally still
during task performance.
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Fig. 4. Volitionally generated nonlocal activity is similar to the activity
when the animal is at the corresponding locations and is associated with
theta-band power in the LFP. (A to E) The population vector (PV) of ongoing
spiking activity was compared with the average place field activity (rPV) at
a given location during the running task. (A) Schematic of comparison.
(B) Mean correlation of instantaneous (500-ms window) PV during running or jumper
task with rPV for the current location (in the running task), current decoded
location (in the jumper task), or random location in the running (randRun) or jumper
(randJumper) task. (C) Same as (B) but for the Jedi task. For Jedi, only periods
when decoded location was near (within 5 cm of) the goal were included [also
for (E)]. [(D) and (E)] Correlation of PV with rPV relative to baseline random
value as a function of the time integration window for determining the PV.

(F and G) Evaluation of decoder performance when ground truth activity for each
location, i.e., the rPV, was input into the decoder. (F) Schematic of evaluation
procedure. (G) Comparison of our DNN decoder to Bayesian decoder for different
levels of added noise, with example traces using a specific level of noise (top).
(H) Distribution of decoded location (left) during Jedi task segment with no
treadmill movement (right). Right, from top: summed activity across all units with
PBEs identified, treadmill speed, distance of decoded location (excluding data
during PBEs) from goal, and close-up of LFP with spectrogram. (I) Power spectral
density of z-scored (for pooling across animals) LFP during the Jedi task for
periods of treadmill movement and all long segments (≥8 s) without treadmill
movement. See text and methods in the supplementary materials for details. Here
and elsewhere, all confidence intervals (CIs) are 95% CIs.
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with the rPVs associated with the decoded loca-
tions versus random locations, consistent with
the hypothesis. Furthermore, jumper PV-rPV
correlations were comparable to running task
PV-rPV correlations. In line with this, the ex-
ample running (Fig. 2B) and jumper (Fig. 2D)
trials, which happened to share similar trajec-
tories, showed similar activity patterns across
place units over time. PV-rPV correlation scores
were, unlike in jumper, lower in Jedi than in
the running task using 500-ms windows (Fig.
4C), consistent with noisier generation of non-
local representations and/or lower firing rates
(fig. S13B) in Jedi. However, with longer in-
tegration windows (>500 ms) (Fig. 4, D and
E), the PVs generated during Jedi matched
the rPVs as well as the best match during the
running task (note that longer integration times
work for Jedi because animals activated goal
location representations for extended periods).
These results indicate that, during BMI task
performance, animals generated nonlocal pop-
ulation activity as similar to the corresponding
place field representations as when they ac-
tually visited those locations in the running
task. Were these place field–like (i.e., rPV-like)
patterns what our deep network detected to
decode location? While determining what fea-
tures a deep network uses for decoding is gen-
erally not straightforward, inputting a single
location’s rPV for a brief duration was suffi-
cient to produce accurate location decoding
(Fig. 4, F and G), consistent with the decoder
being tuned to detect rPV-like activity. In ad-
dition, unlike the commonly used Bayesian
decoder (45), our decoder was highly robust to
noise (Fig. 4G) by design because of the use of
data augmentation during training.
Lastly, we analyzed the local field potential

(LFP) activity during BMI task performance
(Fig. 4, H and I). When animals move, the ro-
dent hippocampal LFP is known to display
prominent theta band (∼5 to 12 Hz) power,
which peaked at ~7.3 Hz during periods of
movement in the running and BMI tasks (Fig.
4I). During the extended periods of nonmove-
ment when the animal was performing the
Jedi task, the theta peak shifted down to 6.3 Hz
(Fig. 4I). Note that, unlike themore continuous
theta oscillations during movement, the oscil-
lations during such nonmovement periods
tended to be more intermittent.

Discussion

Previous BMI research has yielded major ad-
vances in the control of robotic arms, com-
puter cursors, and other devices by activity
from the primary motor cortex, premotor cor-
tex, and posterior parietal cortex (24–35). The
hippocampal cognitive map has a code that
represents space in terms of absolute location
in the external environment versus location
relative to (e.g., in front of, or to the right or
left of) the animal (8–11), and it was unknown

whether a subject could control a BMI by
means of this code. With this study, we dem-
onstrated a hippocampal map–based BMI in
which the subject is able to control its location
or that of other objects by activating location
representations in terms of absolute space, in-
dependent of where the animal currently is.
That is, even though animals generally (but
not always) turned their body toward the goal,
the activity that needed to be generated dif-
fered depending on the location of the goal
with respect to the environment. The relative-
ly small amount of training needed for the
animals to perform our BMI tasks is in line
with our use of a biomimetic decoder (35, 46),
that is, one based on the neural code that the
subject naturally employs.
In humans, imagining or recalling objects or

video clips is accompanied by hippocampal
activity in individual neurons similar to that
when viewing the original stimuli (47, 48).
This suggests that the mechanisms allowing
animals to selectively activate their nonlocal
hippocampal spatial representations, as we
have shown here, could also underlie our abil-
ity to actively recall or imagine experiences in
other places. The ability of rodents to perform
these BMI tasks should thus allow imagina-
tion, as well as the voluntary recall of memory,
to be investigated using the range of tools
available for this model system. More gener-
ally, the neural processes engaged here could
underlie our capacity to perform “mental time
travel”—travel back in time by reexperiencing
richly detailed episodic memories and travel
forward in time by generating possible future
scenarios (49). Mental time travel depends
critically on the hippocampus (4–6, 50–52)
and enables subjects to internally simulate new
experiences according to their world model.
This can aid decision-making and facilitate
learning in complex situations where trial and
error is expensive, as shown using artificial
agents (3, 53–55).
Along these lines, the rats in our study could

control their hippocampal map-based activity
on a timescale of seconds, corresponding to
the speed and duration at which humans re-
live past events or imagine new scenarios.
Navigational trajectories each lasted ~10 s,
and a virtual object could be held at a remote
location for several seconds. This contrasts
with the previously described fast (~100 ms)
sequences of nonlocal hippocampal activity in
awake rodents (i.e., awake replay events, which
are associated with population bursts and
sharp wave–ripples) thought to be associated
with planning (12, 16, 18, 21), and which were
not responsible for the performance in our
BMI tasks (analysis in which all PBEs were re-
moved). The content of such replay events,
which can portray specific routes through
the environment starting from the animal’s
current location, has been shown to be corre-

latedwith deliberative (12) and future (16, 18, 21)
behavior. However, it is not known whether
this content is—or replay content in general
can be—under an animal’s volitional control.
For instance, hippocampal activity displays
similar fast sequences during sleep (23), thus
nonlocal path generation per se does not ap-
pear to require intention. If awake replay is
volitionally controlled, these events could rep-
resent a brief consideration of alternatives for
making a quick decision and be distinct from
the more comprehensive mental simulations
of possible scenarios that take seconds. Previ-
ous work has also described neurons in the
hippocampus and related areas whose activity
is tuned to the angle to a goal or a salient cue
or object relative to the direction the animal is
facing (56–59). In addition, hippocampal neu-
rons that are tuned to the location of con-
specifics have been found (60, 61). As with
fast sequences, whether these forms of activity
that reflect locations away from the animal are
volitionally controlled is yet to be determined.
Beyond aiding decision-making, the ability

to control the content of the hippocampal
spatial and episodicmemory system could help
explain the richness of our inner lives. Finally,
the ability to control hippocampal activity to
guide oneself or objects to intended locations—
and do so with high signal-to-noise readout
using our decoder—could lead to new BMI ap-
plications for restoring or enhancing function
by realizing a subject’s high-level intentions
with respect to their internal world models.
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