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Throughout their daily lives, animals and humans often switch between different
behaviours. However, neuroscience research typically studies the brain while the
animalis performing one behavioural task at a time, and little is known about how
braincircuits represent switches between different behaviours. Here we tested this

question using an ethological setting: two bats flew together inalong 135 m tunnel,
and switched between navigation when flying alone (solo) and collision avoidance as
they flew past each other (cross-over). Bats increased their echolocation click rate
before each cross-over, indicating attention to the other bat'®. Hippocampal CA1
neurons represented the bat’s own position when flying alone (place coding'®*).
Notably, during cross-overs, neurons switched rapidly to jointly represent the
interbat distance by self-position. This neuronal switch was very fast—as fast as

100 ms—which could be revealed owing to the very rapid natural behavioural switch.
The neuronal switch correlated with the attention signal, as indexed by echolocation.
Interestingly, the different place fields of the same neuron often exhibited very
different tuning to interbat distance, creating a complex non-separable coding of
position by distance. Theoretical analysis showed that this complex representation
yields more efficient coding. Overall, our results suggest that during dynamic natural
behaviour, hippocampal neurons can rapidly switch their core computation to
represent the relevant behavioural variables, supporting behavioural flexibility.

The real world is ever dynamically changing, requiring humans and
otheranimalstorapidly switch between different behavioural modes.
For example, when a wild rodent is foraging for food, it occasionally
needstoavoid predators and decide towards which burrow to escape,
therefore switching dynamically between foraging, predator avoid-
ance and decision-making. However, the neural basis of behaviour is
typically studied while the animal is performing one behavioural task
at atime, and little is known about how brain circuits rapidly switch
between different natural behaviours. Navigation is acomplex, dynamic
natural behaviour that enables the testing of behavioural switches. It
requires the animal to know its own location within the environment,
while also paying attention to abrupt events—such as the appearance
of unexpected obstacles, predators or conspecifics; the animal may
therefore also need to assess the distance to ‘things out there’. The
animal’s positionis encoded by hippocampal place cells'®**; however,
this coding has been studied mostly in empty, stationary set-ups that
donotimitate therichdynamism of real-world navigation. There have
also been a number of studies that investigated the representation
of ‘things out there’ by neurons in the hippocampal formation and
surrounding structures™ 2, but these were all studied under static
conditions, without examining dynamic behavioural switches. Here we
setout to investigate how brief natural attentional switches to ‘things
outthere’, which are essential for real-life navigation, affect the repre-
sentation of space in the hippocampus during navigation. We aimed

to test several hypotheses regarding how hippocampal circuits may
encode position and distance to ‘things out there’ during dynamic
navigation: (1) hippocampal activity always encodes only position;
(2) hippocampal activity switches between pure position and pure
distance representations; (3) hippocampal activity always multiplexes
position and distance information; (4) hippocampal activity switches
from a position code to a conjunctive representation of distance by
position upon a behavioural need. As we show below, our results are
most consistent with hypothesis 4.

Encoding of distance during brief attentional switches

We trained pairs of Egyptian fruit bats to fly together inalong 135 m
linear tunnel between two landing balls, where food was given. The
bats alternated between two behavioural modes (Methods): (1) solo:
only one bat flew alone, or was >40 m away from the other bat (Fig. 1a
(left)); or (2) cross-over: the two bats flew towards each other from
opposite directions at <40 m (Fig. 1a (right)). The bats took off from
the balls non-synchronously at random timing relative to each other,
creating intermingled solo and cross-over flights, which were distrib-
uted approximately uniformly along the tunnel (Fig. 1b,c and Extended
DataFig.1). During cross-overs, the bats bypassed each otheratavery
high relative speed of around 14 m s (the sum of both bats’ speeds;
the speeds of individual bats are shown in Extended Data Table 1) and,
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Fig.1|Set-up and behavioural task. a, The experimental set-up. Bats flew in
pairsand alternated between two behavioural modes: solo (left) and cross-over
(right). b, Example behaviour (4 min of the full session thatisshown in
Extended DataFig.1a). The blue and orange lines show the positions of the
recorded batand the other bat, respectively; the pink circles show cross-over
events; pink rectangles show cross-over flights (+40 m distance around
cross-over events); grey rectangles show solo flights. ¢, The distribution of
behavioural coverage along the tunnelin an example session: solo (left) and
cross-over (right) flight isshown separately for the two flight directions (dir.)
(darkandlight coloured, stacked). The light grey vertical rectangles show the
areasinwhich cross-overs were not analysed (Methods).d, Echolocation
example. Top, the audio signal during one cross-over flight for the recorded bat
(blue) and for the other bat (orange) as a function of the interbat distance

therefore, had to be attentive to avoid collision between one another.
Tomeasure the bats’ attention, we recorded their echolocation clicks
(sonar signals), because many bat species have beenshowntoincrease
echolocation click rate when attention is needed; thus, echolocation
provides anindex of the bat’s moment-to-moment attention'®. Indeed,
we found that, during cross-overs, the bats increased their echolo-
cation click rate by around fourfold and click amplitude by around
twofold (Fig. 1d,e and Extended Data Fig. 2c), with this echolocation
profile being uniform along the entire tunnel (Fig. 1f and Extended Data
Fig.2d). In all of the bats, the increase was rapid (about 15s), and con-
stituted a switch between two distinct behavioural phases (Extended
DataFig. 2b). This increase in click rate suggests that the bats were
highly attentive during these demanding cross-over flights. Inthe rare
cases of near collisions, the bats exhibited fewer echolocation clicks
(Extended Data Fig. 2e-g), suggesting that a low click rate indicates a
lapse of attention, which may lead to collisions. This provides further
support for the link between echolocation rate and attention.
Theuse of averylarge environment enabled us to examine these fast
behavioural switches, because (1) bats fly very fast in large environ-
ments, allowing for very rapid switches; (2) the large space allowed
for a substantial baseline before and after the cross-overs; and (3) it
allowed the bats to perform cross-overs at multiple positions, therefore
enabling us to disentangle distance from position. We used a wireless
electrophysiology device to record the activity of 430 neurons from
dorsal hippocampal area CAlof four bats during flight (Extended Data
Fig.3a,b and Extended Data Table 1; 389 putative pyramidal cells, 41
putative interneurons; we analysed the data separately for the two
flight directions: 693 valid pyramidal cells x directions, 74 valid inter-
neurons x directions; Methods). On the basis of the solo flights, we
classified 88.5% of the pyramidal cells as significant place cells (n = 613
cells x directions exhibited significant positional modulation of
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(negative/positive distances: bats flying towards/away from each other).
Bottom, raster plot showing the echolocation clicks of the recorded bat (blue
dots) for the 50 cross-overs in this session (one flight direction). Note that
Egyptian fruit bats emit pairs of clicks®. SNR, signal-to-noise ratio. e, The
population average echolocation click rate (left) and click amplitude (right) for
bat 2299 (n=11sessions) during cross-over flight (data are mean + s.d. (pink
shading), withthe s.d. computed over allbehavioural datain each distance bin)
andsoloflight (dataare mean +s.d.). Scale bar, the mean distance flownin1s.f,
2D click rate maps for interbat distance (x axis) by position (yaxis) for the two
flight directions for all sessions of bat 2299, coloured from zero (blue) to peak
clickrate (red; valueindicated). Note that the click rateincreased before
cross-over, similarly along all of the positions (see the vertical band).

firing rate). Place cells exhibited multiple place fields in this long track
(mean *s.d., 3.03 +1.81 place fields per direction), with variable field
sizes (Extended DataFig. 3c-g), consistent with our previous report™,

During cross-overs, a subpopulation of hippocampal neurons
showed significant modulation of their firing rate at specific interbat
distances, exhibiting either enhanced or suppressed firing (Fig. 2a). We
started by analysing the one-dimensional (1D) tuning to interbat dis-
tance, irrespective of position along the tunnel: 18.0% of the pyramidal
neurons and 39.2% of the interneurons were classified as significantly
tuned to distance (pyramidal, n =125 cells x directions; interneurons,
n=29cells x directions; Fig.2b-d and Extended Data Fig. 4a); we refer
to cells showing 1D distance modulation as 1D distance cells. This clas-
sification was based on three main criteria: (1) rigid spike shuffling for
cross-over flights, which preserves the spiking pattern but dissociates
it frombehaviour; (2) shuffling compared to firing expected from solo
flights to account for the place tuning (Extended DataFig. 5); and (3) sta-
bility of the distance tuning (Extended Data Fig. 4b and Methods). These
criteriaensured the detection of significant and stable distance tuning
thatdid not result from the place tuning. The distance modulation was
very prominent (Extended Data Fig. 4c; mean z-scored peak enhance-
ment compared with the firing expected from solo: z=7.18 (pyramidal
cells) and z=7.17 (interneurons)). The distance tuning could not be
explained by speed changes during cross-overs (Extended DataFig. 6),
nor by direct responses to individual echolocation clicks (Extended
Data Fig. 7a-d). Moreover, the distance tuning did not reflect coding
ofthe absolute position of the other bat but, rather, reflected genuine
coding of the interbat distance (Extended Data Fig. 8f (right)). In fact,
almost no neurons showed significant tuning to the other bat’s posi-
tion in this behavioural paradigm (Extended Data Fig. 8a;1.2% of the
cellsweresignificantatal%significance level: binomial test, P = 0.34).
The finding that hippocampal neurons encode distance information
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Fig.2|Hippocampal CAlneuronsrepresent the distance to another bat
upon briefattentional switches during navigation. a, Examples of 1D
distance neurons. n, represents the number of cross-overs. For each cell, the
top row shows the tuning curve for 1D distance (pink line) and shuffles
(shading). Horizontal lines denote significant enhancement (green) or
suppression (brown).Inthe middle row, the left plot shows the recorded bat
position (yaxis) and interbat distance (x axis) during cross-overs (grey; the two
flight directions yield positive versus negative slopes of the grey lines), with
spikes overlaid (pink dots); the centre plot shows the spike raster during solo
flights (grey, behaviour; black dots, spikes), showing position (y axis) versus
timeinthesession (xaxis; the solo raster has holesin which cross-overs
occurred; Extended DataFigs.1d and 3¢); and the right plot shows place tuning
duringsolo flights (black) and during cross-over flights (pink). The bottom row
shows the 2D firing-rate map of position (y axis) by interbat distance (x axis),
coloured from zero (blue) to peak firing rate (red; value indicated). b-d,
Population summary of all significant 1D distance neurons for putative
pyramidal neurons (n=125) and interneurons (n =29). b, Top, the mean of
z-scored distance tuning curves. Araster of z-scored tuning curves isshown
separately for pyramidal neurons (middle) and interneurons (bottom), sorted
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during cross-oversrules out hypothesis 1, which suggested that there
isonly pure position coding in the hippocampus.

Across the population, 1D distance-coding cells showed significant
modulation at many interbat distances, with over-representation of
cellstuned to short distances (Fig. 2b-d; see Extended Data Fig. 4a for
individual animals). The response onset of most neurons occurred
early: 70.4% of the pyramidal neurons and 93.1% of the interneurons
started responding before the cross-over event (Fig. 2d; sign test for
the enhancement response onset compared to zero distance: pyrami-
dal neurons, P=1.27 x10™*, n =109 cells x directions; interneurons,
P=3.05x107,n=16cells x directions). Notably, the neuronal distance
signal started at a similar interbat distance as the attention signal,
indexed by anincreased rate of echolocation clicks (the response onset
inFig.2d starts atapproximately —20 m, similar to theinitialincreasein
clickrate:Fig.1e) but the neuronal responses ended later—many pyrami-
dal cells were distance tuned also after the cross-over event (interbat dis-
tance > 0), whenthe echolocationclick rate had returned to the baseline.
This might be explained as follows: (1) while most neurons were ‘switched
on’by attention before the cross-over event, these cells continued firing
for some time, and then other neurons became active after cross-over
duetonetwork reverberations or neuromodulators. (2) Some pyramidal
cells with late activity may have been released from inhibition (Fig. 2c;
the bottom~20 pyramidal cells show suppression followed by enhance-
ment), which could stem frominterneurons being most strongly active
before and around the cross-over event (compare pyramidal cells and
interneurons in Fig. 2b-d (top)). (3) Population activity both before
and after cross-over could represent neuronal sequences® ¢, perhaps
reflecting memory encoding of the entire cross-over event. (4) Finally,
it might be behaviourally relevant to represent the distance from the
other bat also after the cross-over event because the other bat could
performaU-turnafter the cross-over and fly back towards the recorded
bat (indeed, we observed such U-turns occasionally in the experiment).
Furthermore, bats can directly sense the distance to the other bat behind
their back using echolocation, which spreads also backwards>%’; or they
can estimate the distance to the other bat after cross-over using path
integration by relying on the bats’ fixed speed.

The distance tuning was generally uncorrelated between the two
flight directions (Extended Data Fig. 4h-j) and was also uncorrelated
between positive and negative distances (Extended Data Fig. 4k). This
suggests that the distance-tuned neurons did not encode absolute dis-
tancebut, rather, encoded distance and direction. Thus, these neurons
couldbeinterpreted as vectorial distance cells (other types of vectorial
cellsin the hippocampal formation were described previously'®'*?%3),

To explicitly test whether attention modulates the 1D distance tun-
ing, we performed several analyses. First, we bisected the cross-over
flights into those with lower attention versus those with higher atten-
tion (lower versus higher click rate), and found that cells with 1D dis-
tance tuning exhibited stronger responses during high-attention flights
(Fig.2e-gand Extended Data Fig. 7e; bisection was performed for entire
cross-over flights; weincluded here only cells recorded simultaneously
with audio; Methods). As distance tuning could not be explained by
directresponsesto echolocation clicks (Extended DataFig.7a-d), these
results suggest that 1D distance neurons are modulated by high-level
cognitive variables, such as attention, arousal or an enhanced state of
active sensing.

Second, to experimentally test the effect of attention, we trained one
pair of bats to perform an additional behaviour—tracking—in which
the two bats flew in the same direction at a short interbat distance
(Extended DataFig. 9a (cyanand turquoise rectangles) and Methods).
Wereasoned that, as the relative speed during tracking was near-zero
(in contrast to cross-over, for which it was around 14 ms™), tracking
requires lower attention than cross-over. Indeed, bats echolocated
at much lower rates during tracking (Extended Data Fig. 9b), sug-
gesting that tracking requires less attention. During tracking flights,
CAlneurons preserved their place tuning, but did not preserve their
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distance tuning; in fact, distance tuning was largely absent during track-
ing (Extended Data Fig. 9). This suggests that only when attention is
strongly required—during cross-overs, but not during tracking—CA1
neurons encode the interbat distance.

Third and finally, in another pair of bats, after the end of the regu-
lar behavioural session, we conducted a second session in which the
recorded bat flew with an alternative partner bat. We reasoned that,
during collision avoidance (cross-over), it is important to attend to
theother bat and represent its distance irrespective of the other bat’s
identity.Indeed, distance tuning was largely preserved between the two
sessions with different partners (Extended Data Fig. 10). This suggests
that the observed distance tuning (Fig. 2) is probably not social but,
rather, isrelated to collision avoidance.

Conjunctive 2D coding of distance by position

Next, we considered the 2D tuning of neurons to distance by position. As
the vast majority of CAl1 pyramidal neuronsin the long tunnel were place
cells* (Extended Data Table 1), we started by analysing the distance
tuning curve separately within each place field. Half of the place fields
(49.3%, 301 out of 611) were significantly modulated by the interbat
distance, showing enhancement, suppression or both (see Fig. 3aand
Extended Data Fig. 11a for examples and Fig. 3b for the population).
Interestingly, different place fields of the same neuron could exhibit
different distance tuning (Fig. 3a (cell 331) and Extended Data Fig. 11a
(cell 287)); we return to this issue below. Overall, place cells encoded
the position of the bat when flying alone but, during cross-overs, they
conjunctively encoded distance by position, and then switched back
to their position coding after the two bats passed each other (Fig. 3a).
Asthebats flew very fast, these switches between different representa-
tions were extremely fast—as fast as100-200 ms (Fig. 3c and Extended
DataFig.1le).

Interestingly, significant distance tuning was also seen outside
of place fields, in areas defined as interfields (n =59 interfields
showed significant responses, out of 87 interfields valid for analy-
sis; Fig. 3d and Extended Data Fig. 12a (black arrows) and Methods).
These distance-tuned responses in interfield areas were very strong
compared with the low firing rate during solo flights (Extended Data
Fig.12d). This type of distance response might be explained by the
presence of subthreshold place fields®, which are enhanced by incom-
ing distance inputs and rendered suprathreshold, therefore creating
a distance-by-position response. Overall, the distance-tuned place
fields and interfields spanned a wide range of distances, with an
over-representation of shortinterbat distances (Fig. 3e and Extended
Data Figs. 11cand 12c).

We further examined the existence of significant 2D
distance-by-position modulation of firing rate irrespective of place
field definitions. We used cluster analysis (Methods) and identified 2D
patches’ in the 2D distance-by-position firing-rate maps, which were
significantly enhanced or suppressed relative to solo (see Fig. 3f for
examples and Extended Data Fig. 12f for the population; 9.7% of the
significant patches occurred outside of place fields; Fig. 3f (cell 314)
and Extended DataFig.12e). When considering collectively cellswith2D
distance modulation (neurons with significant patches, or significant
tuning within-field or interfield; Fig. 3g (purple ellipse)) and cells with
1D distance modulation (Fig. 3g (pink ellipse)), the majority of pyrami-
dal cells in CAl were significantly modulated by the interbat distance
during cross-overs (55.4%, n = 384/693 cells x directions; Fig. 3g (thick
blackline)). The existence of 2D distance-by-position patches rules out
hypothesis 2—which suggested a switch between pure position coding
and pure distance coding—because both signals were conjunctively
encoded during cross-overs. Infact, there are two versions of hypothesis
2—(1) separate populations of neurons encode position and distance,
or (2) single neurons switch between purely representing position and
purely representing distance—and our results ruled out both options.
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a, Examples of three neurons. For each cell, the middle and right plots are as
describedinFig.2a, and theleft plot shows the 1D distance tuning curves within
different place fields (colours correspond to different place fields, marked

by vertical coloured lines on the left of the centre plot). Place fields here and
elsewhere were defined on the basis of solo data. Shading shows cross-over
shuffles; horizontal green and brown lines show bins with significant
enhancementand suppression, respectively. b, The percentages of different
types of distance modulation within place fields for neurons with different
numbers of place fields. Compound modulationindicates tuning with both
significant enhancementand suppression (for example, cell 234 (blue) ina).

¢, Thedistribution of neuronal switch times of the distance tuning. Top, therise
time (dark green) and fall time (light green; stacked) for place fields with
significantly enhanced distance tuning curves.n =143. Bottom, the fall time
(dark brown) and rise time (light brown) for place fields with significantly
suppressed distance tuning curves.n=62.Only asubset of the fields was valid

Two remaining hypotheses may underlie the results presented so
far: hypotheses 3 and 4. Hypothesis 3 suggests multiplexing of posi-
tion and distance information by the neurons—that is, the neurons

for analysis here (Methods). d, Examples of two neurons with significant
enhancementoutside their place fields (within aninterfield), plotted as
describedina. The vertical lines on the left of the centre panel mark place fields
(black) andinterfields (peach). Theblack arrowsindicate spikes contributing
todistance tuning within the interfield; note that there were barely any spikes
inthe same position during solo flights (see the solo raster ontheright).e,
Population summary: distance bins that were significantly enhanced (green) or
suppressed (brown) within place fields (n = 301 fields) and interfields (n = 59)
sorted by distance-tuning peak.f, 2D distance by position tuning: patch
analysis. Examples of cells with significant 2D patches are plotted as described
inFig.2awithout the raw data panels. The outlines show significant 2D patches
(enhancement (green); suppression (brown)). The vertical black lines show
placefields. g, Summary of different functional classes of pyramidal cells
(numbers denote cells x directions). Place cells are shownin grey. The thick
black curve encompasses the total number of distance-modulated cells
(n=384,55.4% of all pyramidal cells).

exhibit 2D distance-by-position tuning, and are continuously ready
to process both of these incominginformation streams. Hypothesis 4
suggests that individual hippocampal neurons exhibit switching from
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Fig.4|Simultaneous decoding of interbat distance and position. a-d,
Change of position tuning during cross-overs. a, The average Pearson
correlation between position tuning during solo and during cross-over flights,
computed in10-mdistance bins (Methods). Dataare mean + s.e.m. (pink).
n=613placecells x directions. Note the correlations decreased whenbats
approached each other, indicatingachange in position tuning. The grey curve
was computed as described for the pink curve, using solo projected on
cross-over shuffles. b, Spatialinformation (mean + s.e.m.; n=613 place

cells x directions) for the position-tuning curves computed during cross-over
flights (pink), and for solo projected on cross-over shuffles (grey). ¢, Position
decodingerrorasafunctionof distance during cross-over (pink; mean +s.e.m.;
n=16sessions) and chance level (grey). Note the increased decoding error at
shortdistances.d, Firing rate (normalized to the peak of each cell) asafunction
of distance during cross-over for all place cells. Dataare mean £ s.e.m.n = 613
place cells x directions. e,f, Simultaneous decoding of the interbat distance
and position during cross-over flights. e, Examples of two flights (columns).
Top, real position (black) and decoded position (blue) versus time. Bottom, real

position coding during navigation to conjunctive coding of distance
by position during collision-avoidance behaviour. We believe that
hypothesis 4, that is, switching, is more probable because we found
that (1) during cross-overs, the position tuning changed significantly
compared with solo flight (Fig. 4a), accompanied by asmall but signifi-
cantdecrease in spatial information (Fig. 4b); furthermore, there was
asubstantial increase in the position decoding error at short interbat
distances, when we used the solo-based tuning for decoding (Fig. 4c).
Importantly, the changes in the position tuning (Fig. 4a-c) could not
beexplained by changesin thefiringrate because there was no promi-
nent change in the average firing rate during cross-overs (Fig. 4d). This
suggests that the distance information comes partially at the expense
of the position tuning, as expected from a switch. (2) The rise time of
neuronal responses during cross-over was independent of the flight
speed (Extended Data Fig. 6k). This is consistent with a neural switch
rather than multiplexing, because flight through a static multiplexed
tuning curve of distance by position should have yielded a faster rise
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and decoded interbat distance. f, Confusion matrices (pooled over all sessions
with >10 cells recorded simultaneously; n =16 sessions). Left, the probability of
decoded positions (y axis) for each real position (xaxis), normalized to the
uniform chance probability Peance = 1/nins (cOlour bar). Right, the same for the
interbat distance. The diagonal structure in these matricesindicatesaccurate
and unbiased decoding.g,h, The decodingerror of interbat distance for
different click-rate quartiles (q1-q4, quartiles of low click rate to high click rate)
forone example session (g) (n=146,n=134,n=146 and n=151decoding time
windows for q1-g4) or pooled over all nine sessions that had audio recordings
and >10cells (h) (n=998,n=1,051,n=1,074and n=1,063 decoding time
windows for q1-q4). Note that the decoding error decreased as the click rate
increased (q4, maximal clickrate, thatis, maximal attention; clickrateis a
proxy of attention). Data are mean + s.e.m. Statistical analysis was performed
using analysis of variance with post hoc correction for multiple comparisons:
*P<0.05,**P<0.01,***P<0.001, ***P< 0.0001; no asterisks, not significant.
See Extended Data Fig.13c for the exact Pvalues, violin plots and Kruskal-
Wallis tests.

timeatahigher flight speed, which we did not observe (Extended Data
Fig. 6k; t-test: t = 0.84, P= 0.41;n =120 neurons). By contrast, for aneu-
ronal switch, we expect that the switch time will have a fixed duration
irrespective of velocity, consistent with our results. (3) The neuronal
modulation was extremely rapid (Fig. 3c and Extended Data Fig. 11e),
consistent with aneuronal switch. (4) Most neurons responded in sync
at similar distances (Fig. 2b—-d), and this was particularly prominent
in each animal separately (Extended Data Fig. 4a). (5) These highly
visual bats probably see each other from much greater distances than
20 m (refs. %), and yet they exhibited a substantial behavioural and
attentional switch at a distance of —20 m (Fig. 1d-f), and the neurons
mostly started responding at —20 m (Fig. 2d), which seems to be more
consistent with aswitch, or gating of neuronal coding. (6) Hippocampal
neurons did not always encode distance-by-positioninformation; dur-
ing tracking, the distance coding was almost absent (Extended Data
Fig.9). Thisisinconsistent with multiplexing of information, and more
consistent with neuronal switching that is based on behavioural and
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pairs; theinclusion criteriaare described in the Methods), or place fields of
different simultaneously recorded cells (grey, cell shuffling; n = 2,479 pairs).

¢, Pearson correlations between the 1D distance tuning curves of pairs of place
fields of the same cell (left) or of simultaneously recorded different cells (right),
plotted versus the position difference between the place-field peaks (Pearson
correlations of the scatters areindicated). d, Pearson correlationsbetween the
1D distance tuning curves of pairs of place fields of the same cell (y axis) and the
contrastindex of echolocation click rate during cross-over within these pairs of
place fields (xaxis; contrastindex = (CRye1q; = CRfieid2) / (CRfieiq1 + CRieia2), Where
CRistheclickrate).n =79 pairs of place fields recorded with audio. e-g, SVD
analysis shows non-separable distance-by-position coding. e, Example neurons
with varying degrees of non-separability. Top, 2D firing rate map of position
(yaxis) by interbat distance (xaxis), cropped and completed for the SVD analysis
(Methods); Aand @ (non-separability indices) are indicated: higher values
denote non-separable cells; neurons are sorted by A. Bottom, histograms of
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Cell96isseparable (two place fields show same distance tuning), the other
five cells aresignificantly non-separable (different distance modulations at
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the Methods). Grey, non-significant cells (n =189 cells x directions). Red,
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functional advantage of non-separability: theoretical analysis of distance
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colour-coded) and catastrophic decodingerror (right) as afunction of the
number of neurons used for decoding and the non-separability index, A.
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attentional demands. However, in contrast to the switching notion,
neurons also exhibited a diversity of preferred distances, consistent
with multiplexing of information rather than with a network-level
switch. Thus, the data are partially consistent with both hypothesis 3
(multiplexing) and hypothesis 4 (neural switching).

Next, we examined whether the distance-by-position representa-
tion enables decoding simultaneously the interbat distance and the
position of the bat during cross-overs. We were able to simultaneously
decode both variables using relatively small cell numbers (Fig. 4e,f
and Extended Data Fig. 13; n =10-22 simultaneously recorded cells;
Methods). The interbat distance was decoded above chance at all
+40 mdistances (Fig. 4f (right) and Extended Data Fig.13b), although
decoding was better at shortinterbat distances of +£20 m. Interestingly,
when dividing the cross-over data to attention levels on the basis of
the bat’s echolocation click rate, we found that the distance decod-
ingerror decreased as the click rate increased, that is, as the attention
increased (Fig.4g,h and Extended DataFig.13c,d). This suggests that, on
atrial-by-trial basis, hippocampal neurons encode distance information
more precisely when the recorded batis more attentive to the other bat.

Coding of distance by position is non-separable

We next examined in more detail the nature of the conjunctive 2D
distance-by-position coding. In many place cells, different place fields
of the same neuron were modulated differently by the interbat distance
(Figs.3a(cell331) and 5a).Indeed, over the population of place cells, the
distance-tuning correlations between place fields of the same neuron
were widely distributed around zero (Fig. 5b (pink)), and were only mar-
ginally different from the across-cell shuffle distribution (Fig. 5b (grey);
there was a slight over-representation of cells with high correlations;
Kolmogorov-Smirnov test, P=0.016). Consistent with this, the cor-
relation of distance tuning between pairs of place fields was independ-
ent of the difference in their positions along the tunnel (Fig. 5c (left);
Pearsonr=-0.08, P=0.31). Thislack of correlation between different
fields could not be explained by differences in behaviour along the
tunnel because (1) both echolocation profiles and flight velocity were
nearly constant along the tunnel (Fig. 1f and Extended Data Fig. 6¢); (2)
there was no correlation between the difference (contrastindex) of the
echolocation click rate within pairs of place fields of the same neuron,
and the distance-tuning correlations of these fields (Fig. 5d); and (3)
simultaneously recorded neurons often showed very different distance
tuning at the same position (Fig. 5c (right); note the wide distribution of
correlations for small position difference between fields), despite the
same underlying behaviour. Taken together, theseresults indicate that
different place fields of the same neuron exhibited almostindependent
distance tuning, suggesting a non-separable 2D distance-by-position
coding—the 2D coding could not be described by a multiplication of the
two 1D marginals, that is, by a multiplication of the tuning curves for
distance and for position. This finding may imply modularity, whereby
different distance computations are performed at different place fields.

To further characterize the non-separability of the 2D
distance-by-position coding of CAl neurons, we performed a singu-
lar value decomposition (SVD) analysis®* (Fig. 5e-g, Extended Data
Fig. 14 and Methods). This standard analysis enables us to determine
whether a 2D map is separable (Fig. 5e (cell 96)) or is more complex
(non-separable cells; Fig. 5e (five rightmost cells)). We quantified the
non-separability using two SVD indices (A1 and a, where higher values
indicate stronger non-separability; Methods), and compared it to shuf-
fles: this revealed that 27.9% of the pyramidal cells tuned to distance
were significantly non-separable (Fig. 5f). Dimensionality analysis
showed that some of the non-separable cells required more than four
dimensions to describe their 2D distance-by-position maps (Extended
DataFig. 14d,e; mean, 2.25 dimensions), highlighting the complexity
of their 2D tuning. This non-separability could not be explained by
spike-sorting quality, nor by the very small inhomogeneities in click
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rate or flight speed (details are provided in the legend of Extended
Data Fig. 14) (Fig. 1f and Extended Data Fig. 6¢). Moreover, we found
that place cells with a higher number of place fields were more likely
to have higher non-separability indices (Fig. 5g).

Although non-separable complex tuning has been found also in
other brain areas® *, it remained unclear whether such tuning offers
any functional advantage. A previous theoretical study showed that
conjunctive 2D representation of two variables is more efficient than
two separate 1D representations (by separate neuronal populations),
especially when fast computations are needed for the two variables
simultaneously®. However, that study did not examine specifically
whether a non-separable conjunctive 2D representation is useful. To
investigate the possible advantage of such non-separable codingin the
hippocampus, we simulated populations of place cells with the same
distance modulations but with different degrees of non-separability
(Extended DataFig.15a). We then decoded the interbat distance from
each population, and found that higher levels of non-separability led
tolower decodingerrors (Fig. Shand Extended Data Fig.15b,d,f). Fur-
thermore, increasing the non-separability of the cells was equivalent
toincreasing the population size—thatis, the same decodingerror can
be achieved with fewer neurons iftheir tuning is non-separable (Fig. 5i
and Extended DataFig. 15¢,e,g). This suggests that the non-separable
distance-by-position tuning yields a more efficient encoding of dis-
tance.

Discussion

Here we studied naturalistic behavioural switches between navigation
and collision avoidance in flying bats, and found three key results: (1)
more than half of the hippocampal place cells encoded conjunctively
distance-by-position information (Fig. 3)—switching very rapidly (as
fastas 100 ms) from a position representation to a distance-by-position
representation (Fig. 3c and Extended Data Fig. 11e). Crucially, these
rapid switches occurred at the level of single neurons. (2) The distance
tuning was modulated by the bat’s sonar-guided attention (Figs. 2e-g
and 4g,h and Extended Data Fig. 13¢,d). (3) Finally, we found that, for
many cells, the distance-by-position tuning was non-separable—an
individual neuron could exhibit different distance modulation at dif-
ferent positions along the tunnel; specifically, different place fields
of the same neuron exhibited very different distance tuning (Figs. 3a
and 5). This may suggest modularity of hippocampal processing across
different place fields. Simulations of atheoretical model showed that
such non-separable neuronal code leads to better encoding of distance
information (Fig. 5h,i). Our results are fundamentally distinct from
previous reports (for details, see the ‘Additional discussion’ section
inthe Methods).

We propose that the non-separable code could be formed by inde-
pendent position and distance inputs arriving to CAl (Extended Data
Fig. 16). Specifically, we previously proposed that the multiple place
fields of a single CAl neuron arise from different dendrites receiving
independent position inputs™ (Extended Data Fig. 16 (grey); inputs
from CA3 or medial entorhinal cortex). Here we speculate that there
are also independent distance inputs, with a variety of different dis-
tance modulation profiles, that arrive at CAl (for example, from the
lateral entorhinal cortex or from the subiculum through the medial
entorhinal cortex), as well as inputs that carry attention or context
signals (Extended Data Fig. 16). These converging streams are com-
bined in CAl, generating multiple place fields with different distance
modulations, similar to what we found experimentally. This model sug-
gestsakey computational role for dendrites ingenerating the complex
distance-by-position tuning observed in CAl.

Overall, our results suggest that, during anatural behavioural switch,
the same hippocampal neurons can switch between two different types
ofneural codes very rapidly and flexibly, reflecting the animal’s behav-
ioural needs. This dynamic view of hippocampal function calls for



future dynamic experiments designed to further elucidate how the
hippocampus supports flexible natural behaviours.
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Methods

Bats and behavioural set-up

Bats. Four adult male Egyptian fruit bats, Rousettus aegyptiacus, were
included in this study for electrophysiological recordings (weight,
160-175 g). No randomization or blinding was applied in this study.
Sample size was not predetermined; the number of animalsis standard
for studies in this research field. Information on the individual bats is
summarized in Extended Data Table 1. An additional four bats were
used for the behavioural assay as partners. All of the bats in this paper
were caught as adultsin the wild (inIsrael). All experimental procedures
were approved by the Institutional Animal Care and Use Committee of
the Weizmann Institute of Science.

Set-up. Bats flew in pairs (two bats together in each experiment) ina
long straight tunnel (135 m x 2.3 m x 2.35 m (length, width, height);
Fig.1a). This flight tunnel was part of a longer 200 m tunnel, and the
135 mstraight part was blocked by an opaque curtain. The bats flew be-
tween two landingballs that were located at the two ends of the tunnel,
atadistance of 125 mfrom each other. On these balls, the bats could rest
and receive food. The tunnel was uniformly illuminated (illuminance
level: 5 lux). To ensure that the bats were aware of their position, 10
unique landmarks were distributed randomly along the tunnel, and
were positioned at fixed locations across all of the experiments.

Training. The bats were initially pretrained for -2 weeks (15-20 min
per day) to fly alone between two landing balls in small-scale environ-
ments (either a flight room of ~6 x 5 m, or ashort ~6 m segment of the
flight tunnel), with the aim of getting used to handling by humans,
and learning to directly fly between the two landing balls. The bats
were thenintroduced individually to the long tunnel (135 m) with three
training aims: first, getting the bats used to the experimental set-up;
second, enhancing flight stamina; and third, training themto fly direct
flights between the landing balls without performing U-turns. Once
they reached good flight performance (which took around 1-2 weeks),
they were introduced to their partner and flew together in the tunnel
for about1week before surgery.

After training, the bats were implanted with a microdrive for elec-
trophysiological recordings in the dorsal hippocampal area CAl (see
below). Each experimental session started and ended with sleep ses-
sions (each sleep session lasting 5-10 min). For the sleep sessions, the
batwas placed alone inside asmall covered cage which was positioned
onthe floorina quiet locationinside the tunnel.

Behavioural paradigm. A pair of bats flew together in the tunnel,
performing direct flights between two landing balls. We considered
two different behavioural modes (Fig. 1a,b and Extended Data Fig. 1):
(1) Solo flights, in which one bat was flying alone and the other
bat was resting, or when the distance between the bats was >40 m.
(2) Cross-over flights, in which the two bats flew towards each other
with an interbat distance of within +40 m (for more details, see the
‘Extracting flights and dividing data to different behavioural modes’
section below). During cross-overs, the bats had to be attentive to avoid
collision with the other bat as this is a relatively narrow tunnel and
because the bats crossed each other at a very high combined relative
speed of around 14 ms™ (see Extended Data Table 1 for the speeds of
individual bats). Although collisionavoidanceis a very natural behav-
iour for bats, it was by no means trivial-we actually had a few collisions
or near-collisions between the bats during training, as well as during
the experiments themselves (Extended Data Fig. 2g), emphasizing that
the need to pay attention was not hypothetical.

The experimenters timed the bats’ take-offs from the two ballsat both
ends of the tunnel to create a nearly uniform coverage of cross-overs
along the tunnel, which was roughly randomly distributed over time
(Fig. 1c and Extended Data Fig. 1). The experimenters stood near to

the landing balls at the two ends of the tunnel, and did not enter the
central 125 m behavioural zone. The bats flew in total 13.14 + 3.50 km
persession (mean +s.d.; the distance per batis shownin Extended Data
Table 1); the behavioural session lasted around 1.5-2 h.

For one pair of bats, we had two additional behavioural modes
(recorded bat no. 30; Extended Data Table 1). (1) Tracking mode: the
two bats flew in the same direction with ashortinterbat distance (one
bat tracked the other with an interbat distance of less than +20 m;
Extended Data Fig. 9). (2) Obstacle-avoidance mode: in the middle of
the session, we introduced a stationary obstacle (vertical pole) inside
the tunnel, which the bats had to avoid colliding with. As we decided
to focus here on cross-over behaviours with other bats, we removed
epochs near to this stationary obstacle for those cells that showed
significant modulation by the obstacle (this resulted in the removal of
0.49% of the flight data for the cells recorded with obstacle).

In another bat pair, we conducted an additional sessionin which we
switched the partner bat. Inthefirst session, therecorded bat (bat no.
2299) was flying with his usual partner for a full session 0f1.5-2 h (ses-
siona), thenitrested~40-60 minand we thenran the experiment again
with an alternative partner for another ~1 h (session b). The recorded
bat was familiar with both the usual partner and the alternative part-
ner before surgery. As this was a very long and physically demanding
experiment fortherecorded bat (therecorded bat flew 21.85 + 2.07 km
perday inthese two sessions together (mean = s.d.), while carrying the
recording-devices onits head), we succeeded to run this two-session
experiment for only 3 days. A comparison of neural recordings from
these two sessions is shown in Extended Data Fig. 10.

The use of a long flight tunnel in our experiment was crucial for
several reasons: (1) in such a large-scale set-up, the bats fly very fast,
which enabled us to investigate hippocampal neural activity during
fastbehavioural switches. (2) As we knew that the bats respond to each
otheratadistance of approximately -20 m before cross-over (Fig.1d,e),
and as we wanted torecord also baseline activity before that (for com-
parison), this required defining alarge symmetric window of +40 m as
the cross-over flight, which necessitated a large-scale environment. (3)
Toexaminetheresponsetointerbat distanceirrespective of position,
we needed to disentangle distance from position in the experiment,
which required having cross-over events at different locations in the
tunnel (Fig. 1c and Extended Data Fig. 1). This required a long tunnel.
(4) Asin large-scale environments there are multiple place fields for
each place cell, it enabled us to test whether different place fields of
the same neuron exhibit different distance tuning (Fig. 5). This would
not have been possible in small environments, in which typically only
one place field is observed for each place cell*.

Animallocalization system

We tracked the position of the bats using wireless radio-frequency
localization tags (weight, 6.6 g, including battery; BeSpoon), which
received and transmitted signals to an array of 14 ground-based anten-
nas that were distributed around the tunnel. Aspherical estimation of
thetag’s distance fromeach antennawas computed on the basis of the
timeinterval between the signal transmission and arrival. The position
of the batin 3D was then estimated using the intersection of these
spheres from all of the antennas. This localization method yielded a
good precision of around 9 cmin the longitudinal and lateral axes of
the tunnel, but the vertical precision was poorer, and we therefore did
not use the height measurements for analysis. Each bat had his own tag
withauniqueID; the position of each bat was computed atasamplerate
of12.8 Hz or 16 Hz. Both tags were synchronized to the neural record-
ings using anon-periodic sequence of TTL pulses (precision of <1 ms).

Extracting flights and dividing data to different behavioural
modes

Alldatainthis study were analysed using MATLAB. Location data from
thelocalization system were processed as described inref. ™. Inbrief, we



firstremoved outliers (defined as data points that were far away (>2 m)
perpendicularly from the tunnel’s midline, or data with unreasonably
high speed (>20 ms™)). We then linearized the data by projecting the
valid positional data onto the long 1D axis of the tunnel. We then filled
short gaps where data were missing, as described in ref.*. Finally, the
positional data were upsampled to 100 Hz.

We analysed only flight epochs, and excluded data from take-offs and
landings: flight epochs were detected based on: (1) speed (>2 m s™),and
(2) distance from the landing balls (>3 m from the balls). Inthe casesin
which the bat performed a U-turn in the middle of the tunnel, we dis-
carded anextra3 mbefore and after the U-turn event (beyond the2 ms™
speed threshold) to avoid contamination by possible ‘U-turn coding’.

We further divided the data to distinct behavioural modes on the
basis of the localization data of the two bats and their flight direction:
(1) Soloflights: the recorded bat was flying while the other bat was rest-

ing, or both bats were flying and the interbat distance was >40 m. The

40 mthreshold was taken because bats are probably not attentive to

the other bat at large distances of >40 m (see the next paragraph),

and we therefore considered such large distances as if the bat was
flying alone. Shortsoloflights thatlasted less than 2 s (corresponding
to around 14 m) were discarded from the analysis.

(2) Cross-overs: the bats flew in opposite directions and passed each
other. The cross-over event was defined as the point of interbat
distance = 0, with the distance measured along the long axis of
the tunnel. As cross-overs are momentary events, we considered a
distance-window of +40 m around each cross-over event, which we
defined as a cross-over flight. The batsincreased their echolocation
rate at distances between —20 m and O m (Fig. 1d-f and Extended
DataFig. 2), which suggests that they are attending to the other bat
at these distances' ****; to enable the analysis of an extra baseline,
we considered alarger and symmetrical distance window of +40 m,
which enabled us to detect neuronal modulations and their return
to baseline activity. Cross-overs that occurred less than 8 m from
thelanding balls were excluded from the analysis to avoid effects of
landing and take-off (see the light grey vertical rectangles in Fig. 1c
and Extended DataFig.1b,e). Furthermore, we excluded cross-over
flights in which the two bats did not fly in opposite directions for
atleast 5 m before and 5 m after the cross-over event. Most of the
valid cross-over flights were long (median, 80 m, which is also the
maximum possible length of a cross-over flight, given our 40 m
analysis window); however, cross-over events that were close to land-
ing balls or U-turns resulted in cross-over flights that were shorter
than 80 m (mean cross-over flight length: 74.84 + 11.36 m (mean *
s.d.); minimal length 20.77 m).

(3) Tracking: the two bats flew in the same direction with an interbat
distance of less than+20 m. We further divided the trackingepochs to
flightsinwhich the recorded bat was following the other bat (interbat
distance between-20 mand 0 m) and when therecoded bat waslead-
ing (interbat distance between O m and 20 m). Tracking behaviour
was analysed only in bat no. 30, which was trained to perform many
tracking flights: these analyses are shown in Extended DataFig. 9.In
all of the other bats we had only a few or no tracking flights during
the session, and they were therefore not analysed.

Audio recording and click detection

Audio recording. In Egyptian fruit bats, echolocation consists of pairs
of very short ultrasonic clicks*®. To detect these clicks, we recorded
the audio signal using an on-board audio logger with an ultrasonic
microphone. As there is a limit to the weight that bats can carry, in
most experiments we could not record simultaneously the audio signal
(audio logger) together with the neuronal recordings (neural logger)
and position (positioning tag). Thus, in two bat pairs (recorded bat-
partner no.: 2336-2331and 2389-2387) we recorded the audio signal
separately insome of the days instead of recording neuronal data. For
bat 30, audio was recorded using a different audio-logger device and

therefore its click amplitude was not comparable with the other bats
and was not analysed in Extended Data Fig. 2c (the click rate from bat
30appearsonlyinExtended DataFig.9b). Inour last bat pair (recorded
bat-partner no.:2299-2331), anew miniature version of the datalogger
was developed, which enabled us to record simultaneously both the
neuronal activity and the audio signal. Together, behavioural analyses
ofthebats’ echolocation were performed onn = 6 bats (Extended Data
Figs.2cand 9b), and analyses combing simultaneously recorded neural
dataand echolocation datawere performed on one bat (bat no.2299;
Figs.2e-gand 4g,h and Extended Data Figs. 7 and 13c,d). For all of the
audio recordings, with all devices, audio signals were filtered online
(in hardware) between 4-40 kHz, and were recorded at a100 kHz
sample rate (this frequency range covers most of the energy of the
echolocation clicks of this bat species®).

Click detection. Detection of echolocation clicks emitted during flight
was performed offline as follows: we first further high-pass-filtered the
audiosignal at10 kHz, as the echolocation clicks of this species do not
contain energy below 10 kHz®. We then normalized the signal by its
mean absolute deviation (MAD) over the entire session—transforming
the amplitude to a SNR. We then used an amplitude threshold of 50
MADs (thatis, SNR = 50), which detected clicks reliably, together with
several time-domain criteria on the basis of known properties of the
sonar clicks of this bat species®: (1) duration of click of 30-2,500 ps; (2)
maximum rise time of 500 ps; and (3) minimum inter-click interval of
10 ms. We also used a frequency criterion, consisting of a minimum
energy ratio of 10 dB between a high-frequency band (18-40 kHz)
and alow-frequency band (5-12 kHz). As we recorded audio signals
from both bats, we could remove clicks originating from the other
bat by estimating their expected time-of-arrival to the recorded bat’s
microphone using the interbat distance (measured using the localiza-
tion system) divided by the speed of sound: this enabled us to discard
low-amplitude clicks (SNR = 50-200) emitted by the other bat, which
were detected on the recorded bat’s microphone at these estimated
timings +3 ms (Extended Data Fig. 2a). In the bat with simultaneous
audio and neural recordings, we also manually curated the detected
clicks to further improve the click detection (1.77% manually added
clicks, 0.01% removed clicks).

Surgery and neural recording techniques
Allof the surgical procedures were performed as described previously™.
In brief, after completion of training, bats were implanted with either a
4-tetrode microdrive (weight, 2.1g; Neuralynx), or a16-tetrode micro-
drive (weight, 3.4 g; modified from ref. *), loaded with tetrodes, with
each tetrode constructed from four strands of insulated wire (17.8 pm
diameter platinum-iridium wire). Tetrodes were gold-plated to reduce
the wireimpedance to 0.3 MQ (at1kHz). The microdrive was implanted
above the right dorsal hippocampus (3.0-3.6 mm lateral to the midline
and 5.8 mm anterior to the transverse sinus that runs between the pos-
terior part of the cortex and the cerebellum); the craniotomy was then
covered with aninert silicone elastomer (Kwik-Sil or Kwik-Cast). During
the implantation surgery, we used an injectable anaesthesia cocktail
composed of medetomidine (0.25 mg kg™), midazolam (2.5 mg kg™) and
fentanyl (0.025 mg kg™), and added supplementalinjections as needed,
based onthebat’sbreathingand heart-rate*. The microdrive was attached
totheskullwithbone screws, usingalayer of adhesive (Super-Bond C&B)
followed by dental acrylic. We attached the ground wire from the micro-
drive to abone-screw that touched the durain the skull’s frontal plate.
After surgery, the tetrodes were slowly lowered towards the CAl
pyramidallayer; positioning of tetrodes in the layer was provisionally
performed on the basis of the presence of high-frequency field oscil-
lations (ripples) and associated neuronal firing, and was later verified
histologically (Extended DataFig.3a). For each bat, one tetrode was left
inanelectrically quiet zone and served as areference, and the remain-
ing tetrodes served as recording probes.
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During recordings, awireless neural-recording device (neural-logger;
16-channels or 64-channels, Deuteron Technologies) was attached toa
connector onthe microdrive. Signals fromall channels were amplified
(x200) and bandpass filtered (1-7,000 Hz), and were then sampled
continuously at 31.25 or 32 kHz per channel, and stored on board the
neural-logger. During subsequent processing, the neural recording was
further high-pass filtered with a 600 Hz cut-off for spikes, creating a
spike bandwidth of 600-7,000 Hz, and then a voltage threshold was
used for extracting 1 ms spike waveforms.

Histology

Histology was performed as described previously™. Inbrief, at the end
of recordings, the bats were anaesthetized, and electrolytic lesions
(DC positive current of 30 pA, 15-s duration) were made to assistin the
precise reconstruction of tetrode positions. The bat was then givenan
overdose of sodium pentobarbital and, with tetrodes left in situ, was
perfused transcardially using 4% paraformaldehyde or 4.5% Histofix.
The brain was removed and thin coronal sections were cut at 30 pm
intervals. The sections were Nissl-stained with cresyl violet and were
photographed to determine the locations of tetrode tracks in the dor-
sal CAl (Extended Data Fig. 3a). Recording sites were all located in the
dorsal CAl (except for one tetrode from one bat, which was possibly
placedin CA2, that was alsoincluded in the dataset), and spanned the
entire extent of the proximo-distal axis of CAL.

Spike sorting

Spike-sorting procedures were similar to those described previously
In brief, spike waveforms were sorted manually using Plexon Offline
Sorter, on the basis of their relative amplitudes on different chan-
nels of each tetrode. Data from all the behavioural sessions and sleep
sessions from the same recording day were spike-sorted together.
Well-isolated clusters of spikes were manually selected, and a refrac-
tory period (<2 ms) in the interspike-interval histogram was verified.
Spike sorting was performed in consecutive time windows to allow for
drift correction of the spike clusters.

Intotal, werecorded 499 well-isolated CAl neurons from 4 bats. We
furtheranalysed only 430 neurons that were valid for analysis (see the
inclusion-criteria below). Out of the 430 valid neurons, we detected
389 putative pyramidal neurons (90.5% of the cells; based on average
firing rate <5 Hz during the entire recording session), and 41 putative
interneurons (9.5%; firing rate >5 Hz). As hippocampal place cells are
known to remap between movement directions in a linear track™*4
(Extended DataFig. 3g), we separated all analyses into flight directions
and considered each directionindependently. Cells x directions were
defined as valid for analysis on the basis of the following behavioural
and neuronal inclusion criteria: (1) 10 or more cross-overs per flight
direction; and (2) or (3), where: (2) aminimum of 50 spikes per direction
during solo flights; (3) aminimum of 30 spikes per direction during
cross-over flights. This resulted in 693 pyramidal cells x directions and
74 interneurons x directions that were valid for analysis in this paper.

13,14

Statistics

Unlessotherwise noted, for all the pairwise comparisons, we used two-tailed
(two-sided) statistical tests, with a probability threshold of P=0.05. All
correlations were based on a two-tailed Pearson’s correlation coefficient
(except for afew cases in which we used non-parametric Spearman cor-
relations, if the scatters were clearly non-Gaussian). We used two-sample
Kolmogorov-Smirnov tests to comparedistribution shapes. To determine
the significance of place tuning and of distance tuning, we compared the
real datawith shuffled data (see below). When plotting shuffle tuning curves
for neurons, we always plotted 5-95% of the shuffle tuning curves.

Position tuning, field detection and place cells classification
Position tuning. As explained above, we performed all analyses in this
Article separately for the two flight directions. Tuning curves for 1D

position (place tuning) were computed by counting the number of
spikes and the time spent in each spatial bin (0.5 m bins). Bins with a
time spent of <0.8 s were discarded from the analysis (corresponding
to around 11 flights passing through that bin). Spike-count maps and
time-spent maps were then smoothed (Gaussian kernel o0=3
bins =1.5m), and we then divided, bin by bin, the smoothed 1D spike-
count map by the smoothed 1D time-spent map. We computed the
spatial information (SI) as follows:SI Sl;'its = Zipi(%)logz(%),where
r;isthefiringrate of the cellin the ith bin, p;is the probability of the bat
tobeinthisbinandris the mean firing rate of the cell.

Place cell classification. Place cells were classified using data from
solo flights on the basis of the following inclusion criteria: (1) significant
spatial information compared to shuffle (>99% of the shuffles): to shuf-
fle the spike train, werigidly and circularly shifted in time the spikes of
each flight, using auniform random shift; the value of the shift differed
randomly between individual flights, so each shuffle consisted of a
unique set of temporal shifts across the set of flights. We performed
1,000 such shuffles. (2) Spatial information was >0.25 bits per spike.
(3) The cell emitted =50 spikes during solo flights. (4) The cell had at
least one significant place field, as described next.

Place field detection. Place fields were detected during solo flights
similarly to our previous study™: (1) First, we extracted local peaks in
thefiring rate map, with a peak rate of >0.5 Hz. (2) To remove small local
peaks ‘riding’ onalarge field, we searched for shallow ‘dips’, thatis, cases
inwhich the dip between two adjacent peaks was >50% of the firing rate
of the larger peak, and then disregarded the lower peak. (3) We next
defined the field width as the zone in which the firing rate was >20% of
the peak firing rate of that place field. (4) Field stability criterion: we
required at least five different laps with spikes to have occurred inside
the place field, or 20% of the laps with spikes—whichever is larger.
(5) Field significance criterion: to capture clear distinct fields, we treat-
edaplacefield assignificant onlyif it had significant spatial information
initslocal area, near the place field. To quantify this, we focused on the
local areasurrounding the place field (the width of the field itself plus
50% of the field’s width in each direction), and calculated the spatial
information in this local area for the real spikes, and also for 1,000
shuffles (same rigid shuffling of spikes as above). We considered the
field to be significant only if it had spatial information of >95% of the
shufflesin the samelocal area.

1D distance tuning and classification of 1D distance cells
Distance tuning. Tuning curves for the 1D distance between the bats
were computed by counting the number of spikes in each distance bin
(2 mbins), and dividing it by the time spentineach bin. Bins witha time
spent of <0.4 swere discarded from the analysis. The tuning curves were
nextsmoothed (rectangular window of 3 bins). Note that the 1D interbat
distance along the tunnel axis was highly correlated with the Euclidean
distance between the bats and with the time to cross-over (Extended
DataFig. 4d-g; mean Pearson correlation: r=0.99999 and r= 0.9987,
respectively), so any of these variables could be used to analyse the
data; for consistency with the 1D position coding, we focused on the
1D interbat distance along the tunnel.

Shuffles for distance tuning. For classifying neurons as 1D distance
cells, we computed two types of shuffles, and required the neuron to
be significant according to both types of shuffles: (1) cross-over data
shuffle: this shuffle was aimed to test whether during cross-overs the
neuron showed enhanced or suppressed distance responses relative to
the cross-over data. We performed 10,000 rigid spike shuffles for the
flight data, as we did for the place cell classification above, but here used
the data from the cross-over flights. (2) Solo projected on cross-over
shuffle: owing to the prominent position coding in the hippocampus,
this shuffle was aimed to test whether during cross-overs the neuron



showed enhanced or suppressed distance-responses relative to the
expected response fromthe solo data. We performed 10,000 shuffles
inwhichwe projected the solo spikes onto the cross-over behavioural
dataasfollows (illustrated in Extended Data Fig. 5a). For each cross-over
flight, we pooled all of the solo flights that occurred within the same
position in the tunnel and, for each shuffle, we randomly picked one
solo flight out of this pool (Extended Data Fig. 5a (i and ii)). We then
computed what should be the projected interbat distance of each spike
thatoccurred duringthis solo flight on the basis of the cross-over flight
data (using linear interpolation; Extended Data Fig. 5a (ii andii)). This
yielded 2D distance by position shuffle datasets of spikes that occurred
during solo, projected onto the cross-over behaviour (Extended Data
Fig. 5a (iv)). This entire process was repeated 10,000 times, creating
nearly unique shuffle datasets (across cells, 99.99% of shuffles were
based onunique sets of solo flights). This shuffle conserves the spiking
statistics of the neuron and its position tuning. This shuffling procedure
reflects the null hypothesis that the expected firing pattern of the neu-
ronisdrivenonly by the position along the tunnel, without exhibiting
any tuning tointerbat distance.

Significant bins. To detect significant 1D distance modulation of firing
rate, we looked for bins along the interbat distance axis, which exhib-
ited significantly high or significantly low firing rate compared with
both types of shuffles. This was done as follows: we first smoothed with
athree-bin rectangular window the real distance tuning curve and all
ofthe shuffled tuning curves (this smoothing was performed to avoid
detection oftransientincrease or decreasein firing rate). We next com-
puted the percentile of each bin from the real distance tuning curve
compared with the shuffles’ values for the same bin. To correct for
multiple comparisons for the number of bins, we computed the average
response width, and required the following corrected critical-value:
———— % Nyinsinwidete Where: a = 5% (the standard critical-value signifi-
céoﬁé:ecrlterlon before correction (95% shuffling)); Nocaipins = 40 (total
number of 2 m bins of distance within the +40 m distance range); and
Noinsinwiaen = 4 (average response width = 4 bins = 8 m). This resulted in
Aeorrected = 0.5% (two-sided), that is, we considered the firing rate in this
bin to be significant if it was above the 99.5% percentile or below the
0.5% percentile of the shuffles. To prevent edge effects, we removed
significant bins from the edges of the £40 m range (that is, if the first
or last bin were significant). Moreover, in each of the shuffles, we con-
sidered bins to be significant only if they had at least one additional
significant neighbouring bin (that is, we required >2 adjacent signifi-
cantbins; single significant bins were discarded). Finally, we considered
abintobesignificant only if it was significant at the 99.5% level accord-
ing toboth types of shuffles (cross-over shuffle, and solo projected on
cross-over shuffle). This requirement to be significant according to
two fundamentally different shuffling procedures ensured that only
robust distance tuning would be detected.

Defining 1D distance cells. 1D distance cells (cells with significant
1D distance tuning) were defined by analysing the 1D distance tuning,
using the following criteria: (1) the 1D tuning had significant distance
bins above or below both types of shuffles (as described above). (2) The
cell emitted =30 spikes during cross-overs in that flight-direction.
(3) Stability of the tuning curve: Pearson correlation of r > 0.3 between
distance tuning curves computed in even flights and odd flights. We
note that most of the cells with significant 1D distance tuning were
not purely tuned only to distance, but rather had complex 2D tuning
to distance by position (Figs.3a,gand5).

Control for movement-related responses

During cross-overs, bats tended to slightly lower their speed and slightly
deviate laterally to avoid colliding with each other (Extended Data
Fig. 6b,c (speed and velocity Y, respectively)). To test whether the dis-
tance modulation of the neuronsis genuine and is not due to neuronal

responses to these movements, we reasoned that we can compute the
tuning to these movement variables during solo flights to disentangle
it from the cross-over effects: if a cell is modulated by a movement
variable, we expect to see the same movement-related modulation
both during solo and during cross-over flights. We considered three
movement-related variables that could potentially modulate the firing
rate of the cells—we focused on speed and velocity because previous
studies have shown that some hippocampal neurons are sensitive to
movement speed or to manoeuvring**#: (1) speed: S=./(V, 2+ V,?)
where V,isthe velocity along the long axis of the tunnel, X, and V,isthe
velocity along the lateral axis of the tunnel, Y (see Extended Data Fig. 6a
foranillustration of the X,Y axes); (2) V,, velocity inthe Y axis, reflecting
deviation (manoeuvring) in the lateral axis of the tunnel; and (3) S,,
speedinthe Yaxis (absolute Yvelocity, irrespective of the direction of
the deviation). The positional resolution along the Zaxis was not high
enough to analyse behavioural modulations in Z, but observations
during the experiment indicated that the deviations in Zwere small.

For each movement variable, we built solo tuning curves and
cross-over tuning curves (Extended Data Fig. 6d-f). To compare
between solo and cross-over, we limited the data from which we built
both tuning curves to include the same range of flight speeds in both
cases; the range was set to 5-95% of the flight speeds during cross-overs,
computed separately for each bat. We computed the tuning curves
as described above (see the ‘1D distance tuning and classification of
1D distance cells’ section), using bin sizes of 0.2 m s™ for velocity ¥
and speed and 0.1 m s for speed Y. To evaluate the significance, we
used 10,000 circular shuffles of the spikes as follows: we concatenated
all of the in-flight spikes across all of the flights (separately for solo
and cross-over flights), and we then rigidly shifted the times of all of
the spikes by arandom time interval in a circular manner (with the
end of the session wrapped to the beginning). For each shuffle, we
computed velocity tuning and speed tuning as for the real data. We
then fitted a linear function to these tuning curves for both the solo
and cross-over data, as well as for their shuffles, as velocity and speed
modulations were found to be approximately linear in the hippocampal
formation**8, We defined cells as significantly modulated by velocity
or speed if the slope of the linear fit was >97.5% percentile or <2.5%
percentile of those seen in the shuffles (with significance assessed
separately for the solo and for the cross-over conditions; Extended Data
Fig. 6g-i). In total, we performed 6 linear fits = 3 movement variables
(S, V, S)) x 2 behavioural modes (solo, cross-overs). We considered a
cell to be movement-modulated by one of the variables if it was sig-
nificantly modulated by this movement variable both in solo and in
cross-over, and had the same slope direction of the tuning during both
solo and cross-over. The results of these control analyses are shown
and further elaborated in Extended Data Fig. 6 - which ruled out any
major contribution by velocity or speed.

Control for sensory or motor responses to the echolocation
clicks

To exclude the possibility that the observed distance tuning during
cross-over is directly linked to the echolocation clicks—that s, reflects
adirectsensory neuronal response to the clicks themselves (auditory
responses) or amotor neuronal activity before individual clicks—we
used the solo flights as a control. As during the solo flights bats also
emitecholocation clicks (albeit at alower rate; Fig. 1e (black error bar)
and Extended Data Fig. 2b), we tested whether the neurons show any
auditory/motor response to the clicks when appearing outside of the
context of cross-overs, and examined whether such responses could
explain the distance tuning observed during cross-overs. To this end,
we computed click-triggered responses during solo flights at £200 ms
around each click, using 10 msbins, and averaged the responses across
clicks (Extended Data Fig.7a (bottom, black lines)). We compared each
click-triggered response to 10,000 shuffles (rigid circular shuffling
of spikes within the +200 ms time window around each click, similar
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to the shuffling described above for place tuning), and considered a
bin to be significant if it was above the 99.5% percentile or below the
0.5% percentile of the shuffles (corrected for multiple comparisons
as described above, assuming 4 bins = 40 ms for the minimal dura-
tion of sensory/motor response). To exclude transient and unreliable
responses, we considered only modulations that were significant in
two or more consecutive bins. This analysis was performed on all of the
1D distance cells that were recorded simultaneously with audio (n =41
cells x directions). The results of these control analyses are shown in
Extended DataFig.7a-d and they strongly argue against the possibility
that the 1D distance tuning could be explained by sensory or motor
responses to clicks.

Modulation of the 1D distance tuning curve by attention
Totest how attention modulates the distance tuning curves and firing
rates of the neurons during cross-overs, we used the increase in echo-
location click rate as an index of attention' ****, For 1D distance cells
that were recorded simultaneously with audio (which was performedin
onebat), we divided the cross-over flights into two equally sized groups
according to the click rate (median bisection). This yielded two sets
of flights: flights with high click rate versus flights with low click rate
(reflecting high versus low attention). We then computed the tuning
curves separately for these two sets of flights (as done above for the
full 1D tuning curves). The separation to flights with high and low click
rates was based on the mean click rate in a distance window between-15
to 0 m (this distance window matches the typical region in which the
click rate was increased during cross-overs; Fig.1e and Extended Data
Fig. 2c). Click-rate tuning curves were computed for each individual
cross-over flight (using a bin size of 2 m and smoothing by a Gaussian
kernel with g =1.5bins). We included in this analysis only valid flights
that met the following criteria: (1) the flight had enough continuous
distance data (from -25 to 5 m with no gaps; 4.4% of the flights were
excluded); (2) the peak click rate was greater than 10 Hz—this threshold
was used to exclude rare atypical cases of very sparse use of echoloca-
tion (on average 2.56 flights per direction per session were excluded,
5.6% of the flights in total); and (3) more than twofold change in sonar
click rate during cross-over relative to the preceding minimum—here
we removed atypical flights with almost no modulation of sonar click
rate along the cross-over flight (this excluded 2.8% of the flights).
After applying these criteria for valid flights, we included in this
analysis only cells that had 20 or more valid cross-over flights, and 30
or more spikes in high-attention trials or low-attention trials (similar
to the requirement of 30 spikes in the main analysis of 1D distance
tuning). This left for analysis n = 37 cells x directions out of the n =41
total 1D distance cells that were recorded simultaneously with audio.
Toexaminethedifferencebetweenthetuningcurvesinhigh-attention
versus low-attention flights, we focused on awindow of £10 maround
the peakfiringrate of each cell (peak firing rate of the 1D distance tuning
curve using all cross-over flights), and computed within this window
two quantities: (1) the rate difference of the peak firing rates between
the high-attention tuning curve and the low-attention tuning-curve,
and (2) the rate difference of the mean firing rates between the two
tuning curves. For significance, we divided randomly 10,000 times
the cross-over flights into two groups, and computed the same two
quantities, resulting in two shuffle distributions (Extended Data Fig. 7e
(bottom row)). Cells that were higher than the 95th percentile in one
of these shuffle distributions were defined as significantly attention
modulated (n =11 cells x directions, comprising 29.7% of the cells in
this analysis; see Fig. 2e and Extended Data Fig. 7e for examples and
Fig. 2f,g for the population).

Testing for position representation of the other bat

To test whether during cross-overs there is representation of the posi-
tion of the other bat in world coordinates (that is, representation of
the other bat’s allocentric position)—as opposed to representation of

the distance from the other bat—we computed the corresponding 1D
tuning curve: the firing rate of the neuron as a function of the position
of'the other bat (using the same procedure as described above for the
tuning curve for self position). We defined a cell to be significantly
tuned for position of the other bat if it passed the following criteria:
(1) criteriaidentical to those used for determining position tuning for
self place cells: (i) significant spatial information (99% percentile) com-
pared to shuffles; (ii) spatial information was >0.25 bits per spike. (2)
Criteriaidentical to those used for determining distance tuning during
cross-over, as here the analysis was done during cross-over flights: (i)
the cellemitted >30 spikes during cross-over flights; (ii) stability of the
tuning-curve over even and odd flights: Pearson correlation of r > 0.3
betweenthese tuning curves. Theresults of these control analyses are
shown and further elaborated in Extended Data Fig. 8, ruling out the
possibility that, in this particular experiment, the bat’s hippocampal
CAlcellsrepresented the position of the other bat; rather, the neurons
represented the distance toit.

Distance tuning within place fields and between place fields
(withininterfields)

Computation ofthe 1D distance tuning curves within place fields (Fig. 3a
and Extended DataFig.11a) was performed on the cross-over data, using
only segments of behavioural data and neuronal data that occurred
within the place field (the place field was defined during solo-flights,
as described above). For computing the 1D distance tuning curves in
interfield areas (between place fields), the interfield area was defined
as follows: after we expanded each place field by 50% of its width to
both sides (thus adding extra margins), the remaining areas between
these expansions were defined asinterfields. These extramargins were
removed to prevent leakage of spikes from the adjacent place fields
into the interfield. We then computed the 1D distance tuning curves
for data within fields/interfields in the same way as it was computed
for the entire cross-over data (described above), with small modifica-
tions to account for the smaller amount of data available within fields/
interfields: (1) we used larger distance bins (2.6667 m; 30 bins); and (2)
we discarded binswithlessthan 0.1stime spent. Toinclude place fields
and interfields with good coverage and reliable spiking, we analysed
only tuning curves with at least 30 spikes (as in the 1D tuning curve)
and for which at least 80% of the distance bins were valid (above the
minimal time spent of 0.1 s). Note that most interfields had, by defini-
tion, a small number of spikes, and their tuning could therefore not
be analysed reliably (n = 87 interfields were valid for analysis). The
resulting 1D tuning curves were based on 20.87 + 6.55 flights per place
fieldand 29.41 +12.38 flights per interfield (mean + s.d., across all place
fields orinterfields).

Significant bins. To identify significant bins in these tuning curves
(within fields/interfields), we performed a similar analysis as described
above for the full cross-over data, but with slight modifications to ac-
count for the smaller amount of data. After finding the significant bins
inboth types of shuffles as described above (cross-over rigid shuffles
and solo projected on cross-over shuffles), we removed significant
binsatthe edges of the distance range. We then considered abintobe
significant if it was significant in one type of shuffle (above the 99.5%
percentile or below the 0.5% percentile of the shuffles, that is, corrected
for multiple comparisons as described above), and was also above the
95% percentile or below the 5% percentile of the other type of shuffle.
Werequired that the number of flights that contributed to asignificant
distance field (the consecutive set of significant bins) was at least two
flights. The number of flights differed between narrow and wide fields;
across the population, the mean number of flights per distance field
was 8.13+4.12 (mean £ s.d.).

Switch time. To quantify how rapidly place cells can change their
representation from representing position to representing distance



by position (Fig. 3c and Extended Data Fig. 11e), we analysed switch
times forindividual place fields. We first recomputed the tuning curve
withinthe placefieldin terms of time to cross-over rather thaninterbat
distance (using the same number of bins). As time to cross-over and
interbat distance are highly correlated (Extended DataFig. 4d,e; Pear-
sonr=0.9987 + 0.0009 (mean *s.d.)), the tuning curves were highly
similar to each other. We next created a shuffle distribution using the
cross-over rigid shuffling (as above), and computed the median of these
shuffles per time bin. We upsampled (x10) both the real data and the
median shuffle tuning curves to get finer temporal resolution. We next
computed the time difference between the time point at which the real
data crossed the median of the shuffle, and the time point of the first
significant bin, and defined this time difference as the rise time for
enhancement and fall time for suppression (Fig. 3c (dark green in the
top plotand dark brownin the bottom plot)). Similarly, we defined the
time difference between the time point of the last significant bin and
the time point at which the data subsequently crossed the median of
the shuffle as the fall time for enhancement and rise time for suppres-
sion (Fig. 3c (light green at the top and light brown at the bottom; see
the arrows)). We computed these switch times only for tuning-curves
with one significant enhancement or one significant suppression (not
both), and only when the modulation crossed the median shuffle on
bothsides, resultinginn =204 fields (out of atotal of n = 303 significant
fields), of which n =143 were enhancement tuning curves and n = 61
were suppression tuning curves.

Distance-tuning correlations between place fields

InFig.5b,c (correlations of distance tunings between place fields), we
excluded pairs of tuning curvesif both place fields did not have signifi-
cantdistance modulations to avoid correlating small random noises, or
ifthe position gap between the place fields was smaller than half their
average width to avoid ‘leaking’ of spikes from one field to the other.

2D firing rate maps for distance by position, and patch analysis
Firing rate maps. 2D firing-rate maps for interbat distance by position
were computed by counting spikes and time spentin each 2D bin (bin
size: 3 x 3 m), which resulted in two 2D maps—a spike-count map and
atime-spent map. Bins with time spent <0.2 swere discarded from the
analysis, unless an adjacent bin was visited. We smoothed the spike map
andthe time-spent map witha2D Gaussian kernel (0 =1.5bins =4.5m).
The 2D firing rate map was then computed by dividing bin by bin the
smoothed spike-count map by the smoothed time-spent map. Note
that identical binning and smoothing were also used for plotting 2D
distance-by-position maps of click rate and velocity (Fig. 1f and Ex-
tended Data Figs. 2d and 6b,c).

Patch analysis. To find regionsin the 2D firing-rate maps for distance
by position that were significantly modulated (significant 2D patches;
Fig.3fand Extended DataFig.12e¢,f), we used cluster-based analysis***.
This method, which is widely used for analysing data from functional
magnetic resonance imaging and electroencephalography experi-
ments, searches for contiguous groups of significantly modulated
bins or pixels. First, we compared the firing rates in each bin of the real
2D map with the firing rates in the same bin in all 10,000 shuffle maps
(using solo projected on cross-over shuffling; see Extended Data Fig. 5¢
for examples of shuffle maps), and computed the Pvalue for each bin
onthebasis of its percentile compared with all the shuffle maps. Here
we used the solo projected on cross-over shuffle because it accounts
for the prominent position codingin the hippocampus, and it reflects
the null hypothesis of how aneuron would have responded ifit was only
place-tuned and was not modulated by the interbat distance (see above
for the description of this shuffling; Extended DataFig. 5a,c). Second,
neighbouring bins that passed a significance threshold of P> 0.995
were clustered together as enhancement clusters, and neighbour-
ing bins that passed a threshold of P < 0.005 were clustered together

as suppression clusters. For each cluster, we computed the surprise
values for each bin (surprise was defined as -log;,[P] for suppression
clustersand -log;,[1 - P]for enhancement clusters). We then summed
the surprise values over all of the bins in that cluster to get the cluster
score. We did this entire procedure (first and second step) both for the
data 2D map and for all 10,000 shuffle 2D maps (treating each shuffle
map as if it was a data map). Third and finally, we then compared the
cluster scores in the data 2D map with the distribution of the highest
cluster scorein each shuffle 2D map (separately for enhancementand
suppression). We considered clusters that were ranked above the 95%
percentile compared with the shuffle as significant 2D patches. We
then considered only 2D patches that passed additional two criteria,
both of which were aimed to accept only patches that were based on
enough behavioural-data: (1) at least 2 s of total flight time inside the
2D patch; and (2) on average atleast 0.15 s of flight time for each binin
the patch (3 x 3 m bins). Moreover, we used three spike-based criteria
for enhancement patches only (not for suppression patches)—these
criteriawere aimed to accept only enhancement patches that contained
enough spikes: (1) atleast 20 spikes inside the 2D patch, (2) average of at
least 0.5 spikes per bin, and (3) atleast 3 flights with spikesinside the 2D
patch. We performed this analysis on all of the pyramidal cells that had
apeak firing rate of >2 Hz in their 2D map (n = 607 cells x directions).
Applyingallthe above criteriaenabled us to conduct the analysis only
oncellswithreliable behavioural coverage and robust firing rates. Note
that the patches were generally quite localized along the distance axis
(the median distance patch width was 24.6 mfor enhancement patches
and 18.5 m for suppression patches, with the median taken over the
maximum distance width for each patch; the median over the average
width for each patch was 16.9 m for enhancement patches and 12.3 m
for suppression patches).

Defining 2D distance-by-position cells. A cell was defined as a sig-
nificant 2D distance-by-position cell if either: (1) it had significant
modulation of firing rate within a place field or interfield (see above;
Fig.3a,d and Extended DataFigs.11and 12a-d); or (2) ithad asignificant
patch within the 2D distance by position map (see above; Fig. 3f and
Extended Data Fig. 12e,f). These were the n =366 cells x directions
that were marked as cells with 2D distance by position tuningin Fig. 3g
(purpleellipse).

Decoding analysis
We simultaneously decoded the interbat distance and the position of
the bat during cross-overs (Fig.4e-h and Extended Data Fig.13) using
aBayesian maximum-likelihood decoder™*. Decoding was performed
for each flight direction separately. We performed leave-one-out
cross-validation, in which each cross-over flight served as test data,
while the remaining flights were used to build the 2D firing-rate map
for each cell (train data). We analysed only sessions with =10 simulta-
neously recorded cells (16 sessions; n=13.19 + 3.08 cells per session
(mean +s.d.); for the decoding analysis, we included all cells without
any exclusion criteria).

The decoded position and interbat distance at every moment were
those that maximized the log-likelihood function, assuming Poisson
firing, thatis, maximized:

N N
ACQ, x5 {n3) = 2 nlogltf,, , (xp, xp)1- T Zl o (0, %)

i=1 i=

+log[P(xp, xp)]

The term on the left denotes the log-likelihood of the bat being
locatedin aspecific combination of (distance, position) = (x,, x,) given
the observation of a vector of {n;} spikes in each of the N neurons. On
the right, the first term corresponds to a sum of the log of the spatial
tunings of all neurons (that s, Jop.i (xp, xp)), weighted by their activity
(ny) intheintegration window 7, that s, the time bin used for decoding
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(weused 7=1s, witha 250 ms overlap: arelatively long time window,
which was used due to the relatively small number of neurons). The
second term corresponds to a correction for unequal coverage of
the neuronal representation in different locations. The third term on
the right side corresponds to the prior for the decoding (P(x,,x5)),
which is needed due to the non-perfectly-uniform behaviour (time
spentinthe 2D distance by position space). The decoded positionand
distance coordinates were then taken as the combination that maxi-
mizes A(x,,x,/{n}), thatis, the maximum of the log-likelihood function.

InFig.4c, we used the same type of decoding, butinstead of using the
2D firing-rate map we used the 1D position tuning computed based on
thesoloflights to decode the position during cross-over flights (Fig. 4¢
(pink)). Chance error was estimated by computing the median differ-
ence between the actual (real) positions and 100 random positions,
whichwere sampled from the experimentally measured behaviour of
the animal, to account for non-homogeneous behaviour (Fig. 4c (grey)).

InFig.4a-d, we used al0 mdistance sliding-window (2 msteps), and
computed position tuning curves during cross-over flights separately
for each distance window. These were then used to compute correla-
tions with solo position tuning (Fig. 4a), spatial information (Fig. 4b)
and mean normalized firing rate (Fig. 4d).

SVD analysis

To quantify the non-separability of the 2D distance-by-position coding,
we performed a singular value decomposition (SVD) analysis on the 2D
distance by position firing-rate map, denoted here by the matrix M. This
isastandard analysis performed in neuroscience to assess the separa-
bility of 2D coding® **¢%2, In this analysis, we decompose the matrix M
(throughout this analysis, the matrix M was always mean-subtracted
before the SVD decomposition):

M=UxSx VT

Here Uand Vare matrices containing the singular vectors correspond-
ing to the position and distance axes, respectively, and S is a diagonal
matrix with non-negative singular values (s;in descending order); the
superscript Tdenotes matrix transpose. This analysis enabled us to test
whether the matrix M, namely the 2D distance by position firing-rate
map, iscompletely separable, whichmeans thatit equals the first column
vector in Umultiplied by the first columnvectorin Vxs, (see Extended
DataFig.14a (cell117), where the first dimension, that is, the multiplica-
tion of the first two vectors, is almost identical to the original matrix);
otherwise the matrix Mis non-separable and requires additional terms,
eachbeingaproductofvectorsfrom Uand Vscaled by the correspond-
ing s; (Extended Data Fig. 14a (cells 325 and 235)). We computed two
types of measures to quantify the non-separability, based on the singu-
lar values. These measures, Aand a, were: (1) Ais the exponential decay
fitted to the singular values: s;= a x e1. For separable cells, the decay
is fast, th:;lt is, Ais small, whereas, for non-separable cells, A is large. (2)
a=1- ﬁ the fraction of variation in M that is not captured by the
firstsingular values,. For separable cells the first singular valueislarge
relative to the subsequent singular values, and therefore « is close to
zero; by contrast, non-separable cells have larger values of a (ref. ).
Note that these two measures, A1 and a, are highly correlated among
themselves (Pearsonr=0.98, P=7.1x10"7, n=262 cells x directions).

AsSVD analysisrequires arectangular matrix M, and our 2D firing-rate
maps were non-rectangular (see the 2D distance by position mapsin
Fig.2a), we cropped our 2D map along the position axis (y) such thatin
eachrowwe will have atleast 80% valid distance bins (80% of the +40 m
range). We computed the 2D firing rate map again using only spikes and
behavioural datathat occurred within this cropped position area (this
croppingis the reason for the smaller y-range (positions) of the maps
in Fig. 5Se as compared to Fig. 2a). To create a full rectangular map as
SVD requires (thatis, tofill non-visited bins in the 2D map) we used the

followingiterative procedure to estimate the matrix entries while not
adding any excess non-separability: (1) we initially filled-in the empty
bins onthe basis of thelocal mean firing rate of the neighbouring bins;
this created a full matriX, Mg g iceration- (2) We next computed the SVD for
this new full matrix M iceracion, aNd changed the values of the original
empty bins to values computed from the first 10 singular values and
vectors, resulting in a new matrix, M ongiceration (USing a large number
of10 singular values ensured that this estimation procedure would not
restrict the map dimensionality). We then computed the sum of squared
differences between the current matrix Meong iceration aNd matrix
Mesiiceration- (3) We iteratively continued to change the values of these bins
by computing the SVD and building anew matrix M;, and then comput-
ingthe sum-of-squared-differences between the current matrix M;and
the previous matrix M,_,, until reaching convergence (sum of squared
difference smaller than 0.001). The final matrix used in this analysis
was referred to as My,,, which is rectangular and has no empty bins.

We conducted SVD analysis only on pyramidal cells with significant
distance modulationeitherin1D or 2D that met the following criteria.
Criteria on behavioural coverage: (1) the length of the position axis of
the cropped rectangle was >45 m. (2) The largest position gap between
adjacent cross-over flights was <10 m (that is, there were no large ‘holes’
in the behavioural coverage). (3) The number of cross-overs in the
cropped map was >10. Criteria on spiking: (4) the number of spikes
in the cropped map was >30. (5) The peak firing rate in the cropped
2D map was >2 Hz. Applying these criteria enabled us to conduct the
analysis only on cells with reliable behavioural coverage and robust
firing rates (n =262 cells x directions).

Toassess the significance of 1and a, we used as shuffles our 2D matri-
ces from the solo projected on cross-over shuffle (see above; and see
examples in Extended Data Fig. 5¢). These maps were cropped and
filled in the same way as the data map, and as by definition they exhibit
only position tuning, we multiplied each row of the 2D matrix by the
1D distance tuning of the cell (Extended Data Fig. 14c (bottom panelin
each shuffle); multiplied map). This results in matrices with the same
behavioural data, the same spike statistics and the same 1D distance
tuning asinthe real data, but these ‘multiplied maps’ are almost sepa-
rable, and any non-separability that we would measure in them must
therefore arise from non-uniform coverage of bat behaviour or from
noisy spiking. Thus, by comparing the 2D data maps to these shuf-
fles, we can test whether the detected non-separability in the cell’'s 2D
data map is genuine, or whether it originates from noisy spiking or
fromnon-homogenous behaviour. Cells were defined as significantly
non-separable cellsifboth their Aand a were above the 95% percentile
of the shuffle distribution, and their rounded projection dimension
was >1in the cross-validation test (see below).

Cross-validated SVD. We also performed a cross-validated SVD analy-
sis to assess the dimensionality of the matrix** (Extended Data Fig.14d).
Here we divided the bins in the matrix My, into train bins (90%) and
test bins (10%, which were randomly picked for each of the 1,000 it-
erations of the cross-validation). We first set the values of the 10% test
binstothe average value of the entire matrix M. We then used SVD to
reconstruct this matrix (90% real data, 10% set to the mean value) with
increasing cumulative dimensions (for example, cumulative dimension
2=U,x s x V,"+ U, x s, x V,7; xaxis in the bottom left panel of each cell
in Extended Data Fig. 14d). We iteratively changed the test bins using
the same method as described above for filling-in the empty bins, un-
til reaching convergence. We next computed (separately for the test
and the train bins) the mean squared error between the values of the
original bins and the values in the new reconstructed matrix using dif-
ferent cumulative dimensions. For the training bins, it is guaranteed
that the error decreases as we add more dimensions (that is, as we in-
crease the cumulative dimension). However, for the test bins, the error
will decrease only if the added dimension indeed describes the data;
thus, at some point, the error will start to increase when adding more



dimensions because the additional dimensions are over-fitted to the
training portion of the data, and therefore effectively add noise. We
therefore define the cumulative dimension with the minimal testerror
asthe meaningful dimension of the data (Extended Data Fig.14d (bot-
tom left panelin each cell): minimum of red curves). Finally, to remove
any non-separability that may result from the non-uniform behavioural
coverage, we carried out the same procedure also for the median map
of the solo projected on cross-over shuffles (Extended Data Fig. 14d
(right column foreach cell)). Then, to assess the real dimensionality of
our data, excluding the behavioural dimensionality, we computed the
projectiondimension: for each of the 2D matrices—the cross-over data
matrix and the solo-median matrix—we took only the meaningful vec-
torsfrom Uand V(all of the vectors until and including the meaningful
dimension); and projected the vectors of the solo median map out of
these datavectors. Thisresultsin a subspace thatis orthogonal to the
solo median map space and therefore does not contain the behavioural
dimensionality anymore:

Up = Udata - (Usolo X U!olo) X Udata
Vp: l/data_ (Vsolox l/Z-olo) x Vdata

where Uy, and V., are matrices containing the meaningful vectors
of the data, and U,,, and V,,,, are matrices containing the meaningful
vectors of the solo median map. Then, the projection dimension of the
data excluding the behavioural dimensionality was computed as the
minimum of the sum of the normalized projected vectors:

i=1 i=1

N N
projection dimension = min[z 3 Vf,}

Model of 2D distance by position maps, and decoding the
model’s simulations

To assess the possible functional role of the observed non-separable
maps (Figs. 3a and 5), we created populations of neurons with simu-
lated distance by position maps, and systematically studied the effect
of map separability on decoding performance. All of the simulations
were conducted using MATLAB.

Inour simulations, the bin size was 0.5 m both for the distance coor-
dinate (x,, interbat distance; between £40 m) and for the position coor-
dinate (x,, positionin the tunnel; between 0-130 m; we simulated the
130 m that were effectively covered by the bats). We note that below
we make repeated use of the gamma distribution, defined by a shape
parameter k and a scale parameter 6, to fit the model to the empirical
data. The 2D distance by position map of neuron i is denoted below
bY fori(Xp, Xp).

Position encoding. Position tunings were generated using a similar
procedure as in our previous work™, with slight modifications of the
parameters to fit the current experimental dataset. In brief, for each
model neuron, we randomly picked a position coverage value from a
gammadistribution that was fit to the data (K.,yerage = 1.76, Ocoyerage = 0.18);
ifthissample value waslarger than 0.8, we resampled. Next, we sampled
field sizes fromagammadistribution fitted to the data (ke g.qize = 462,
Bricia-size = 2.68 M), adding fields until the cumulative (total) sizes of all
fieldsreached the coverage value. This number of place fieldsis denoted
Ngeaq- Then, the field locations were randomly and uniformly distrib-
uted along the environment, with no overlaps. To avoid distorting the
uniformdistribution of fields near the boundaries of the environment,
we allowed fields tobe located anywhere and we truncated themat the
boundaries. This procedure created cells with multiple place fields,
where the sizes of the fields of the same neuron were broadly distrib-
uted, as seenin the experimental data.

Distance modulation. Distance modulation profiles were generated as
follows. For each neuron, the number of distinct distance profiles was
Set t0 Ngs = Neeiq X Xsep (rounded up, where x,,, is a parameter control-
ling the degree of non-separability). We varied x, between 0.2 and 1
injumps of 0.2 (Extended Data Fig. 15a (columns)). Each field was as-
signed with one of the ny, modulation profiles. When ng, = 1, all fields
undergo the same distance modulation (maximal separability), and
when ngy;s = ngeq €ach field undergoes different distance modulation
(maximal non-separability). We generated n sets of field-modulation
values: distance modulation was enhancing/suppressing/not modu-
lated witha probability of 0.38/0.20/0.42, respectively (numbersfitted
tothe experimental data). Across the population, the average number
of fields that underwent distance modulation was independent of
X, because the probabilities (0.38/0.20/0.42) were independent
of x,,- The centre location of each distance-modulation profile was
sampled from a Gaussian distribution (u =0 and 0 =16.8 m; fitted to
the experimental data), and the profile width was sampled from a
uniformdistribution between4.3-12.9 m (the average of that distribu-
tion was matched to the experimental data). When afield is enhanced/
suppressed, the firing rate in the region modulated by the distance
coordinate was multiplied by afactor sampled from agammadistribu-
tion (Kennance = 9-98, Gennance = 0.32; Kgyppress = 0.39, Ogyppress = 0.17; fitted to
the experimental data).

We also added 2D distance-by-position modulation irrespective of
place fields (Extended Data Fig. 15a (hotspots)), to reflect better the
experimental data, where activation hotspots were foundin the inter-
field analysis (Fig.3d and Extended Data Fig.12a) and in the patch analy-
sis (Fig. 3fand Extended Data Fig.12e,f). The distance-by-position firing
rate map of eachneuronhad ahotspot with probability (x,, - 0.2)/0.8
(that s, no hotspots when x,., = 0.2 and one hotspot for each neuron
whenx,,, =1). The size, position and increase in firing rate of the hot-
spot was sampled similarly to the distance enhancement modulation
profile. The position of the hotspot centre was sampled uniformly.

Quantifying the non-separability of maps. The parameter x,., enabled
us to create 2D distance-by-position maps fy(xp, xp) with differing
non-separability levels (Extended Data Fig.15a (columns)). After maps
were generated, we computed for each 2D map the non-separability
indices of the SVD analysis, A and «, as we did for the experimental
maps (Fig. 5e-g; see the definitions of Aand ain the ‘SVD analysis’ sec-
tionabove).

Generating spike counts for decoding analysis. We assumed that
the animal starts each iteration (each ‘simulation-trial’) at a position
Xp=Xopin the tunnel (between 0 and 130 m) at a distance x, = X,p from
the other bat (between +40 m). Bothanimals flyataspeedofv=8 ms™
for atimeinterval At=500 ms, in opposite directions. The expected
spike count of the neuron during that trial is based on the bat’s trajec-
tory through the 2D map f;,(x,, X;), and is given by:

m At
m;= A—?IO Fop.i Xop + 20, Xop + v0)dt

where m, isthe in-field expected spike count without distance modu-
lation: we used m, = 5in all our simulations, as in ref.*. The factor 2 in
Xop + 2ut reflects the double distance travelled when each of the two
batsfliesataspeedvtowardsthe other. Theactual spike countineach
trialwas drawn from a Poisson distribution with rate m;,, and is denoted
below asn,.

Decoding. We employed two commonly used types of decoders: a
maximume-likelihood decoder and a population vector decoder.

For the maximum likelihood (ML) decoder, we computed the
log-likelihood for each neuron, and summed over the N neurons™*";



Article

N N

A O, Xpl {n}) = 3. nlog[myf, ; (Xp, Xp)1 = Mg Zﬁ)m (p, Xp)
i=1 i=1

The term on the left side denotes the log-likelihood of the simu-
lated bat being located in a specific combination of (distance, posi-
tion) = (x,, Xp) giventhe observation of aset of {n;} spikesin each of the
neurons i. On the right side, the first term corresponds to a sum of
thelog of the spatial tunings of all neurons, weighted by their activity;
the second term corresponds to a correction for unequal coverage
ofthe neuronal representationin different locations. This equationis
very similar to the equation used for decoding the data, with the main
difference being that here we created a uniform coverage and therefore
did notinclude a term for the prior. This is an approximation of the
likelihood function, where the decoder knows each neuron’s firing rate
map (thatis, f,,(xp, X5)), butitdoes not rely on continuously computing
a convolution of the firing rate map with the animal’s motion and the
other animal’s motion. The decoded position and distance coordinates
were then taken as the combination that maximizes Ay, (x,, X,/{n}), that
is, the maximum of the log-likelihood function.

We considered population sizes Nbetween 20 and 200 neurons, in
jumps of 20. For each value of x., and N, we generated 250 random
populations. For each population, decoding was done in 41 equally
spaced distances (between +40 m) and 11 equally spaced positions
(between 0 and 130 m), that is, 451 combinations of distance by posi-
tion; we used alarger number of distances as in this study we focused on
the distance modulation. For each distance-by-position combination,
spike counts were randomly generated five times. Decoding errors
were computed after grouping the data in three different ways: (1)
based on the non-separability parameter used to generate the maps, X,
(Extended DataFig.15d,e); (2) based on the A value of the SVD analysis
computed post hocfor each population (Fig.5h,i); and (3) based onthe a
value of the SVD analysis computed post hoc (Extended Data Fig.15b,c).
Allthree groupingsyielded similar results and similar conclusions from
the decoder simulations.

Population vector (PV) decoder: the classical PV decoder’**> was
adapted to the case in which the stimulus space (that is, the environ-
ment) is not circular, and in which neurons can represent more than
one location and distance. In each trial, we computed the following
sum over the N neurons:

54,55

N

Apy O, Xpl{n;}) = Z ”ilOg[moﬁ)p,i (%p, Xp)]
i=1

The decoded location was then taken as the one that maximizes
Apy (Xp, Xp{n;}).

Additional discussion

Our results are distinct from previous reports. (1) Two studies tested
how brief switches in the environment affect hippocampal activity**":
these studies used non-ethological manipulations such as teleporta-
tion’ or rotating-platform¥, whereas here we focused on natural behav-
ioural switches. Moreover, these two studies®®” reported switching
between two position maps, whereas here we found switching from
position representation to distance-by-position representation. Fur-
thermore, both studies found that different place cells encode the
two different position maps at different time points, whereas in our
data, the same cells encoded conjunctively distance by position at the
sametime. (2) Our results are also different from studies that examined
hippocampal spatial representation in response to objects that were
moved within the arena between trials, but remained stationary within
atrialand, therefore, did not evoke abehavioural switch*', They found
neurons that exhibited spatial tuning either with respect to the room
ortoobject coordinates, but notto both conjunctively, whereas, in our

data, the same cells encoded conjunctively distance by position at the
same time. (3) Our results are fundamentally different from classical
remapping studies®**’, in which the hippocampus exhibits different
position maps when the animal explores different environmentsin two
differentsessions. Insuch studies, there is nobehavioural switch atall,
because it typically takes a very long time (timescales of minutes) to
transfer the animal between the different sessions and, therefore, such
studies are not designed to examine rapid behavioural and neuronal
switches, as we did here (with timescales as fast as ~100 ms). (4) Our
results are also different from our previous findings of encoding of
distance to a stationary goal®, as here we focused on representation
of amoving conspecific, which required a very rapid switch of atten-
tion, in contrast to the previous study. (5) Finally, our results also differ
fundamentally from our previous study, which found CAl neurons that
represent the position of another batwhen the recorded batis station-
ary®, as here we did not find CA1 neurons that encode the position of
the otherbat (Extended DataFig. 8). This difference may stem from task
requirements—in the previous study®, it was behaviourally important
torepresentthe otherbat’s position, whereas here it wasimportant to
represent the interbat distance in the context of collision avoidance;
we suggest that these major differences inbehavioural demands were
reflected in the hippocampal neural codes.

Our results showing a non-separable neural code may reflect the
non-separable aspect of natural behaviour in the wild. Navigation
behaviours typically depend on the location where they happen, for
example, commuting in one location versus foraging in another loca-
tion®.. This non-separability of behaviour was demonstrated also for
collision-avoidance behaviours, for example, in bats that avoid wind
turbines differently based on their location®, or in social-foraging
bats, which respond differently to their conspecifics at different loca-
tions®®. We speculate that the hippocampal system evolved to support
(together with other brain areas) the animal’s ability to perform these
challenging location-dependent behaviours. As aconsequence, we sug-
gest that the non-separable code that we found in the hippocampus of
wild-bornbats—a code that we showed is more efficient when consider-
ing 2D decoding of position by distance—is particularly suitable to guide
such non-separable behaviours in the wild. By contrast, a separable
neural code might be more suitablein other brainareas, such asinferior
temporal cortex, in which an invariant and separable representation
of objects is needed (for example, classifying a cat versus a dog irre-
spective of position). Indeed, a largely separable neuronal code was
demonstrated experimentally in the inferior temporal cortex, and was
shown to be beneficial for position-invariant object classification®*,

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The data generated and analysed in the current study are available
from the corresponding authors on reasonable request. Source data
are provided with this paper.

Code availability

The MATLAB code generated for the current study is available from
the corresponding authors on reasonable request.
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Extended DataFig.1|See next page for caption.




Extended DataFig.1|Solo and cross-over behaviours were intermingled
and distributed quite uniformly along the tunnel. a-d, Example of one
experimental session: same experimental session asshowninFig.1b.a, The
positions of the two bats along the entire experimental session. Time insession
runs from top-left to bottom-right; scale bar,1 min. Blue and orange lines:
positions of the recorded bat and other bat, respectively. Cross-over events are
marked with pink circles, and cross-over flights (window of +40-m of interbat
distance around the cross-over event) are marked with pink rectangles. Solo
flights are marked with grey rectangles. b, Distribution of behavioural
coverage along the tunnel: Solo (left) and cross-overs (right), plotted
separately for the two flight-directions (dark and light-coloured, stacked).
Light grey vertical rectangles at the edges of both panels: areas where cross-
overswere notanalysed (Methods); we also note that there were less cross-
oversinthebinsadjacenttothegreyrectangles (seealsopanelseandg).c,
Position versus time within the session (time from first to last cross-over), for
allthe cross-over eventsin the session shownina. The cross-over events
occurred quite uniformly along the entire tunnel (y axis), and were pseudo-
randomly distributed over time (xaxis; direction 1, Spearman correlation of
positionversustime: p=0.02,P=0.90,n =52 cross-overs; direction2,
Spearman correlation: p=-0.08, P=0.57,n =52 cross-overs).d, Position versus
time within the session for all the solo flights (black) and all the cross-over
flights (pink), for one flight-direction, in the same session shownin panelsa-c.
Note that cross-over flights were intermingled with solo flights, which created
“holes” inthe solo behaviour, where cross-over flights occurred (see examples

ofsuchholesalsointhe solorastersinFig.2aand Extended DataFig.3c). Other
reasons for holesinthe solo data could be U-turns (whichwere removed from
the analysis) or tracking flights (which were analysed separately in Extended
DataFig.9).e-f, Additional example sessions, one session per bat. For each
sessionthe upper panels (e) are plotted asinb, and the lower panels (f) are
plottedasinc.Indicated are the Spearman correlations of the cross-over
positions versus the time of the cross-overs within the session. g-i, Population
summaries of behaviour for all the experimental sessions of each bat
separately (columns1-4) and all bats together (column 5). g, Distribution of
cross-over positions for all sessions x directions (rows) - demonstrating
relatively uniform distribution of cross-overs along the tunnel, withno strong
behavioural biases (in most sessions). Eachrowis normalized to its maximal
value. h, Distribution of sparsity, where the sparsity for each session was
computed over the histogram of cross-overs —i.e. sparsity of the rows of the
matrix plotted in panel g (sparsity = <1;) %/ <r?, where r,are the values in each bin
inthe histogram). Sparsity isbound between 0 and 1, with a value of 1indicating
uniform distribution. Note that for most sessions the sparsity was relatively
high (close to 1), indicating nearly-uniform distribution of cross-over events
along the tunnel.i, Distribution of Spearman correlations between position of
cross-overs and time of cross-overs, for all the sessions x directions (examples
ofthese Spearman correlations are shownin panels c,f). Note that for most
sessions there was low correlation between time and the position of the cross-
overs - indicating arelatively uniform behaviour along the session, with no
systematic trends over time.
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Extended DataFig.2|Bats were attentive to the other bat during cross-
overs, asindicated by increased echolocation click-rate. a, Audio signals
(filtered 10-40 kHz) for the recorded bat (blue) and the other bat (orange), at
shortinterbat distances during a cross-over (dashed pink line indicates the
cross-over event =distance 0). The two signals wererecorded through
ultrasonic microphones placed on the head of each bat (Methods). Blue dots
mark clicks detected viathe microphone onthe recorded bat. Bottom filled
orange dots mark clicks detected viathe microphone on the other bat. Top
empty orange dots (shifted in time) mark the time at which the bottom (filled)
orange click of the other bat was expected to be recorded through the
microphone ontherecordedbat, given the distance between the two bats (see
alsoblack arrows; this ‘expected time shift’ was computed as the distance
betweenthebats divided by the speed of sound). Note thatindeed above each
black arrow thereis avery small clickin the blue audio trace of the recoded bat -
which corresponds to clicks produced by the other bat (these small signals
were observed only when the bats were very close to one another: -3 m).
Therefore, by excluding such small clicks that appeared around the expected
time (as marked here by the black arrows), we could ensure that none of the
detected clicks ontherecorded bat (blue) has originated from the other bat’s
echolocation (orange) - and vice versa (see Methods). b, Distribution of click-
rates for solo flights (black) and for cross-over flights in two different distance
ranges: pink, computed for interbat distance between -15mto O m,and grey,
computed forinterbat distance between-40 mto-30 m (alarge distance,
where the bats behaved similarly to solo). Note that the pink distribution s
highly separated both from the grey distribution and from the black
distribution (Kolmogorov-Smirnov test: P <107 for both comparisons;
Wilcoxon rank sum test: P<107°° for both) - suggesting that the bats were in
different behavioural modes during solo versus cross-overs. In particular, note
thatduringsolo flights, the bats almost neverincreased the click-rate as high as
duringthe cross-over encounters. ¢, Population average click-rate (top) and
click-amplitude (bottom), during cross-over flights (pink lines) and solo flights
(blackerrorbars). Left 5 panels - individual bats: the black error bar and pink
shading represent mean +s.d for solo and cross-over, respectively (bat 2299
[samebatasinFig.1e]: n =962 cross-over flights and n =107,418 solo time bins;
bat2336:n =254 cross-over flightsand n=26,783 solo time bins; bat 2389:
n=108 cross-over flightsand n =9,831solo timebins; bat 2331: n=1,217 cross-
over flights and n =116,737 solo time bins; bat 2387: n =106 cross-over flights

and n=10,529 solo time bins; the time bins for solo flight were adjusted to
match thebinsincross-over tuning; bat 30 was not analysed here because its
audiowas recorded using a different audio-logger device and therefore its
click-amplitude was not comparable with the other bats). Rightmost panel -
population average click-rate (top) and amplitude (bottom; n =5 bats; each bat
wasnormalized here to the mean amplitude during cross-over): shown are the
averages forindividual bats during cross-overs (pink curves) and grand-
average over all bats (purple curve) - and the averages during solo (dots;
individual batsare shown by the grey dots, population average is the black dot).
d, 2D click-rate map plotted as afunction of theinterbat distance (x-axis) and
position (y-axis) - shown for two example sessions from two different bats (see
population ofbat 2299 in Fig. 1f). Colour-coded from zero (blue) to maximal
click-rate (red; valueindicated): see colour-bar. Note that the click-rate
increased at approximately —20 metres before cross-over, along allthe
positionsinthe tunnel (verticalred band). e, Schematic of the tunnel, showing
the tunnel’s X coordinate (long axis) and Y coordinate (lateral axis); the
accuracy of the Zmeasurement was lower than X,Y, hence we did not analyse it.
f, Echolocation click-rate map (pooled over all bats) plotted for lateralinterbat
distancein the Y-axis of the tunnel (Distance, = the lateral of fset between the
two bats) versus theinterbat distance in the X-axis of the tunnel (Distancey).
Note that the click-rate was higher when the distance between the bats was low
inbothaxes -i.e. whenthebats were onatight collision-course (notice thered
hotspotat (0,0) in this map). g, Median click-rate per-flight for regular cross-
over flights (left, n =948 flights: all the regular flights of bat 2299), compared
to cross-over flights where the bats nearly collided (right, n =14 flights). These
actual near-collisions were identified as flights inwhich at short Distancey
betweenthebats (less than £0.25 m) they also flew-by at short Distancey (less
than +0.25 m), and reduced their speed within this distance window to <4 m/s
(a highly-unusual slowing-down, akin to a “push on the brakes”).In those rare
near-collision flights, the bats exhibited significantly lower click-rate
(Permutation test on the difference between the means of the two groups:
P=0.0001; Wilcoxonrank sum test: P=0.006), and sometimes they did not
echolocate atall -suggesting that lapse of attention (low click-rate or absence
of clicks) leads to near-collisions or full collisions. Note that since these
“braking events” were such rare events (n=14), their contribution to the heat-
mapin panel fwas smalland was averaged out. Box-and-whisker plots show the
median (horizontalline), 25-75% range (box) and 10-90% range (whiskers).
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Extended DataFig. 3 | Histology, and place cellsin the large-scale linear
track duringsoloflights. a, Examples of coronal sections through dorsal
hippocampus of two of our recorded bats (left, bat 2336; middle and right, bat
2299).Red arrowheads mark holes due to a tetrode-track (left), or electrolytic
lesionsin CAlat the end of tetrode-tracks (middle and right: two different
tetrodes). These examplesillustrate the large proximo-distal anatomical
spanof our recording-sites indorsal CAl.Scale bars, 500 pm. Similar
reconstruction oftetrode-tracks was performed for all the tetrodesin all the 4
bats. b, Percentage of pyramidal distance-modulated neurons (defined either
in1D or 2D, see Fig.3g, thick black line) in proximal tetrodes (red) versus distal
tetrodes (blue), for bats 2336 and 2299 (the two bats for which we had large
proximo-distal spread of the tetrodes). For each bat we separated the tetrodes
into the proximal tetrodes versus the distal tetrodes of the tetrode-bundle
(excludingambiguously-located tetrodesin the centre of the bundle). There
wasnorelationbetween the proximal/distal location of the tetrode in CAland
the percentage of distance-tuned neurons (comparing proximal versus distal:
bat2336:logodds ratio test: P=0.654, Fisher’s exact test: P= 0.673, Ny, oxima = 31
cells, nga = 70 cells; bat 2299:log odds ratio test: P= 0.102, Fisher’s exact test:
P=0.116, Nyroxima = 114 cells, ng, = 62 cells; FDR-corrected for multiple
comparisons for 2 bats). ¢, Examples of 12 place cells, during solo flights. Top,
position tuning-curves (firing rate maps). Significant place fields are marked by

red dotsabove the peak; arrows indicate flight direction. Bottom, spike rasters:
raw positional data (grey) with spikes overlaid (black dots). Spatial information
(SI,in bits/spike) isindicated above each cell. d, Distribution of the number of
fields per direction for all the significant place cells (n = 613 cells x directions).
e, Distribution of place-field sizes for all the significant place cells (n =1,856
placefields).f, Distribution of spatial information for all the place cells (n = 613
cells x directions). g, Distribution of Pearson correlations between position
tuning-curves for the two flight-directions of the same cell (black line) or
betweenthe two directions across different cells (grey bars: cell shuffling;
Kolmogorov-Smirnov test of data versus shuffles: P=0.16; n =251 cellsin the
black distribution - computed only for cells where both directions were
significantly place-tuned). Overall, our datafor place fields in this large-scale
environment is similar to what we found before'*: we observed here multiple
placefields per neuron, withavariety of spatial scales per neuron, i.e. different
fields of the same neuron exhibited highly-varying sizes (multiscale code). We
note that there were some small numerical differences in place-field numbers
and place-field sizes, as compared toref.™, because: (i) we used here ashorter
portion of the tunnel (135 m) thanin our previous work (200 m)*; and (ii) we
modified here the parameters used to compute the position tuning-curves
(weusedalargerbinsize and larger smoothing-kernel, since we had here less
solodatathaninref.).



Article

a
Bat 2299 Bat 2336 Bat 2389 Bat 30
44 29 17
Pyramidal
neurons
1 1 1
lnter 4 “ ' - X _
neurons
1 1 1
40 20 0 20 40 40 20 O 20 40 40 20 O 20 40 -40 -20 0 20 40
Interbat distance (m) Interbat distance (m) Interbat distance (m) Interbat distance (m)
[ o] [ | | |
1.9 Zscore 36 23 Zz.score 35 2.0 Zz.score 3.6 2.0 z.score 34
b . Tuning curve based Cc Z-score compared to
Tur:)l;goggr;/"e rl::tassed on even flights 'solo projected on
g sorted by odd flights cross-over' shuffle
125 [ 125 — 5
Pyramidal Pyramidal
neurons neurons
1 15 1
Inter 29 29 Inter 29
neurons , neurons ;
40 20 0 20 40 40 20 0O 20 40 40 20 0 20 40
Interbat distance (m) Interbat distance (m) Interbat distance (m)
[ | | |
23 Zscore 2.9 5.5 Z.score 10.0
d e f g
Raw data points Raw data points
from a single session Mean r = 0.9987 . from a single session Mean r = 0.99999
3 0.46 E 0.28
o 5
g 20
25 s 3 5
Eo0 8 g ° 3
=} i 9 i
<] S 20
= =4
© g o 3
-3 0 2 40 0
40 -20 0 20 40 0.99 1 =] 40 20 0 20 40 (m) 0.9999 1
Interba? distance (m) r (time, distance ) Interba? distance (m) r (distance, .00, distance,)
[Dlstancex] [Dlstancex]
h = Significant direction
Example 1D distance tuning for the two flight directions == Other direction
Cell 284 r=-0.08 Cell 91 r=-0.37 Cell 249 r=-0.43 Cell 321 r=-0.17 Cell 50 r=0.61 Cell 51 r=0.97
o 37 15.0 15 5.0 28.7 Interneuron
©
o N
£ LAI ]2% M M
[ 0 —— o
40 20 0 20 40 40 20 0 20 40 40 20 0 20 40 40 20 0 20 40 40 20 0 20 40 40 20 0 20 40
Interbat distance (m)
1D distance tuning: Pearson correlations
Comparing flight directions Comparing flipped directions Comparing positive and negative distances
Pyramidal neurons Interneurons Pyramidal neurons Interneurons Pyramidal neurons Interneurons
0.13 0.15 0.17 0.20 0.15 0.24
= i = = = = =
kel kel kel kel 2 i<l
S k3] © © © ©
© © < < < <
w w w w w w
0 0 0
-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1
r (dir 1, dir 2) r (dir 1, dir 2) r (dir 1, flipped dir 2) r (dir 1, flipped dir 2) r (neg, flipped pos) r (neg, flipped pos)

Extended DataFig.4|See next page for caption.




Extended DataFig. 4 |Tuning to 1D interbat distance. a, Population
summary for individual bats (plotted similar to Fig. 2b): z-scored tuning-curves
plotted separately for pyramidal neurons (top) and interneurons (bottom),
sorted by preferred distance (the distance of the peak of the distance-tuning).
b, Stability of the 1D distance tuning: shown are z-scored tuning-curves that
were constructed based on odd flights (left) or even flights (right), separately
for pyramidal neurons (top; n=125) and interneurons (bottom; n = 29); sorted
by the preferred distance (peak of the distance-tuning) in the odd-flights data
(i.e., sorted according to the left panel). Note that the tuning was stable and was
preservedineven flights versus odd flights. ¢, Z-scored distance tuning curves,
where the z-scoring was done relative to the solo-projected on cross-over
shuffle (see Extended DataFig. 5) for pyramidal neurons (top) and interneurons
(bottom); sorted by the preferred distance (peak of the distance-tuning).
Colour limits were set from the minimum across all tuning curves toz=10; the
most strongly-responding neuronhad z=36.5,and the 90% percentile across
the population was z=15.7 - signifying very strong and significant distance
responses.d-e, Interbat distance and time to cross-over were highly
correlated. d, Raw datafrom asingle session: time to cross-over (y-axis) versus
interbat distance (x-axis). e, Distribution of Pearson correlations between time
to cross-over and interbat distance, for all the recording sessions (n =83
sessions). Note that the range of correlations shownis from 0.99 to 1; mean
Pearson correlationis 0.9987.Since both variables (time and distance) are
highly correlated, we could not distinguish between time coding versus
distance coding, and decided to performall analyses as a function of distance
(exceptFig.3c,and Extended DataFigs. 6k, 7d, 11e). f-g, Interbat distance along
thelongaxis of the tunnel (Distance,) and the Euclidean distance between the
bats (Distanceg,qigean), Which takesinto account also the lateral axis of the
tunnel (Y-axis in Extended Data Fig. 2e). f, Raw data from a single session (same
sessionasind): Euclidean distance (y-axis) versus Distance, (x-axis). These two
distance-measures were highly correlated. Inset,zoom-in on £3m on both axes:
Thereis high correlationin thisrange, too. Note that theregion around 0, in
whichthereisaslight difference between the Euclidean distance and Distance,,
isavery small region - and falls within one bin of our neuronalinterbat distance
analysis; therefore, plotting neuronal tuning curves using the Euclidean
distance would yield virtually identical results to plotting them using Distance,
asdoneinthe paper.g, Distribution of Pearson correlations between the
Euclideandistance and Distance, for all the recorded sessions (n = 83 sessions).
Note that the range of correlations shownis from 0.9999 to 1; mean Pearson
correlationis 0.99999. Since both variables (Distance, and Euclidean distance)
are highly correlated, we decided to focus in this study on Distance, (distance
alongthe tunnel) - to be consistent with the 1D position coding, which was also
measured along the tunnel. h-k, Comparisons of 1D distance tuning across
flight-directions and across positive/negative distances. Here we tested
whether our neurons are tuned to absolute interbat distance in a similar
manner regardless of flight-direction (flying east versus west) and regardless
oftherelative direction between the bats (flying towards or away from one
another - we note that bats cansense the presence of another bat via their
echolocation also behind them, as echolocation signals spread also
backwards®¥). We expect that a‘pure distance cell’ with a preferred distance of
20 m, forexample, would fire symmetrically at two distances: 20 m (i.e. would
have adouble peakinits distance tuning curve,at—20 mand at +20 m); and we
alsoexpectto find the same tuningin both flight directions (east and west) -
i.e.overall we expect a4-fold symmetry. Alternatively, if the response of the
neuronsis not purely to distance, it suggests that thereisadirectional
component to the tuning, which s similar to a vectorial signal. h, Examples of
1D distance neurons (same neurons as in Fig. 2a), showing the 1D distance
tuningin the significant direction (pink; plotted alsoin Fig.2a) and in the other
flight direction (blue-purple). Pearson correlations of the distance tuning

curves between the two flight-directions are indicated. i-k, Population:
Various comparisons of Pearson correlations between the 1D distance tuning-
curveofacellversustheotherdirection or versus flipped direction (pink); for
control shown are the same comparisons across different cells (grey: cell
shuffling). i, Comparing distance tuningin the two different flight directions
(flying east versus west). Left: pyramidal cells (Kolmogorov-Smirnov test of
dataversus shuffles: P=0.09, Wilcoxon rank sumtest: P=0.08;n =108
pyramidal cells that had at least one direction with significant distance
modulation). Right: interneurons (Kolmogorov-Smirnov test: P=0.04,
Wilcoxonranksumtest: P=0.003;n=22interneuronsthathad atleastone
directionwithsignificant distance modulation). The higher correlationsin
interneurons suggest thatinterneurons are more likely to be direction-
invariant distance cells, while pyramidal neurons fire differently depending on
flight direction - aswould be expected from avectorial representation.
Notably, when we limited this analysis to include only neurons that had
significant distance-tuning in both flight directions, we found that those cells
had a higher correlation values between the distance-tuning of both flight
directions, ascompared to the shuffle correlations across cells (Pyramidal
neurons: Kolmogorov-Smirnov test of data versus shuffles: P=0.01, Wilcoxon
ranksumtest: P=0.01,n=17 cells; Interneurons: Kolmogorov-Smirnov test of
dataversus shuffles: P=0.01, Wilcoxon rank sum test: P=2.49 x 107, n =7 cells)
-indicating that some neurons do encode distance invariant of flight
direction. We note that the probability to exhibit significant distance tuningin
both flight directions (Pgpserved distance-tuning both directions) Was higher than expected
fromthe null hypOtheSiS Ofindependence (Pnul]dislance—luningbmhdireclions = Pdistancer
tuningdir1 % Pdistance-tuning dir2) ~ Oth for pyramidal cells (binomial test: P=0.023) and
forinterneurons (binomial test: P=7.81 x 107°): This suggests that CAlneurons
have a“propensity” to exhibit distance tuning, whichis expressed inboth
flight-directions.j, Comparing Pearson correlations between the distance-
tuningin flight direction1and the flipped distance-tuninginflight direction 2.
Left: pyramidal cells (Kolmogorov-Smirnov test of data versus shuffles:
P=0.13, Wilcoxon rank sum test: P=0.17; n =108 pyramidal cells that had at
least one direction with significant distance modulation). Right: interneurons
(Kolmogorov-Smirnov test: P=0.84, Wilcoxon rank sumtest: P=0.44;n=22
interneurons that had atleast one direction with significant distance
modulation). k, Comparing Pearson correlation computed between negative
distances and flipped positive distances (mirrorimage around zero-distance;
this was aimed to test tuning symmetry when bats are flying toward each other
compared with flying away). Computed only for neurons that did not havea
significant binat zero distance (because such cases would exhibit by definition
high correlations due to high mirror-symmetry). Left: pyramidal cells
(Kolmogorov-Smirnov test of data versus shuffles: P=0.65, Wilcoxon rank sum
test: P=1.00; n = 64 pyramidal cells). Right:interneurons (Kolmogorov-
Smirnovtest: P=0.02, Wilcoxonrank sumtest: P=0.02; n =14 interneurons).
Overall, the datain this figure suggest that the majority of distance-tuned
neurons exhibited different distance-tuning for the two flight directions (east
versus west), and different distance-tuning for the two relative directions
betweenthebats (otherbatin front or behind -i.e. flying towards or away). This
suggests thatour resultsreflect vectorial signals that have both adistance and
adirection component. Interestingly, the bat’s distance-tuned cells showed a
mixture of enhanced and suppressed responses - akin to the behaviour of
other types of vectorial cellsin the hippocampal formation and surrounding
regions, such as boundary-vector cells'®**"%°, However, it is noteworthy that
some of our cells did show higher correlations between flight directions (this
was true for pyramidal cells with significant distance-tuningin both flight
direction, and also forinterneurons) - and thus some of these neurons could be
regarded asdirection-invariant distance-coding neurons.
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Extended DataFig. 5| Shuffling method ‘solo projected on cross-over’.

a, Cartoonillustrating the “solo projected on cross-over” shuffling method
(one of the two shuffling methods used throughout this study; see Methods).
This shuffling-method is aimed to compare the actual firing during cross-overs
tothe expected firing based onthesolo data -inordertoaccount forthe
prominent position-coding in the hippocampus. For each cross-over flight
(panela (i)) welooked for all the solo flights that occurred within the same
position-range as the cross-over flight (panel a (ii); all turquoise-coloured solo
flight epochs covered fully the same position range as the thick pink cross-over
flightin panela (i)). Then we randomly chose 1 of these solo flights (panel a (ii):
thick turquoise line), and linearly projected the spikes that occurred during this
soloflight onto the cross-over flight data, toyield the projected interbat
distance of each spike (panel a (iii); black dots on top of the turquoise flight).
Werepeated this process for all the cross-over flights, to create a full matrix
thatisbased on combining behaviour taken from the cross-over dataand
neuronal responses taken from the solo data (panel a (iv)). This entire process
(all four panelsi-iv) was repeated 10,000 times, to create 10,000 shuffle
matrices, each combining the cross-over behaviour with the cell’s position solo
tuning and spiking-statistics - but without any explicit distance modulation.
These 10,000 shuffle matrices (shuffle maps) served as a null hypothesis for
how the cell should fire assuming it has no distance tuning. b, Examples of
significant 1D distance cells. Shown for each cell: the 1D distance tuning-curve
(pink line), tuning-curves of the ‘solo projected on cross-over’ shuffles (shaded
grey - the shuffles from a), and tuning-curves of the rigid cross-over shuffles
(shaded pink - thisisthe second type of shuffle that we used in this study:

see Methods). Horizontal green lines denote significant enhancement bins,
and horizontal brown line denotes significant suppression bins: significance

was computed based on both types of shuffles (Methods; we note that for
enhancement-tuning, the cross-over shuffles were above the other type of
shuffle, and vice versa for the suppression-tuning - because the cross-over
shuffle preserves the number of spikes and thus reflects the average of the pink
tuning-curve, which goes up in enhancement and down insuppression).c,
Examples of 2D distance-by-position firing maps of ‘solo projected on cross-
over’shuffles from three cells. Leftmost column - the cell’s actual
experimental data during cross-over: Top left, tuning-curve for 1D distance;
horizontal green/brown lines denote bins with significantenhancement/
suppression. Bottom left (main panel): firing rate map of position (y-axis) by
interbat distance (x-axis). Bottomright: position place tuning of the cell during
solo flights (black) and during cross-over flights (pink). Five rightmost
columns -examples of five random shuffle maps for each neuron: bottom, 2D
firing rate map of position (y-axis) by interbat distance (x-axis); top, the
corresponding 1D distance tuning curve of the shuffled data. The Y limits and
colour-scalewere held fixed for each cell, i.e. for all the panels of the same row
(2D maps coloured from zero [blue] to the maximum value over all panels [red;
valueindicated for each map]). Note that the 2D firing rate maps of the shuffles
show horizontal stripes, representing the place fields, and thereisnoreal
distance modulationin these maps: the smallmodulationsin the firing rate
seen along the distance axis in these shuffles are caused by the somewhat non-
uniformbehavioural coverage and by the random spiking statistics. These two
factorsexistalsointhecross-over data-and therefore these matrices serve as
a‘null hypothesis’ that controls both for behavioural coverage and for spiking
statistics, reflecting how the cell would fire if it was not truly modulated by
distance.
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Extended DataFig. 6 | See next page for caption.




Extended DataFig. 6 | The 1D distance tuning could not be explained by
changesin movement variables during cross-overs. a, Rationale of analysis.
Shownisaschematic of the tunnel, depicting the tunnel’s X coordinate (long
axis) and Y coordinate (lateral axis); the accuracy of the Z measurement was
lower than X,Y, hence we did not analyse it. Inorder to test whether the
neuronal modulations found during cross-overs reflect genuine distance-
tuning, which could not be explained by motor variables, we reasoned as
follows: If aneuronis modulated by motor variables, then we expect to see the
same movement-related modulationboth during solo and during cross-over
flights. We considered three types of movement variables: (i) Speed - the
speed computed over both axes of the tunnel (Xand Y together), where we
aimed to control for changesinspeed, such as slowing down. (ii) Velocity Y -
velocity justintheY axis of the tunnel (lateral), aiming to control for lateral
movements of the bat towards the side of the tunnel during cross-overs. (iii)
SpeedY -theabsolute velocityin the Y axis (here lateral movement to the left
ortotherightare considered tobe the same). b-c, Profiles of the movement
variables during cross-overs for an example session (b) and population pooled
over all the sessions of all bats (n =166 sessions x directions) (c). Top: mean
speed (pink) and velocity Y (purple); shaded colours show the 5-95% percentile
range. Thelinesin panel c-top representindividual means for each bat. Inset,
zoomonvelocity Y (purple) for the relevant velocity range. Bottom: 2D speed
maps as afunction of interbat distance and position, for one flight direction;
position here denotes the position along the X-axis of the tunnel (X position);
maps are colour-coded from zero (blue) to maximal speed (red; see colour-bar).
Note that speed-changes were rather small (very small colour-changes), and
were distributed quite uniformly along the tunnel (see vertical red band in c).
d-f,Examples of tuning-curves to movement variables for 1D distance cells:
Tuning toSpeed (d), Velocity Y (e) and Speed Y (f). For each cell: top, tuning
curves formovement variables during solo (black) and during cross-over
(pink).Bottom, linear slope fitted to the tuning-curve during solo (left; black
line) and to the tuning-curve during cross-over (right; pink line), together with
theslopesfitted to the shuffle tuning-curves (grey histograms, 10,000
shuffles). *’ denotes significant tuning with P < 0.05, **' with P < 0.01; ‘NS’, non-
significant. Exact P-values: Cell 288: P,,;, = 0.30, P, ps5.00er = 0.46; Cell 336:
Piyio=0.20, P, o5 00er = 0.12; Cell 48: Py, = 0.30, Prys5.00er = 0.009; Cell 299:
Piyy1o=0.003, P, 5. 00er = 0.33; Cell 19: Py, = 0.07, P, 5. 00er = 0.01; Cell199:
Poyio=0.003, P..oesover = 0.01; Cell 58: Py = 0.32, Pyyoccover = 0.37; Cell 85:
Piyio=0.23, P 5. 00er = 0.22; Cell 324: P, ;= 0.34, P, o5 00er = 0.003; Cell 8:

P10 =0.16, P, s 0er = 0.02; Cell 155: P,y = 0.38, P o56.00er = 0.003; Cell 70:
Pioio=0.33, P oss.00er = 0.47. g-i, Top: tables showing the number of 1D distance
cellsineach ofthe 3x3 possible combinations of speed modulations: positive/
NS/negative modulation by speed or velocity during cross-over x positive/NS/
negative modulation during solo. The numbers are shown for pyramidal
neurons (n=125) and interneurons (n=29) - separately for speed (g), velocity Y
(h) and speedY (i). The schematicline-graphsin pink and black denote the
combination of tunings that represent each rubric. Green background
represents modulation by speed that could not explain the neurons’ distance
tuning: specifically, this occursin cases in which the speed modulation during
cross-over was not significant (dark green; examples ind-fthat correspond to
this case: cells 288,336,299, 58, 85,70), orin cases where the speed modulation
during cross-over was significant but was different thaninsolo (light green;
examplesind-f: cells 48,19,324, 8,155) - suggesting that these cells do not
genuinely encode this motor variable. White background represents cells
whose motor modulation might potentially explain the distance tuning: These

arecasesinwhichthe speed modulation wassignificantand had the same
slope-direction during solo and during cross-over (asin cell199 in panel d).
Bottom, summary of the fraction of cellsin each one of the three categories
(three colours) taken from the table above. Overall, the majority of the distance
modulation of 1D distance cells could not be explained by motor variables - as
indicated by the high percentage of cellsin the two types of green areas of the
pie-chartsbelow. j, Percentages of speed-tuned neurons (as defined above) for
1D distance cells (pink; 125 pyramidal neurons, top, and 29 interneurons,
bottom) and cells that were not significantly tuned to 1D distance (grey; 568
pyramidal neurons, top, and 45 interneurons, bottom). Note that there was no
relation between the tendency of cells to exhibit significant 1D distance tuning,
and their tendency to exhibit significant speed tuning (i.e., no difference in
percentage of speed-tuned cellsbetween the pink and grey bars). In other
words, 1D distance-tuned cells were not more likely to be modulated by speed
as compared with the rest of the population (x> test for pyramidal cells, P= 0.95;
X’test forinterneurons, P=0.64). This again argues against the possibility that
speed tuning can underlie the observed 1D distance tuning.k, Flight velocity
doesnotaffecttherise-time of the neuronal responses during cross-over -
supporting neuronal switch rather than multiplexing. Shownis the distribution
of contrastindices of the rise-time slope of the neuronal tuning for high versus
low flight velocities: (rise time at faster flights - rise time at slower flights) /
(risetime at faster flights + rise time at slower flights). Here we tested whether
the 2D distance-by-position tuning reflects static multiplexing of the two
variables (hypothesis 3 in the main text). If the representation is static, then we
expectthattherise-time of the response willdepend on flight velocity;
specifically, for higher flight velocities the cell would exhibit asteeper slope
(shorter rise-time) when computing the time-to-crossover tuning. To thisend,
we defined therise-time window as before, namely the time from the median of
the shuffle to the first significant bin. We then divided the cross-over flights
intotwo equally-sized groups, according to the flight velocity within the rise-
time window (median bisection of velocity; we used here the combined velocity
ofthe two bats, because thisis the effective velocity at which the bats move
along the distance axis). This yielded two sets of flights: flights with high
velocity versus flights with low velocity in the relevant distances for each cell.
We then computed the two tuning-curves as afunction of time-to-cross-over
separately for these two sets of flights. We computed the slope of these two
tuning curves at the same rise-time window, and calculated the contrastindex
between the two slopes - and the histogram of these contrastindices is plotted
here. Asmentioned above, for astatic tuning, the high-velocity tuning curves
shouldyield higher slopes. However, we found that the contrast index of slopes
for high velocity versus low velocity was not significantly different from zero
(t-test:t=0.84,P=0.41; Wilcoxonsignrank test: P= 0.43; weincluded here all
then=120 neurons with 1D distance tuning thathad more than 10 cross-over
flights and more than 30 spikes for each of the two flight groups [low-velocity
and high-velocity]). Further, there was no correlation between the difference in
velocities (quantified via the contrastindex between the flight velocities) and
the differenceinthe tuningslopes (contrastindex of slopes) (the Pearson
correlationbetween the twowas: r=-0.11, P= 0.25; Spearman correlation:
r=-0.13,P=0.15;n=120).Since we found here that there was no relation
betweenthe flight velocity and the rise time, this argues against the hypothesis
of amultiplexed code. By contrast, for aneuronal switch (hypothesis 4 in the
main text) we expected that the switch-time will have a fixed duration,
irrespective of velocity —as we found here. Thus, these results are more
consistent with aneuronal switch than with multiplexing.
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Extended DataFig.7|See next page for caption.



Extended DataFig.7|The 1D distance tuning could not be explained by
puresensory responses to echolocation clicks or by motor activity
preceding echolocationclicks. Allthe dataincludedin this figure are taken
frombat 2299, inwhichaudio was recorded simultaneously with neurons.

a-d, Control for sensory or motor responses to individual clicks. To test
whether the neuronal modulations found during cross-overs could be
explained by sensory or motor responses to clicks, we reasoned as follows:
Duringcross-overs thereisastrongbehavioural coupling between interbat
distanceandincreasein click-rate (Fig.1d-f), and thusitis hard to disentangle
these variables during cross-overs and reveal the underlying signal driving the
neuron. Since during solo the bats also emit echolocation calls (albeit at lower
rates compared with cross-overs: Fig.le, Extended DataFig.2b), we cantest the
neuronal response to echolocation clicks during solo, where they are not
coupled with the cross-over context. If acell was not modulated by echolocation
clicks duringsolo, it strongly suggests that also during cross-overs this cell was
notmodulated by pure sensory or motor responses to clicks. a, Five examples of
1D distance cells. For each cell: Top, echolocation behaviour: mean click-rate as a
function of interbat distance (blue). The scale-bar in the rightmost cell shows
theinterbat distance that correspond to400 ms, whichis the time-duration of
the panelsin the third row (see below). Middle, 1D distance tuning curve (during
cross-over; pink); horizontal green line denotes significantly enhanced bins.
Correlationvalues above each cell correspond to the Pearson correlation
between the click-rate (first row) and the distance tuning curve of the cell
(second row). Bottom, click-triggered firing rate during solo (black), and
shuffles (grey); n ;s denotes the number of echolocation clicks during solo
(whichwere used tocompute the click-triggered firing rate). We focusedona
time window of £200 ms, since this time-scale allows capturing most of the
classical motor or sensory responses. Areas with significant enhancement or
suppression are marked in the bottom panel by green or brownlines,
respectively. Note that cells 34, 59 and 19 showed significant modulation of the
1D distance tuning (middle panels) but showed no significant response around
the echolocation-clicks during solo (bottom panels). Overall, 70.7% of the
cells (n=29) did not show any significant responses to echolocation clicks.

b, Distribution of Pearson correlations between the click-rate and firing-rate
tuning curves (correlations between upper panelsinaand middle panelsin
a;n=4lcells xdirections).Since pure sensory and motor responsesin batsare
knownto have short timescales onthe order of tens of milliseconds, we expect
thataneuronwhichresponds purely to clicks will follow faithfully the click-
rate; therefore, its distance tuning will show a strong positive correlation with
theclick-rate (or negative correlation - depending on the sign of the response).
However, the correlations were broadly distributed around zero, with many
cellsshowing low and non-significant correlations (grey lines denote the
significance threshold) - suggesting that the distance tuning of many cells
cannotbe explained by direct sensory or motor responses to clicks.

¢, Percentages of three sub-populations of 1D distance cells recorded in bat
2299: (i) Neurons that were not locked significantly to echolocation clicks
duringsolo (dark green, 70.7% of the cells, n =29 neurons; i.e. no significant
responsesina-bottom: forexample, seethe threeleftmost neuronsinthe
bottom-most panelina: cells 34, 59,19). (i) Neurons that showed significant
locking to echolocation clicks during solo (i.e. significant response in the
bottom-most panel of a), but this locking could not explain their distance
tuning (lightgreen, 17.1% of the cells, n =7 neurons) - because of two reasons:
(1) Their click-rate asafunction of interbat distance (panel a, top) was not
significantly correlated with their distance neural tuning (panel a, middle;

correlationsshownin panel b); or: (2) The click-triggered locking exhibited an
opposite effect from the distance modulation, e.g. cells that had significant
positive correlation between click-rate and firing rate but had significant
suppression of firingin their click-triggered response (e.g. cell 51in panel a); or
conversely, they had significant negative correlation between click-rate and
firing rate but enhancement of firing in their click-triggered response. (iii)
Neuronswhose significantlocking to echolocation-clicks might potentially
explaintheir distance tuning (white, 12.2% of the cells, n=5neurons; e.g. cell 37
in panel a[significant negative correlation and negative click-triggered
response (suppression)]). Overall, the tuning of 87.8% of the 1D distance cells
(sumofthe two greenareas) could notbe explained by simple sensory or motor
responses to clicks. d, Distribution of the absolute time-difference between
the peak click-rate (peak of the blue curvesina) and the peak firing rate during
cross-over (peak of the pink curvesin a; n=41cells x directions). Time
differences were computed based on tuning-curves that were calculated in
time-to-cross-over rather than distance (these two variable are highly
correlated, see Extended DataFig.4d, e, and thus yield very similar curves).
Note that for many cells the peakin firing rate and the peakin click-rate could
bemorethan0.5sapart-whichis muchmore thanexpected fromapure
sensory or motor responses in the brain. Further, we note that pure sensory or
motor responses also could not explain the complex 2D characteristics of the
distance by position tuning shownin Figs.2and 4. The rationale for thisis as
follows: Since theincreasein click-rate during cross-oversis very robust and
occursatall positionsin the tunnel (Fig. 1f, Extended Data Fig. 2d), then we
expectthatifacell purely responds to clicks, we should see similar firing-rate
modulation (asafunction of distance) at all positions. However, we observed
many neurons with distance modulations that were restricted to specific
positionsin the tunnel (Fig.3a, d, f), as well as non-separable representation of
positionby distance (shownin Fig. 5a-g) - which rules out this possibility.

e, Distance modulation of firing rate by attention. Shown are five examples of
1D distance cells, plotted separately for high click-rate flights (purple) versus
low click-rate flights (pink). Four leftmost cells are the same neurons as in main
Fig.2e, and are significantly modulated by attention. Rightmost cell (cell 37) is
one of the five neurons that were found to be potentially explained by sensory
or motor response to clicks (according to the controlsin panelsa-d) - yet, it
was notsignificantly modulated here by attention. For each cell: Top,
echolocationbehaviour: mean click-rate as afunction of interbat distance, for
high click-rate flights (purple) and low click-rate flights (pink) (see Methods for
flight bisectioninto these two groups of flights). Middle, neuronal responses:
distance tuning-curves for high click-rate flights and low click-rate flights.
Bottom left: Amean firing rate (high-low) for the actual data (red line) and for
10,000 random permutations of the flights (grey histogram); firing rates (FR)
were computed ina+10-mwindow (see Methods). Bottom right: A peak firing
rate (high-low) for the actual data (red line) and for random permutations
(grey histogram). Note that although the differencesinclick-rate between
high- and low-attention flights were relatively small (top row), the differences
infiringrate were prominentin some neurons (middle row), and were highly
significant (bottomrow; P<0.05inall tests for the three leftmost cells) - and
were also significant across the population (Fig. 2f, g). Finally, we note that the
fact that the distance tuning could not be explained by simple responses to
clicks (see panelsa-d), suggests that the modulation that we found by high/low
click-rate (Fig.2e-gand panel e here) reflects modulation by attention or other
high cognitive variable.
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Extended DataFig. 8 |See next page for caption.



Extended DataFig. 8| During cross-overs, the position of the other bat (i)
wasnotrepresented by CAl neurons, and (ii) could not explain the distance
tuning. a, No tuningto the position of the other bat. (i) Scatter plot of surprise
values (-log;,(P-value)) for the spatial information (SI) of the tuning-curves
during cross-over flights for the self-position (y-axis; see the left tuning curves
ina(iii)) versus position of the other bat (x-axis; see the right tuning curvesin
a(iii); these two examples are marked on the scatter-plot by two black dots). The
position tuning for self was much more prominent that the position tuning for
the other bat (paired t-test: P=2.04x107%%, n = 660 pyramidal cells x directions
[all the valid pyramidal cells that had > 30 spikes during cross-over]). P-values
were computed compared to1,000 shuffles. For display purposes only, the
points with the maximum valuein the scatter (surprise = 3) were slightly
jittered positively inxory, respectively. The high surprise values on the y-axis
correspond to the very prominentselfplace-tuningin the hippocampus. By
contrast, we note thatonly 1.2% of the cells were significantly modulated and
stableto the other bat’s position (n =8 neurons, markedinred; see

also Methods) - whichis not different than expected by chance given our 99%
significance threshold (Binomial test for population-wide significance [with
expected P,=0.01]: P=0.34). We note that none of these 8 cells (one of which is
cell29in panelb) showed convincing representation of the position of the
otherbatduring cross-overs. (ii) Distribution of surprise differences:
~10g10(Pyerr) = (-10810(Poiner)); i-€. distribution of the y-x differences for each
pointina(i) (n =660 pyramidal cells x directions). (iii) Example cells for this
analysis: tuning curve to self-position (left) and to the other bat’s position
(right) during cross-overs. Surprise values in panels a(i) and a(ii) were
computed based onthese two types of position tuning curves. Note the clear
tuningto self-position (place-tuning) and the lack of such tuning to the other
bat’s positionin these two cells. b—f, To further explore the possibility that
during cross-overs, CAl neurons represent the position of the other bat, we
replotted the data as follows. We constructed a2D firing-rate map as a function
of theself-position on the y-axis versus the position of the other bat on the x-
axis (central maps for each cellin panel b, using the same procedure as we did
for the 2D distance by position maps). On such 2D maps, a pure place cell would
show horizontal stripes with high firing at the positions of its place fields
(stripes atangle 0°); acell that purely represents the other bat’s position would
show vertical stripes - at the positions where the cellis responding to the other
bat (stripes at 90°); whilealD distance cell that responds at aspecific distance
from the other bat would show diagonal stripes (at 45°) because the interbat
distanceis by definition the difference between the y and the x axes in this
panel.Sinceall three predictionsyield stripesin these 2D firing rate maps, we
computed the autocorrelations of these maps (2D shifted Pearson correlations
map’®”}; see panel b: “2D auto-correlation”) - which are known to emphasize
stripes. We then computed for each cell the mean correlation value in the
relevant three bands - horizontal: 0°, vertical: 90° and diagonal: 45°, within the
2D autocorrelation map. Eachband had awidth of 7 bins. Since the diagonal of
the 2D autocorrelationmapis longer thanits horizontal or vertical dimensions,
we cropped the diagonal-band from both ends, such thatits length was equal to
themeanlength of the vertical and horizontal bands (see panel ¢, cartoon). For
allbands we excluded the central circlein the 2D autocorrelation map (radius of
3.5bins) - to avoid the dominant central peak in the autocorrelation. Aplace
cellwould have high average correlationin the horizontalband at 0° (denoted
M,); acellrepresenting the other bat’s position would have high average
correlationintheverticalband at 90° (My,); and a1D distance cellwould have a
high average correlationin the diagonalband at 45° (M,;). b, Four example cells

(foreachcellthe data are shown only during cross-over flights): Left, the
standard position-by-distance 2D firing rate map - which shows the firing rate
asafunction of position (y-axis) and interbat distance (x-axis); and plotted also
isthe distance tuning curve (top). Centre, position-by-position 2D firing rate
map - whichshows the firing-rate as a function of self-position (y-axis) and
other bat’s position (x-axis); the magenta-coloured tuning curves depict the
tuning-curve for the self-position (right) and the tuning-curve for the other
bat’s position (top). Both of these firing-rate maps are colour-coded from zero
(blue) tomaximalfiring rate (red; value indicated). Right, 2D autocorrelation
map (shifted Pearson correlations) of the position-by-position firing rate map
of self-position versus otherbat’s position (i.e. autocorrelation of themapin
the centre; colour-coded from minimum to maximum =1). Values of My, M5,
My, for these four neurons areindicated. As expected, place cells (e.g. cells 145
and 136) showed prominent horizontal stripes in their 2D autocorrelation-
maps, resulting in high correlation values in the horizontal band (high M,; see
panel c for cartoon of computation); 1D distance cells (e.g. cell 51) showed high
correlationin the diagonal band (high M,;); and cells representing the other
bat’s position (cell 29) showed high correlationsin the vertical band (high My,).
Wenote that cell 29 had one of the highest values of My, compared toits other2
values -i.e.it was a potential candidate for aneuronrepresenting the other
bat’s position - and yetits 2D map and 2D autocorrelation do not show true
vertical stripes. In fact, we did not find a single neuron that was convincingly
tunedto the position of the other batin this experiment (see also population
analysesinpanelsa,d, e, f) -butrather thedominant signals were the interbat
distance and the self-position. We believe that this is probably because: (i) the
distancetothe otherbatisdirectly available viathebat’s sonar sensory
system®*; (ii) in this collision-avoidance experiment it was more behaviourally-
importanttorepresent the distance to the other bat (M,;), in order to avoid
collisions - rather thanrepresenting the position of the other bat. ¢, Schematic
showing the 3 rectangular bandsin which we computed M, M,sand My, from
the 2D autocorrelations (values of My, M,sand My, are indicated for each cellin
panel b): for each band we computed the mean correlation over all of its bins,
while excluding the central circle (white; radius 3.5 bins).d, Mean 2D
autocorrelation maps, computed only over cells with enough behavioural
coverageinthe 2D map of self-position versus other bat position (cells for
which >75% of the full 2D behavioural map was covered): these mean 2D
autocorrelations are plotted separately for pyramidal cells (n =577 cells x
directions), interneurons (n =35 cells x directions), place cells (n = 519 cells x
directions), and 1D distance cells (n =125 cells x directions). We excluded from
thedisplay the central circle (radius 3.5 bins), whichis the same circle that we
removed for the calculation of My, M,sand My, above; we also excluded here
bins which comprised <10 neurons. e, Distribution of differences between M,
and M,,, for the same groups of cells as in panel d. Note that for most cells, M,
was higher than My, (P-values of t-tests are shown) - indicating stronger
representation of self-position ascompared to the representation of the other
bat’s position. f, Distribution of differences between M,s and My, for the same
groupsofcellsasind. Note thatinallgroups, M,s; was higher than M,, for most
cells (P-values of t-tests are shown) - indicating stronger representation of
interbat distance as compared to the other bat’s position. Specifically, we note
that for the group of 1D distance cells (rightmost panel), which are of particular
interest, the M, values were significantly higher than My, (t-test: P=1.68 x 10™7)
-suggesting that the 1D distance tuning seenin the data could notbe explained
viaarepresentation of the other bat’s position.
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Extended DataFig. 9 |During trackingbehaviour CA1neurons were not
modulated by interbat distance and preserved their position tuning. All
thedataincludedinthisfigure are taken frombat 30, which performedalso
tracking behaviour.a, An example ofa7.2-minepoch from one session, which
included both solo, cross-over, and tracking behaviours. Plotted are the
positions of the two bats - therecorded batin blue line and the other batin
orange line. Cross-over events are marked with pink circles, and cross-over
flights (window of +40 m of interbat distance around the cross-over event) are
marked with pink rectangles. Solo flights are marked with grey rectangles.
Tracking behaviours are marked with 2 different aquamarine rectangles: (i)
Following:when therecorded bat was behind the other bat, withaninterbat
distancebetween-20 mto O m. (ii) Leading: when the recorded bat was ahead
ofthe other bat, withinterbat distance between O mto 20 m. b, Population
average of the click-rate during cross-overs (pink), tracking (blue), and solo
(black); shaded colours and black error-barindicate mean +s.d (n =426 cross-
over flights, n= 602 tracking flights, and n = 64,454 solo time bins). Note that
duringtracking, the bats did notincrease their click-rate asmuch as during
cross-over -suggesting that tracking behaviourisless attentionally-
demanding than collision-avoidance behaviour during cross-overs.c, Three
example neurons. Top, 1D distance tuning-curve during tracking (dark blue)
and during cross-over (pink). Bottom left, spike raster during solo flights (black
dots), showing position (y-axis) versus time (x-axis). Central large panel,
positionof the recorded bat (y-axis) and interbat distance (x-axis) during
tracking (grey) with spikes overlaid (dark blue). Right two panels, position
tuning curves (place-tuning) of the cell during solo flights (black), during
following (left; aquamarine line) or during leading (right; light aquamarine
line), and during cross-over flights (pink; computed over-20toO mor 0 to

20 m,whichisthesamedistance-range as following and leading). Note thatin
allthree examples, the position tuning-curves during tracking (right) were very
similar to the position tuning-curves during solo flights; and that the distance
tuning-curves during tracking (top: dark blue line) were rather flat for two of
these three neurons, and were very different from the distance tuning-curve
during cross-overs (top: pinkline). d-g, Population summaries of place cells
thatwererecordedinbat30inthe tracking condition (n=91placecells x
directionsintotal).d, Inall panels: the y-axis is the Pearson correlations
between position tuning during cross-overs and during solo flights, and the x-
axisisthePearsoncorrelations between position tuning during tracking flights
and soloflights. Histograms show marginal distributions. Left - all tracking
data (Wilcoxon rank sum test of y versus x for the dots, P=3.14 x 103). Middle -
Following (Wilcoxonrank sumtest, P=7.60 x 10~*). Right - Leading (Wilcoxon
rank sumtest, P=2.59 x10™). Inall panels, the position-tuning correlations
betweentrackingand solo were high, and significantly higher than the
position-tuning correlations between cross-over and solo: This suggests that
thesolo position-tuning of place cells was not strongly altered during tracking
behaviours, and thus the position tuning remained essentially the same during

tracking and solo. e, Comparing following and leading. Shown s the Pearson
correlation between position tuning during leading and during solo flights (y-
axis) versus the Pearson correlation between following and solo flights (x-axis).
Panel plotted asind. Note the high correlations between both following and
solo, and leading and solo: these correlations were not significantly different
fromeachother,i.e.between the following and leading conditions (Wilcoxon
ranksumtest, P=0.094).f, Similar tod, but with normalized mean squared
difference (MSD) instead of the Pearson correlation. MSD was defined as:
MSD:<(f1 —f2)2>/(max(f1 f,)—min(f,, £,)), where f,and f, are the two position
tuning-curves; the numerator thus denotes the mean of the sum of squared
differences between the position tuning-curves (n =91 place cells x directions).
Left - all tracking data (Wilcoxon rank sumtest, P=1.36 x 107). Middle -
following (Wilcoxonrank sumtest, P=9.12 x107*). Right - leading (Wilcoxon
ranksumtest, P=2.73x107).Inall panels, the position-tuning MSD between
tracking and solo was significantly lower than the position-tuning MSD
between cross-over andsolo: asin paneld, this suggests that the position
tuning remained essentially the same during tracking and solo. g, MSD
between position tuning during following and solo flights (x-axis) and between
leading and solo flights (y-axis). Panels plotted asin f. Note that MSD values
betweensolo and following and between solo and leading are both low -
indicating similar tuning - and are not significantly different between
following and leading (Wilcoxon rank sumtest, P=0.78). h-i, Population
summaries of significant 1D distance cells (defined by significant modulation
during cross-overs) recorded inbat 30 in the tracking condition (n =27 cells x
directions). h, Pearson correlations between the position tuning-curve during
tracking and during solo flights (x-axis) versus the Pearson correlations
betweeninterbatdistancetuning-curves during tracking and during cross-over
flights (y-axis) (Wilcoxon rank sum test, P=1.20x107). This scatter-plot
suggests that cells which are distance-tuned during cross-over flights do not
preserve their distance tuning during tracking (note the large spread of
correlations along the y-axis) — while they do preserve their solo position
tuning during tracking (note the high correlations in the x-axis). i, Normalized
MSD (see panel ffor details), computed between the position tuning-curves
duringtracking and during solo flights (x-axis) versus the normalized MSD
computed between the interbat distance tuning-curves during tracking and
during cross-overs flights (y-axis) (Wilcoxon rank sumtest, P=1.46 x 107%). Asin
panel h, thisscatter-plot suggests that during tracking, 1D distance cells do not
maintain their distance tuning as in cross-overs - but do preserve their position
tuning during trackingasinsolo flights. Moreover, when analysing the distance
tuning during trackingin the same way as for the cross-over data, we found a
low percentage of cells that had significant distance tuning during tracking:
Only 5.0% of the pyramidal neurons (n =5 cells x directions) and 16.1% of the
interneurons (n =5 cells x directions) were significantly modulated by distance
duringtracking.
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Extended DataFig.10|Distance representation was largely invariant to the
identity of the other bat. a, Two example cellsrecorded in the

switching-partner sessions (Methods).

Foreachcell:shown are session a with

the usual partner (left) and session b with an alternative partner (right); the

recorded bat was trained with bothbat
wererecordedinthe same day, withab

sbefore therecordings. Both sessions
reak between them for rest. Spike

sorting was done across both sessions together, and cells were verified to be

stable throughoutboth sessions. Data

plotted asin main Fig.2a. These two

cellsexhibited rather similar 2D distance-by-position tunings in both sessions
-suggesting that the distance codingisinvariant to the identity of the other
bat.b-c, Comparingsession aand session b (for all 4 panels we show all the
n=27cells xdirections whichwere significant1D or 2D distance cells). b, Left,
correlations of the 1D distance tuning-curves between session @ and session b,
computed within-cells (pink) and across different cells (shuffles, grey)
(Kolmogorov-Smirnov test of pink versus grey: P=6.09 x 1073, Wilcoxon rank
sumtest: P=3.02 x107). Right, correlations of the 2D distance by position
firing-maps between session a and session b (Kolmogorov-Smirnov test:
P=2.48x10"" Wilcoxonrank sumtest: P=1.45x10*). ¢, Similar to panel b, but
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withnormalized meansquared difference (MSD) instead of the Pearson
correlation. MSD was defined as:MSD = <(f1 -, )2>/(max(f1 ) —min(f L f,)),
wheref,andf,are the two tuning-curves. Left, MSD of the 1D distance
tuning-curves between session a and session b (Kolmogorov-Smirnov test of
pink versus grey: P=7.08 x10*, Wilcoxon rank sum test: P=2.99 x10°°). Right,
MSD of the 2D distance by position firing-maps between sessiona and session b
(Kolmogorov-Smirnov test: P=1.75x 1078, Wilcoxon rank sum test: P=3.15x10%).
The histograms in panels b-c show that the correlations between sessions a
and bwere higher than chance (shuffle) and the MSD values were lower than
chance (shuffle). Taken together, these results indicate that the distance code
was largely invariant to the other bat’sidentity, suggesting that the distance
codemightberelated to collision-avoidance rather thanto asocial
representation - likely because when flying at high speed, the bats care mostly
about collision-avoidance, and less about the identity of the other bat they are
avoiding collision with. Future experiments could potentially use drones -
flyinginanimate objects - to further test whether these neurons carry asocial
signal.
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Extended DataFig.11|Tuning tointerbat distance within place fields.

a, Additional examples of 6 place cells with significant distance modulation
within placefields. Plotted asin Fig. 3a. Note that cell 287 has 2 fields: one field
exhibits enhancement during cross-over while the other exhibits suppression -
therefore, the two fields cancel each otherin the overall 1D distance tuning of
this cell, resulting in non-significant distance tuning (pink top tuning-curve).
Thisexample emphasizes the need to compute distance tuning-curves

within placefields, as well as to perform 2D analysis on the entire 2D map.

b, Population summary: Position of the place fields (mean position of the
place field edges; y-axis) versus the interbat distance of significantly distance-
modulated bins (x-axis); plotted are the significant enhancement bins (left)
andsignificant suppression bins (right); colour of dots depicts the z-score of
the distance tuning curve. ¢, Distance bins, asin Fig. 3e, plotted here only for
significant place-fields (without the interfields that were included in Fig. 3e).
Top:significantly enhanced fields, sorted by the peak-distance of the distance
tuning-curve. Bottom:significantly suppressed fields, sorted by the trough-
distance of the distance tuning-curve. Place fields with compound modulation
(exhibitingboth enhancement and suppression) appearin both the top panel
and bottom panel. d, Scatter-plot of the mean firing rate within the significant
distance bins during cross-overs (y-axis) versus the mean firing rate estimated

fromthe solo-projected on cross-over shuffle for the same distance bins
duringsolo (x-axis). By definition, enhancement bins (green) should be above
the diagonalidentity line (black) and suppression bins (brown) should be
belowtheidentity line - however, we note that the dots here were far away
fromtheidentityline, reflecting an average 5-fold increase of firing rate for
enhancementresponses, and 10-fold decrease for suppression responses (the
ratiobetween thefiring rateswas 5.26 + 9.71for enhancementbins (mean+s.d.;
Firing rate during cross over [Firing rate during solo) and 9.76 + 7.82 for suppres-
sionbins (mean ts.d; Firing rate during solo/Firing rate during cross over).
Inset,zoom-inon 0 to7 Hzonboth axes: Note that even at low firing rates the
differencesinfiringrates betweensolo and cross-over were highly prominent,
i.e.,thedotswerevery far from the diagonalidentity line. e, Tuning curves of
switch times within place-fields (normalized min-to-max; top, rise-time for
enhancement tuning, n =143 place fields; bottom, fall-time for suppression
tuning, n =62 place fields). The x-axis shows the time from crossing 50% of the
shuffles. Black curve, median response across all place-fields. Note that most
ofthe tuning curves reached their maximum (or minimum) response within
~-300 ms, and some tuning-curves exhibited arise-time as fast as100 ms, or
even faster.
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Extended DataFig.12 | Tuning to interbat distance outside of placefields. a,
Additional examples of three neurons with significantenhancement within
‘interfields’; plotted asinFig.3d. Vertical lines to the left of the central panel mark
theplacefields (black) and theinterfield areathat we analysed here (peach-
coloured).Black arrowsinside the central raw data panelsindicate spikes
contributingto the distance tuning within theinterfields. Some of these interfield
regions were areasin the tunnel where during solo-flights the neuron showed
almostnoactivity (see cell269 here, and Fig. 3d cell 235: note that in the solo-
raster [right, black dots] there are almost no spikes within theinterfield area). In
other neurons, theseinter-field regions showed some low firing rate during solo,
albeittoolowtobedetectedasaplacefield (cells312and 86 here,and Fig.3d cell221).
Thissuggests that the sub-threshold position-inputs that underlie these sub-
threshold place fields**, might be enhanced by incoming distance inputs and thus
rendered supra-threshold - resulting in distance by positionincreasein firing
rate (seealso Extended DataFig.16). b, Population summary: Position of the
interfields (mean position of the interfield edges; y-axis) versus the interbat
distance of significantly distance-modulated bins (x-axis); colour of dots depicts
thez-score of the distance tuning curve. ¢, Distance bins, asin main Fig. 3e, plotted
here only for interfields; sorted by the peak-distance of the distance tuning
curves. Note that the significantly tuned interfields show only enhancement;

we could notdetect suppression because, by definition, interfields have very low
firing rate to begin with.d, Scatter-plot of the firing rate within the significant
distance bins during cross-overs (y-axis) versus the firing rate estimated from the

solo-projected on cross-over shuffle for the same distance bins during solo (x-
axis). By definition, enhancement bins (green) should be above the diagonal
identity line (black) - however, we note that the dots here were farfromthe
identity line,and the ratio between the firing rates was 18.50 + 31.79 (mean ts.d.;
Firing rate during cross over [Firing rate during solo).Inset,zoom-inon Oto3 Hz
onbothaxes: Note thatevenatverylow firing rates, the differencesin firing
rates between solo and cross-over were highly prominent, i.e., the dots were
very far from the diagonalidentity line. e, Additional examples of four neurons
with 2D patches showing significant enhancement or suppression within
‘interfield’ areas (Methods); plotted as in Fig. 3f. Cells 312 and 269 are the same
asinpanel a; note that the 2D patch analysis captures well the extra firing within
thecells’interfields (compareto the raw dataina). Cell 135isanexample
ofaneuronwithout place tuning (it did not pass the criterion for significant
place cells during solo) - and yet it showed localized distance-by-position
modulation, which was detected by the 2D patch analysis. Finally, we note that
cell 81shows asignificant-enhancement 2D patch that occurred outside of
placefields (see the green outline) - and there was also aslight reductionin
firing rate within the main place field, which was too mild to be detected as
significant. f, Position and interbat distance of the centroids (centre-of-mass)
ofall thesignificant 2D patches (directionl: 134 enhancement patches, 88
suppression patches; direction2:131enhancement patches, 103 suppression
patches).
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Extended DataFig.13 | Decoding analysis. a, b, Confusion matrices for three
example sessions (from two different bats), showing decoding of position

(a) and decoding of distance (b). Plotted as in Fig. 4f. Bin size, 3x3 metres. The
number of simultaneously-recorded cellsis shown. A diagonal structurein
these matrixesindicates good decoding. c-d, Higher echolocation click-rate
(heightened attention) improves the distance decoding-error. ¢, Decoding
error asafunctionofattention (same dataasinFig.4g, h, but here plotted as
violin-plots), for one example session (left; n=146,134,146,151 decoding
time-windows for q1-q4, respectively), and for all the 9 sessions in which we had
audiorecordingsand >10 cells (right; n=998,1051,1074,1063 decoding
time-windows for q1-q4, respectively). White circle, median; thick grey line,
25-75percentiles. Note the decoding error decreased as the click-rate
increased (q4: maximal click-rate, i.e. maximal attention). Kruskal-Wallis test:*
P <0.05,*P<0.01,***P<0.001,****P<0.0001; no stars means non-significant
test. Exact P-values for left panel: qland g2, P=0.14;qland q3,P=3.71x1073; q1
andq4,P=1.23x1075;q2andq3,P=0.64;q2and q4,P=0.07;q3 and q4,
P=0.55.Exact P-values forright panel:qland q2, P=0.44;qland q3,P=0.04; q1
andq4,P=4.51x10";q2and 3, P=0.62;q2and q4,P=3.36 x10™%; q3and q4,
P=7.69x10"*. Exact P values for ANOVA in main Fig. 4g: qland q2, P=0.11; qland
q3,P=8.80x107%qland q4,P=3.38 x107%;q2and q3,P=0.83; q2and q4,
P=0.13; q3and g4, P=0.53.Exact P values for ANOVAin main Fig.4h:qland q2,
P=0.23;qland q3,P=0.02;qland q4,P=4.32x10"% qg2and g3, P=0.75;q2and
q4,P=2.20x1075;q3and q4,P=1.52x107.d, Instantaneous click-rate analysis:
theinstantaneous click-rate was calculated for each of the decoding time bins
(1s), atinterbat distances of -15 mto O m (where theincreasesinclick-rate are
most prominent). Bottom: probability matrix for distance decoding error

(y-axis) across differentinstantaneous click-rates (x-axis); each column of the
matrixisaprobability distribution, i.e. each column sums to1. The matrix was
smoothed using a 2D Gaussian with o =1.5bins. Top: sparsity for the different
click-rate columns of the probability matrix (sparsity = <1;) /<2, where r; are the
distance decoding-error valuesin eachbin of each column; higher sparsity
denotesamore uniformdistribution of decoding-errors within the column).
Note thatas attentionincreased (higher click-rate), both the probability of
decoding-errors becameless uniformly distributed (sparsity decreased, see
magentacurve) - and also the prevalence of small errors became much higher
(note the white colour at the bottom-right corner of the matrix). In other words,
thedistance codingbecamebetter for high click-rate (high attention). This
analysisis complementary to Fig.4g, handto panelcinthe currentfigure,
where click-rate was calculated per-flight - here, by contrast, we computed the
instantaneous click-rate, using finer bins of click-rate. Finally, we note that our
simultaneous-decoding analysis of distance and position worked surprisingly
well, but notas well asreportedintherodentliterature. This difference might
stem from the following: (i) We conducted simultaneous decoding of two
variables, while most studies decode only one variable, namely position. (ii) We
recordedinfreely flying bats, therefore we were limited by the number of
simultaneously-recorded cells per day (13.19 + 3.08 neurons per day, mean +
s.d.). (iii) We used here arelatively long integration time window of 1s
(Methods), both toaccount for the low number of simultaneously-recorded
cells, and to allow accumulation of enough spikes. However, this long
integration time came with a cost: during this1-second window the bat
progressed 7 min the position axisand 14 min the distance axis, potentially
yielding highererrors.
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Extended DataFig.14 |SVD analysis. a, Three example neurons (different
rows) for SVD analysis (the bottom two cells were also plotted in Fig. Se). For
eachcell: left, 2D firing rate map of position (y-axis) by interbat distance
(x-axis), cropped, filled and mean-subtracted to create a full rectangle, as
required by the SVD analysis (Methods). Rightmost three panels show the first
three matrices reconstructed from the SVD analysis (three first dimensions;
see Methods for more details). For each neuron (row), all four maps were set to
have the same colour limits (set as the overall minimum and maximum values
across the four matrices for that neuron). The singular value of each dimension
(sy, s, 0rs;) was normalized by the sum of all singular values, and is written above
each matrix. For separable cells (such as cell 117), the first dimension captures
quite wellthe 2D firing rate map of the cell, yielding a high singular value, while
the second and third dimensions have very low singular values, reflecting their
negligible contribution to the reconstructed map (note the nearly-uniform
deep-blue colour ofthe maps for the second and third dimensionsin cell 117).
By contrast, for non-separable cells (suchas cells 325 and 235), the first
dimension does not capture well the 2D firing rate map, and therefore adding
more dimensionsisrequired: indeed the singular values of the second and
sometimes even the third dimensions are not negligible (note the non-deep-
blue colour of the maps for these dimensionsin cells 325 and 235). b, ¢, Example
of SVD analysis for cell 235 (this cell isalso shown in Fig. 5e right, and in panel
aabove).b, Top, 1D distance tuning-curve. Middle, 2D firing rate map of
position (y-axis) by interbat distance (x-axis), cropped and filled to create a full
rectangle for the SVD analysis. Bottom, histograms of non-separability indices
A (left) and a (right), calculated for shuffle firing-rate maps (grey, see shuffle
examplesin panel c,bottom); thereal values of A and a for the cell are indicated
by avertical red line - these values were much higher than for the shuffles,
indicating significant non-separability for this cell (Methods). ¢, Top, three
examples of 2D distance by position firing-rate maps for solo projected on
cross-over shuffles - for the cellin panel b (see Extended Data Fig. 5and
Methods for the process of generating these types of shuffle matrices).
Bottom, same shuffle matrices after multiplying them by the 1D distance
tuning of the cell (i.e. by the top pink curve inb). These maps at the bottom
(‘Multiplied maps’) were the maps used for computing the A and a values for the
shuffle distribution. Note that these shuffle maps are based on the exact same
behavioural data, the same spike statistics and the same 1D distance tuning as
inthereal data-butthese shuffle maps are almost separable. Importantly we
note that multiplying by the 1D distance tuning did notincrease the non-
separability, because multiplicationis separable by definition - and therefore
any non-separability that we would find in these shuffle maps must arise from
either the non-uniform coverage of bat-behaviour or from the noisy spiking of
theneurons. TheAand a values written above the maps indicate the non-

separability indices of these shuffle maps (these are 3 of the 10,000 shuffle
values per neuronthatare plottedinthe grey histograms in b-bottom).

d, e, Cross-validated SVD.d, Three example neurons (same neurons asin panel a).
Top left, firing rate map of position (y-axis) by interbat distance (x-axis) during
cross-over, plotted asin panela. Top right, median map for solo projected on
cross-over shuffles (median of all the 10,000 shuffle maps, examples of which
areshowninthetoprowinc).Bottom, trainerrors (blue) and testerrors

(red) asafunction of cumulative dimension, using the cross-validated SVD
analysis for the maps above (MSE: mean squared error; see Methods). The
dimensionality of each map equals the dimension at which the testerror curve
(red) reachesits minimum. Then, to compute the effective dimensionality of
the cell (‘projection dimension’, denoted in the title of each cell), we projected
the median solo singular vectors on the cross-over singular vectors. This
procedure captures the dimension of the cross-over maps, after removing any
non-separability that might arise from a non-uniform behaviour or noisy
spiking statistics (Methods). Cell117 is aseparable cell (i.e., it canbe described
by multiplication of distance tuning x position tuning), and accordingly its
projectiondimensionis <1.Cells325and 235 are significantly non-separable
cellswith projection dimension>1. e, Scatter plot of projection dimension
computed inthecross-validated SVD analysis, plotted versus A in the left panel
- forall the distance cells that were valid for this analysis (Pearson correlations:
allcells: r=0.50,P=6.96 x 1078, n =262 cells x directions; non-significant cells
[greyl:r=0.43,P=7.16 x10™°, n =189 cells x directions; significant non-
separable cells[red]:r=0.48,P=1.83x107%, n =73 cells x directions); or plotted
versus ainthe right panel (Pearson correlations: all cells: r=0.47,P=6.61 x10~
16 n=262cells x directions; non-significant cells [grey]: r=0.38,P=5.53x107%,
n=189 cells x directions; significant non-separable cells [red]: r= 0.45,
P=5.31x107,n=73 cells xdirections). Importantly, we also verified that the
non-separability of the cells could not be explained by the quality of the spike-
sorting: We found no correlation between the isolation-distance of the cells - a
common metric used for quantifying spike-sorting quality’? - and the non-
separability indices of the SVD analysis (A: Pearsonr=0.09,P=0.15,n=262
cells xdirections; a: Pearsonr=0.08,P=0.18,n =262 cells x directions).
Likewise, we found no correlation between the isolation-distance of the cell
and the distance tuning correlation between pairs of place fields of the same
neuron (asinFig.5b-d; Pearsonr=-0.05,P=0.48,n=170 place-field pairs).
Further, the non-separability could not be explained by non-homogeneities in
click-rate or speed - because the click-rate modulation profile was uniform
alongthe tunnel (Fig. 1f, Extended Data Fig. 2d), and the speed profile was also
uniformalong the tunnel (Extended Data Fig. 6¢, bottom). Thus, the non-
separable codingis agenuine phenomenon.
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Extended DataFig.15|Functional advantage of non-separability:
theoretical decoding analysis. a, Fifteen examples of simulated cells,
showing 2D maps of distance by position for 3 different underlying position
tunings (3 rows) and S different levels of non-separability (5 columns). For each
position tuning (each row), we created different distance modulations using 5
values of the non-separability parameter, x,., (Methods): low x,., generates
separable 2D maps, while larger x,, generates non-separable maps with higher
values of non-separability indices A and a, computed as in the SVD analysis; X,
A\, aareindicated foreach map.b-e, Results of the maximum likelihood
decoder.b,d, Meandistance decodingerror (left) and catastrophic distance
decodingerror (right, 99% percentile of the errors), plottedinlog-scaleas a
functionoftheinterbat distance, separately for simulated populations of cells

withdifferent non-separability values (a values used in panel b, and x,,, values
usedinpaneld). Note that as the population of cellsbecomes more non-
separable (higher a or higher x,.,) the decoding error decreases. ¢, e, Mean
distance decodingerror (left, colour-coded) and catastrophic distance
decodingerror (right) as afunction of the number of neurons used for
decodingand the non-separability index (a valuesusedin panel ¢, and x,,
valuesusedin panele). Note thatin these four matrices, increasing the non-
separability has asimilar effect onerror-reduction as adding more neurons.
f,g, Similar plots tomain Fig.5h, i, but here we used population vector
decodinginstead of maximum likelihood decoding. Both types of decoders
yielded very similar results: As the population of cells became more non-
separable, the decodingerror decreased.
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Extended DataFig.16 | Proposed wiring diagram for explaining the
non-separable distance by position coding. Cartoon of aCAlneuron.
Multipleindependent positioninputs (grey) arrive from neurons with single
placefields in hippocampal area CA3, as was suggested in ref.*, and impinge on
different dendrites of aCAlneuron - formingaplace cell with multiple place
fields. These positioninputs could also originate from medial entorhinal
cortex (MEC)”. Inaddition, we propose thatindependent diverse distance
inputs (pink) arrive to the dendrites of the same CAlneuron. The result of such
convergence betweenindependent distance and positioninputs can createa
non-separable CAl neuron with multiple place fields, each with a different
distancetuningin each place-field - as we observed inmany neuronsinour
data (Fig.3a, Fig.5a-d). It can also create separable neurons (see below).
Several comments are noteworthy here. (1) First, the distance inputs could
arrive possibly fromlateral entorhinal cortex, LEC, where egocentric coding
was reported®, or from the subiculumvia the medial entorhinal cortex
(MEC)'®?'2 These LEC/MEC inputs might activate pyramidal CAlneurons
either directly, or disynaptically through CAlinterneurons’™. We note that
thedistanceinformation canarrive to LEC/MEC from either visual areas
(asthesebats are highly-visual®), orit canreflect echolocation-based sensory
information about the distance from the other bat’>”°. An alternative model
posits thatsince MEC and LEC inputs converge anatomically already in CA3,
upstream of CA1”, itisalso possible that the distance by position tuning might
befoundalready in CA3 - andisinherited from CA3 by the CAlneurons. Both
options could explain the non-separability of the 2D distance-by-position
maps foundin CAL. Future experiments willbe needed in order to test these
possibilities. (2) Second, this schematic wiring-diagram suggests that not only
aCAlneuronasawholecanbe conjunctively tuned to distance by position,
butalso thateach of its single dendrites might be conjunctively tuned toan
independent combination of distance by position. Inother words, each

Distance inputs

Attention
Relevance
Context

position by distance tuning

dendrite may serve as acomplex processing-stage — a possibility thatis
supported by the literature on dendritic computations”™®!, but willneed tobe
tested directlyin future experiments. Consistent with this, we found that most
place-field pairs within the same cell in the data exhibited low correlations
between their distance tunings; only aminority showed high positive
correlations, which may reflect acommon distance input to both fields,
i.e.toboth dendrites (Fig. 5b, small over-representation of positive high
correlations). To account for this possibility, the wiring diagram here shows
alsothattwo dendrites of the same neuron can sometimes receive distance
input from the same neuron in LEC or MEC (see distance input to dendritesno.1
and2inthe schematic). Analternative explanation for this minority of cells
with high correlations (seenin Fig. 5b) might be that the LEC or MEC itself
carries distance by position information; however, the positioninformationin
LECwasreported tobe very weak®, and distance tuning per sewas not reported
todatein MEC - so thisoption seems less likely. Therefore, we believe that our
schematic wiring diagramis more probable. (3) Third, the proposed schematic
model could also explain how sub-threshold position fields, which are not
defined as placefields, are enhanced during cross-overs (Fig. 3d, Extended
DataFig.12: distance tuninginside “interfields”): This can occur viasummation
ofasub-threshold positioninputand sub-threshold distance input, which
together cross the firing-threshold. (4) Fourth and finally, we note thatin this
modelwe positalso external inputs that carry attention, relevance, or context
signals (seerectangle onthe right). These inputs could explain, for example,
why distance tuningis observed during cross-overs, whenitis highly relevant,
but not during tracking (Extended DataFig.9). These hypothesized attention/
relevance/contextinputs may arrive directly to CAl, or viaLEC or MEC - both
options may explainthe attentional modulation of the 2D distance-by-position
coding that we observedin CAl.



Extended Data Table 1| Summary of behaviour and neuronal recordings for all the individual bats

CAl-recorded bats Bat 2299 Bat 2336 Bat 2389 Bat 30 All bats
Experiment type Solo + cross-over Yes Yes Yes Yes
Switching partner Yes No No No
Tracking No No No Yes
. Audio recording Yes Yes Yes Yes
Experiment
type . . .
and Audio recorded simultaneously with neurons Yes No No No
Behavior
Number of recording sessions with CA1 neurons 16 20 16 31 83
Number of cross-overs per session per direction 35.5 40.2 352 19.5 30.6
(mean + s.d.) +14.6 +104 +13.8 +6.4 +13.9
Distance flown per session (km) 11.91 13.06 11.41 14.72 13.14
(mean + s.d.) +3.37 +2.59 +322 +3.67 +3.50
Flight speed (m/s) 6.66 6.79 6.81 7.37 6.96
(mean +s.d.) +0.58 +0.74 +0.54 +0.69 +0.72
Number of recorded neurons in CA1 147 114 72 97 430
Number of putative pyramidal neurons 145 108 62 4 389
p py (98.6%) (94.7%) (86.1%) (76.3%) (90.5%)
Cells Number of putative interneurons 2 6 10 23 4l
P (1.4%) (5.3%) (13.9%) (23.7%) (9.5%)
Pyramidal neurons: Mean firing rate in flight (Hz) 1.0 0.6 1.1 0.9 0.9
(mean *s.d.) +0.8 +0.7 +0.9 +0.9 +0.8
Interneurons: Mean firing rate in flight (Hz) 21.5 29.8 12.4 18.0 18.6
(mean + s.d.) +20.0 +15.2 +9.4 +13.9 +14.0
Pyramidal neurons: valid cells x directions 267 184 114 128 693
Interneurons: valid cells x directions 4 11 18 41 74
Pyramidal neurons: number of significant 230 170 106 107 613
Cells x place cells x directions (86.1%) (92.4%) (93.0%) (83.6%) (88.5%)
directions
Pyramidal neurons: number of significant 44 35 29 17 125
1D distance cells x directions (16.5%) (19.0%) (25.4%) (13.3%) (18.0%)
Interneurons: number of significant 4 5 7 13 29
1D distance cells x directions (100%) (45.5%) (38.9%) (31.7%) (39.2%)
Pyramidal neurons: number of significant 149 98 71 48 366
2D distance-by-position cells (55.8%) (53.3%) (62.3%) (37.5%) (52.8%)
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Sample size We analyzed a dataset of 430 neurons, recorded in dorsal hippocampal area CA1 of 4 bats. The activity of each neuron was recorded for ~2
hours. No power analysis was used to pre-determine the sample size: neither for the number of animals nor for the number of neurons. The
numbers of animals and neurons are typical for studies in this research field, in both rodents and bats (e.g. refs. 16, 18, 19, 24, 60 in the
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Data exclusions  The inclusion criteria for the cells were based on sufficient behavioral coverage, spike number, and firing stability (see Methods), and are
standard for this research field. Exclusion criteria were not pre-determined.

Replication The effects described were confirmed in multiple neurons recorded over multiple recordings-sessions in 4 animals. The findings reported in
this paper were found in each of the 4 individual animals.

Randomization  Not relevant, as there was no randomized treatment of the animals: This study is based on observing the neural responses to the natural
behavior of the animals.

Blinding The investigators were not blinded to the animal identity. Analysis of neural and behavior data was conducted regardless of the identity of the
animal from which the data were collected.
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Laboratory animals No laboratory animals were used in this study. We used here wild-caught animals.

Wild animals We studied here Egyptian fruit bats (Rousettus aegyptiacus). Sex: male. Age: adult, 2-10 years of age (note: these long-living bats
have a life-span of >20 years). We studied N = 4 bats in which neural recordings were performed, and N = 4 partner bats ("other
bats") in which no neural recordings were performed (we performed audio recordings in some of them; Methods). The 8 bats in this
study were all wild-born, and were captured as adults in Israel, using butterfly nets. They were transported in a car to the Weizmann
Institute, where they were quarantined and then joined a large bat colony at the Institute. After a few months in the lab, we ran the
experiments described in this study. Following experiments, the bats were euthanized with Pental for purpose of brain histology.

Field-collected samples  This study did not involve samples collected from the field.

Ethics oversight The experimental procedures described in this study were approved by the Institutional Animal Care and Use Committee (IACUC) of
the Weizmann Institute of Science.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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