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Choice-specific sequences in parietal
cortex during a virtual-navigation
decision task
Christopher D. Harvey1,3,4{, Philip Coen1,4 & David W. Tank1,2,3,4

The posterior parietal cortex (PPC) has an important role in many cognitive behaviours; however, the neural circuit
dynamics underlying PPC function are not well understood. Here we optically imaged the spatial and temporal activity
patterns of neuronal populations in mice performing a PPC-dependent task that combined a perceptual decision and
memory-guided navigation in a virtual environment. Individual neurons had transient activation staggered relative to
one another in time, forming a sequence of neuronal activation spanning the entire length of a task trial. Distinct sequences
of neurons were triggered on trials with opposite behavioural choices and defined divergent, choice-specific trajectories
through a state space of neuronal population activity. Cells participating in the different sequences and at distinct time
points in the task were anatomically intermixed over microcircuit length scales (,100 micrometres). During working
memory decision tasks, the PPC may therefore perform computations through sequence-based circuit dynamics, rather
than long-lived stable states, implemented using anatomically intermingled microcircuits.

In real-world tasks, decision-making and working memory often occur
in the context of other complex behaviours, including spatial naviga-
tion. For example, when driving through a city towards a destination,
sensory information defining context and place engages memory and
decision circuits to plan turns at upcoming intersections. The PPC is a
prime candidate for the neuronal circuitry combining the cognitive
processing elements necessary for such tasks. In primates, the PPC is
important for perceptual decision-making and categorization1–3,
movement planning4 and spatial attention5. Studies in rats suggest that
the PPC is also important for encoding route progression during
navigation6–9. Using a virtual-reality system for mice10 and cellular
resolution optical imaging methods11,12, we developed a T-maze-based
navigation task combining all these cognitive elements and characterized
the neuronal circuit dynamics in the PPC, which have not been studied
in this combined behavioural context.

Neuronal activity patterns in the PPC have been studied using
microelectrode recordings during spatial attention, working memory
and perceptual decision tasks. These studies have commonly found
cells with sustained firing rate changes spanning entire task periods
(cue, delay, response periods)2,4,5,13. For example, cells with persistent
activity throughout the delay period of memory-guided saccade/reach
tasks have frequently been recorded14,15. Also, studies have identified
neurons with ramps of increasing firing rate spanning the accumula-
tion of evidence period in a motion perception task1,2. Neurons with
sustained activity during the same task period often have similar
activity time courses, suggesting the presence of classes of cells (for
example, delay cells) and implying that the task-dependent neuronal
dynamics are low-dimensional. The low-dimensional dynamics can
be reproduced in recurrent attractor network models, in which each
cell’s activity is typically an amplitude-scaled version of a prototypical
time series16–21. In contrast, recent analysis of prefrontal cortex activity
has identified heterogeneous neuronal activity time courses, in which a
neuron’s activity can be thought of as the sum of a few activity modes22–24.

In addition, there is growing evidence for sequences of neuronal activa-
tion within local circuits, in which each neuron is active for only a
fraction of a task period, including during working memory tasks in
the prefrontal cortex25–28 and the hippocampus29 and during an object
construction task in the PPC30. Sequences suggest dynamics that are
high-dimensional, without the presence of classes of cells with relatively
homogeneous activity time courses.

We explored whether PPC dynamics are best described in terms of
cell classes or high-dimensional dynamics. During a navigation-based
decision task, the dynamics were high-dimensional: neurons were
active in choice-specific sequences in which information moves from
one neuronal population to another across time in the task; although the
neuronal activity patterns could be divided into cue, delay and response
groups, sequences were present within each group. Furthermore,
exploiting the ability of cellular resolution optical measurements to
provide the relative anatomical location of the recorded cells12,31,32, we
found that neurons active during behaviourally distinct task periods
and on trials with different behavioural choices were spatially inter-
mixed over microcircuit length scales.

A PPC-dependent navigation-based decision task
Using a virtual-reality system10, we trained mice to navigate through a
virtual T-maze in a task that incorporated both visual discrimination
and a memory-guided response (Methods; Fig. 1a). Visual cues present
in the initial section of the maze indicated which direction to turn at the
T-intersection to receive a water reward (one set of cues to indicate a
right turn and a second set for a left turn; Supplementary Fig. 1c).
Between the cue section and the T-intersection, mice ran through a
delay maze section that was identical on left and right turn trials; visual
information about the reward location was thus present only in the cue
section. The task resembled traditional delay tasks14,15,33 in its cue–
delay–response structure, but differed in that continuing sensorimotor
activity was present throughout the task, including the delay period.
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Mice performed the task with high levels of accuracy (83 6 9% correct,
P , 0.0001 versus 50%, t-test; Fig. 1b). Within and across trials, indi-
vidual mice ran at highly consistent speeds (Supplementary Fig. 2);
however, running speeds varied between mice, and the maze position
at which mice began rotating the spherical treadmill to make a right or
left turn differed across trials (turn onset; Fig. 1c, Supplementary Fig. 3;
Methods). To compare behaviourally similar epochs of the task across
trials, individual trials were aligned to the time points when the cue was
no longer visible (cue offset), the turn onset, and the end of the trial;
these alignment points formed the boundaries of cue (trial start to cue
offset, 5.1 6 2.6 s), delay (cue offset to turn onset, 4.2 6 1.2 s) and turn
task periods (turn onset to trial end, 3.0 6 1.8 s).

Because the location of the mouse PPC has not been characterized,
we first performed retrograde and anterograde labelling experiments
to locate it anatomically (Methods, Supplementary Fig. 4). We iden-
tified a region consistent with the rat and primate PPC based on the
set of areas from where it received axonal projections, the areas to
which it sent projections, and its location relative to other cortical
regions8,34 (anterior to visual cortex and posterior to somatosensory
cortex). We therefore considered this area to be the mouse PPC.

To test if the PPC was required for the behavioural task, we in-
activated it using bilateral injections of the GABAA receptor agonist,
muscimol. Muscimol reversibly decreased behavioural performance
from high levels of accuracy in control sessions to near chance levels,
but did not affect the rate of trials performed (fraction correct; no
injections 87 6 7%, saline 85 6 5%, muscimol 54 6 5% P , 0.0001
versus no injections, t-test: trials per minute; no injections 3.2 6 0.5,
muscimol 3.1 6 0.3, P . 0.8, t-test; Fig. 1d). In contrast, PPC in-
activation did not significantly affect performance on a visually guided
task in which a visual cue was present at the reward site and visible
throughout the trial, indicating that the decrease in performance on the
memory-guided task was unlikely to be due to a major visual or motor
deficit (fraction correct; no injections, 90 6 5%; muscimol, 87 6 5%,
P . 0.2, t-test; Fig. 1e, Supplementary Fig. 1b).

Imaging sequences of neuronal activity
We used two-photon microscopy to image layer 2/3 PPC neurons
expressing the genetically encoded calcium indicator GCaMP3, which

increases in fluorescence intensity in response to action potential
firing35 (Methods). On average, we imaged ,65 cells simultaneously
within an area ,300 mm by ,150 mm (range, 37–94 cells). Nearly all
imaged cells showed statistically significant Ca21 transients during
the behavioural session (96% of cells had .0.2 transients per minute;
Methods). Of the cells with high levels of activity (.2 Ca21 transients
per minute on average; Supplementary Fig. 5), ,73% had significant
increases in their mean fluorescence intensity traces (DF/F, averaged
across trials) during a specific time in the trial or inter-trial interval
(task-modulated cells; Fig. 2, Supplementary Figs 6, 7). These task-
modulated cells had Ca21 transients for only short time intervals on
individual trials (11 6 8% of time points in trials with a transient)
such that only a small fraction of neurons was active simultaneously
(Fig. 2b–e, Supplementary Figs 8, 9a); cells with prolonged activity
patterns covering a large fraction of the trial were not observed. The
majority (,71%) of task-modulated cells had significantly different
levels of activity on correct right and left choice trials (choice-specific
cells). Similar choice-specific, task-modulated activity patterns were
observed in extracellular electrophysiological recordings (Supplemen-
tary Figs 10, 11). Cells were also active on error trials, such that neurons
active during the cue period tended to be correlated with the cue
identity, and neurons active during the turn period in general were
correlated with the behavioural response (Supplementary Fig. 12).
Only a small fraction of cells had obvious reward-related signals
(,2% of active cells with P , 0.01, t-test, comparing DF/F values
within ,0.6 s after the reward was given on correct trials or missed
on error trials).

When the activity patterns of all the choice-specific, task-modulated
cells were ordered according to the time profile of their Ca21 transients,
the active periods across cells were staggered relative to one another in
time, forming a sequence of neuronal activation covering the entire trial
length (Fig. 2c, d, Supplementary Fig. 7c). Different sequences of
neurons were activated on left and right trials (Fig. 2c, d and absence
of activity in Fig. 2d lower plot, Supplementary Fig. 14e). Although
these plots of sequences combined cells from different experiments
and averaged across trials, similar properties were observed when
considering only the cells imaged in a single mouse and on individual
trials (Fig. 2c, Supplementary Fig. 13). Sequences were also apparent in
the ,29% of task-modulated cells that did not have choice-specific
activity; these cells participated in the sequences for both right and left
choice trials (Supplementary Fig. 7b). In total, ,73% of the highly
active cells participated in sequences. Sequences similar to those during
the task were not observed in shuffled versions of the data set, demon-
strating that the sequences were not an artefact created by ordering the
data (Supplementary Fig. 14a–d).

Because previous studies of the PPC have categorized cells into
classes with cue, delay or response period activity14,15, we examined
the activity patterns to see if neurons in the sequence were grouped on
the basis of behavioural periods. The distribution of activity times of
all cells in the population (calculated for each cell as the centre-of-
mass (COM) in time of the mean DF/F during the trial, tCOM) had
three peaks corresponding to the cue, delay and turn periods, suggest-
ing a possible grouping by behavioural period (Fig. 3a). Consistently,
principal component analysis (PCA) of the mean DF/F traces for all
cells revealed three intermixed groups, with each group mostly con-
taining cells preferring the same behavioural period (Fig. 3a, b, Sup-
plementary Fig. 15).

Although the population of neurons could be divided into groups,
the temporal activity patterns within each individual period were
heterogeneous and formed sequences (Fig. 3c). Cells within their pre-
ferred period were active for only a fraction of the period (35 6 16% of
time points in preferred periods with a Ca21 transient), with different
cells active at different times. Although cells with activity covering a
large fraction of the period were occasionally observed (for example,
Fig. 2c top panel), these cells were rare (4% of cells with activity lasting
for .60% of the period; Supplementary Fig. 9b); the distribution of
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Figure 1 | A PPC-dependent decision task in virtual reality. a, Diagram of
the two versions of the virtual T-maze that differed only in the cue period and
the reward location. Patterns in the diagram reflect the patterns present on the
virtual maze walls. b, Behavioural performance on individual training (grey)
and imaging (black) sessions. c, Rotational velocity of the spherical treadmill
about the vertical axis for view angle changes on correct right (red) and left
(blue) trials, aligned to the cue offset and the turn onset. d, Behavioural
performance on a memory-guided task from a after receiving no injections
(grey), saline (open circles) or muscimol (black) bilaterally in the PPC.
Connected dots are from individual mice across daily sessions (n 5 3 mice).
e, Same as in d except for a visually-guided task (Supplementary Fig. 1b; key in
e applies to d also).
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epoch coverage by an individual neuron’s activity was similar during
the delay and cue or turn periods (P . 0.1, Kolmogorov-Smirnov test).
Furthermore, Pearson’s correlations between the non-averaged DF/F
traces for cell pairs with the same trial-type and behavioural period
preferences varied widely, with a large fraction of pairs having low
correlation coefficients (Supplementary Fig. 16a). The low correlation
coefficients could be due to activity at different times in the period, as
expected for sequences, or activity at the same time in the trial except
on different trials. However, the probability that both cells in these
pairs had Ca21 transients or that both cells did not have transients
on the same trial during their preferred epoch was generally high
(Supplementary Fig. 16b), suggesting that the diversity primarily
resulted from differences in the activity times of cells within trials.
Together these data indicate that classes of cells with homogeneous
activity patterns were not present. Rather, choice-specific sequences of
neurons were activated in all behavioural periods, with a lower density
of cells in the sequence at the borders between periods.

To further examine the sequential neuronal activation on indi-
vidual trials, we calculated correlations between the activity patterns
of cells using the non-averaged DF/F time series. Cells that were active

at similar time points in the trial on average (measured as the differ-
ence in tCOM values on correct trials,DtCOM) had, on correct trials and
in their preferred behavioural periods, highly correlated DF/F traces
and peaks in their cross-correlation at a lag approximately equal to
DtCOM (Supplementary Fig. 16d–h); these relationships in the non-
averaged DF/F time series provide further evidence for sequential
activity on individual trials. Cells that were active at similar times
on correct trials were also highly correlated on error trials and in
non-preferred periods (Supplementary Fig. 16c–f). Additionally, cells
that were sequentially activated during their preferred behavioural
period on correct trials were sequentially active with similar lags
during error trials and other time points in the task (Supplementary
Fig. 16g–i).

The choice-specific activity could result if mice experienced differ-
ent visual stimuli and running patterns on right and left trials and if
PPC activity was modulated by those differences. To examine this, we
first performed a multiple regression analysis to determine the poten-
tial effects of the parameters defining the mouse’s running trajectory
on the fluorescence changes during the delay period (Supplementary
Table 1). These parameters could not explain the choice-specific
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Figure 2 | Imaging PPC neuronal activity during the T-maze task. a, Left:
example image of GCaMP3-expressing neurons in layer 2/3. Right: example
fluorescence intensity traces (DF/F; grey portions indicate significant Ca21

transients, Methods) for three example cells from the left panel on correct right
(red) and left (blue) trials. b, Activity patterns during the task for cells 1–3 from
a. Top: colour-coded DF/F traces for individual correct left and right choice
trials. Each row is a single trial aligned to the cue offset, turn onset and trial end.
Bottom: mean DF/F traces for correct right (red) and left (blue) choice trials.
Dashed lines indicate mean 6 s.e.m. c, Normalized meanDF/F traces for all the

choice-specific, task-modulated cells (one cell per row) imaged in a single
mouse and divided by left-preferring (n 5 51) and right-preferring (n 5 54)
cells. Traces were normalized to the peak of each cell’s mean DF/F trace on
preferred trials and sorted by the peak time. Some cells were imaged on
different days and in different fields-of-view. d, Same as in c, except for all mice
(n 5 404 cells from 6 mice) on preferred and opposite trials. e, Fraction of active
cells with significantly different activity levels on right and left choice trials as a
function of trial time.
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activity patterns, suggesting that any differences in running trajectories
between right and left trials did not trigger the activity we observed. In
addition, we performed two sets of experiments to further examine
whether the maze visual stimuli alone or the mouse’s running patterns
triggered PPC activity. In the first experiments, movies of simulated left
and right turn runs through the T-maze, which closely approximated
real runs, were played to mice that passively viewed the visual scenes
(open-loop experiments; Supplementary Fig. 17a, b). In the second
experiments, mice were trained on a virtual linear track to perform a
simple running back and forth task (run to one end for a reward, turn
around, run to the other end for the next reward). The linear track had
several visual patterns on the walls, all of which were the same as
patterns in portions of the T-maze (Supplementary Fig. 18a, b). The
task required similar running and turning behaviours to the T-maze,
except that turns were not memory-guided based on visual cues and a
delay period, and there was not a two-alternative forced-choice struc-
ture. The overall levels of activity during the simulated T-maze runs or
during the linear track task were much lower than when mice actively
performed the T-maze task (Supplementary Figs 17c, d, 18c, d). Also,
only a small fraction of neurons had significant increases in activity at
specific locations in the maze, either during the simulated T-maze runs
or in the linear track, suggesting that cells were not activated robustly
by location-specific visual scenes or running patterns (simulated runs,
1.3% of neurons; linear track, 5.8%; T-maze, 32.3%; Supplementary
Figs 17e–k, 18e–k). Together these results suggest that PPC neurons in
the T-maze were not activated only by the visual information or by the
running patterns of the mouse.

Choice-specific neuronal circuit trajectories
The heterogeneous and sequential neuronal activity patterns during
the T-maze task indicated that we should consider the dynamics of the
population rather than classes of cells. We therefore analysed the
dynamics as a trajectory through a state space of neuronal population
activity (neuronal circuit trajectory)36–38. At each time point, the activity
state of the circuit containing n simultaneously imaged neurons was
defined as a point in an n-dimensional space, with each dimension
representing the activity (DF/F values) of a single neuron. Different

trajectories (visualized using factor analysis for dimensionality reduc-
tion) were traversed for trials with different behavioural choices
(Fig. 4a, b, Supplementary Fig. 19a). The trajectories for correct right
and left choice trials began the trial at similar positions, gradually
diverged to reach a peak separation near the time of the behavioural
choice, and converged to the starting point in the inter-trial interval
(Fig. 4a–d). To quantify the trajectory divergence, we used a classifier
based on the distance from an individual trial trajectory to the mean
right and left choice trajectories at single time points. It was possible,
from the activity of a small population of neurons located in close
anatomical proximity (,65 neurons separated by ,250mm), to pre-
dict the mouse’s choice on single correct trials at better than chance
levels during the cue, delay and turn periods (Methods; Fig. 4e,
Supplementary Fig. 19b, c). The activity in the PPC can therefore be
considered as divergent, choice-specific trajectories through a state
space of neuronal population activity.

Trajectories were highly variable on error trials. Some trajectories
began close to the correct choice trajectory during the cue period and
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Figure 3 | Neuronal activity in individual behavioural periods. a, Histogram
of the times of the centre-of-mass of the mean DF/F trace (tCOM) for choice-
specific, task-modulated cells. Cells were separated into three groups (cue-,
delay- and turn-preferring cells; varying shades of green) based on peaks in the
distribution. b, PCA on the normalized mean DF/F traces for all the choice-
specific, task-modulated cells. Left, scores for each cell plotted for the first two
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groupings from a. n 5 404 cells. c, Sorted normalized meanDF/F traces for cue-
preferring (n 5 101), delay-preferring (n 5 133) and turn-preferring (n 5 170)
cells, aligned to the trial start, cue offset and turn onset, respectively, on the
preferred trial-type.
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transitioned towards the error choice trajectory later in the trial; such
transitions occurred at a wide range of points in the trial (grey traces in
Fig. 4f, Supplementary Fig. 19f). Other trajectories were similar to the
error choice trajectory throughout the trial (Fig. 4f, black traces). On
average, the error trial trajectories were more similar to the correct
choice trajectory during the cue period and closer to the error choice
trajectory during the turn period (cue offset; trajectory selectivity
index 5 20.13 6 0.22, P , 0.001 versus 0, t-test: trial end; trajectory
selectivity index 5 0.18 6 0.15, P , 0.001 versus 0; Fig. 4g; consistent
results based on classification, Fig. 4h). Therefore, individual trajectories
transitioned between the mean correct right and left choice trajectories
at many time points during trials, but most frequently switched during
the delay period.

Anatomical micro-organization of PPC dynamics
To determine how the cells implementing the activity dynamics were
anatomically organized, we first examined the neuronal activity patterns
to see if cells with different response preferences, such as activity peaks at
different times in the trial or different preferences for right and left
choice trials, were present in the same regions of the PPC or separated
into different areas. Each ,250mm by ,125mm area (that is, field-of-
view with simultaneously imaged cells) contained both right and left
choice-preferring cells of approximately equal numbers and cells with
activity peaks at a wide range of times in the trial (Fig. 5a–c, Sup-
plementary Fig. 20). Next, within each imaged area we compared the
activities of pairs of neurons as a function of the distance between the
neurons’ cell bodies. The difference in the trial-type selectivity for cells
in a pair did not depend significantly on the distance between cells,
indicating that left and right choice-preferring cells were intermixed
(r 5 0.04, Spearman’s correlation, P . 0.05; Fig. 5e). Similarly, DtCOM

for a cell pair did not differ with the distance between the cells,
indicating that cells active during different periods of the task were
intermingled (r 5 20.01, P . 0.6; Fig. 5d). However, cells that were
separated by less anatomical distance had DF/F traces that were sig-
nificantly more correlated than cell pairs further apart, but the rela-
tionship between the correlation coefficient and distance was weak (all
pairs of active cells; r 5 20.16, P , 0.001: pairs with the same trial-
type and behavioural period preference; r 5 20.22, P , 0.001; Fig. 5f).
This weak relationship could be due to overlapping fluorescence
changes, such as from dendritic signals, or could reflect an actual, weak
spatial organization. Regardless, cells with highly different activity
patterns were intermixed over short length scales, and an anatomical
separation of the response properties we measured was not present.

Discussion
The choice-specific sequences of PPC neuronal activation we report here
add to the growing list of studies that have identified cortical sequences
of activity states during working memory tasks27–30. Furthermore,
because we demonstrated that PPC activity was necessary only for the
memory-guided task, the sequences of activation were probably import-
ant at least for the memory aspect of the task. Sequence-based dynamics
may therefore be a common framework for circuit function during
memory and decision tasks, including during navigation behaviours.
Such dynamics could potentially be implemented using feedforward
architectures39,40 or liquid state machines41,42 related to those that have
been proposed for working memory.

Our results also offer a way to unite previous work on neural coding
in the PPC. Navigation, memory and choice information may be com-
bined in the sequences such that the identity of the active sequence
reflects choice-related information for working memory and move-
ment planning4,5, and that the currently active cell within the sequence
reflects spatial or temporal progression through the task7,43, which were
highly correlated in our task (Supplementary Fig. 2). It seems unlikely
that PPC neurons only provided location information in a context-
dependent manner, like hippocampal place cells29,44, because unlike
place cells PPC neurons did not encode spatial location during a linear
track task (Supplementary Fig. 18) or other tasks6,7.

A possible explanation for heterogeneity and sequences in our
experiments versus stereotypy and low-dimensional dynamics, which
have been emphasized in previous recordings and models of PPC
activity1,13–18,20,21, is that the PPC adopts different dynamics depending
on the demands of the behavioural task. Because traditional delayed
saccade tasks, for example, have one spatiotemporal component
during the delay period (fixation before making a response), the
PPC may adopt sustained activity patterns. In contrast, during tasks
that involve many spatial and temporal components, as are common
in natural behaviours and during navigation, the PPC may utilize
sequences of activation. Alternatively, sequences of activity may be
present in the primate PPC during traditional tasks but have yet to be
identified, consistent with emerging evidence for heterogeneous tem-
poral response properties22–24,30. In addition, different regions or
layers of the PPC may have differing activity dynamics45, or the
dynamics of rodent and primate PPC circuits may differ.

Because cells that were active at distinct time points in the task and
that participated in different choice-specific sequences were spatially
intermingled, our results indicate that functionally distinct sub-
networks are anatomically interlaced in the PPC. This extends pre-
vious work in sensory cortex, motor cortex and the hippocampus
showing spatial intermixing of heterogeneous response properties in
cells encoding qualitatively similar types of information (for example,
orientation selectivity in visual cortex) or in cells with activity during
similar task epochs12,31,32. Our findings differ from the predictions of
models that have emphasized the spatial clustering of similar response
patterns, as in functional columns, and that propose connectivity
defined by axonal–dendritic overlap without fine-scale specificity46,47.
Rather, our results support a model in which microcircuits are formed
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Figure 5 | Anatomical micro-organization in the PPC a, Example field-of-
view with cells outlined and choice-specific, task-modulated cells coloured.
Left, cells’ trial-type selectivity, defined as (DF/Fright trials 2DF/Fleft trials)/(DF/
Fright trials 1DF/Fleft trials). Values close to 1 (red) and 21 (blue) indicate right
and left choice preferences, respectively. Right, cells’ time of the centre-of-mass
of the mean DF/F trace (tCOM). tCOM 5 0 corresponds to ,3 s before the cue
offset. b, Box plots of tCOM values for task-modulated cells in individual fields-
of-view (box edges, first and third quartiles; vertical line in the box, median;
whiskers, range) c, Number of right and left choice-preferring cells in each field-
of-view (n 5 29; unity line is shown). d, Difference in tCOM as a function of the
distance between cells. e, Difference in the trial-type selectivity index as a
function of the distance between cells. f, Pearson’s correlation between non-
averaged DF/F traces (all time points) for all pairs of active cells (black) and cell
pairs with the same trial-type and behavioural period preference (grey) as a
function of the cell–cell distance.
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by highly specific synaptic connectivity and are composed of neuronal
motifs, such as those identified in brain slice recordings in sensory
cortices48,49 and amongst visual cortical neurons with the same ori-
entation selectivity50. Our results showing that cell pairs that were
sequentially active during their preferred periods on correct trials
had similar activity relationships even during error trials and the
inter-trial interval suggest the presence of such motifs (Supplemen-
tary Fig. 16g-i).

The behavioural task used here did not isolate the decision-making
process. We note however that activity trajectories occasionally
switched during a trial between the prototypical correct left and right
choice trajectories, including frequently on error trials, suggesting
that the mouse’s decision was not necessarily irreversibly reached
immediately after a trial’s start (trajectory selectivity switch during
the delay period or last 1 s of the cue period; 63% of error trials, 20% of
correct trials; Fig. 4d, g, Supplementary Fig. 19e, f). Sequences may
therefore play a role in some aspect of decision-related processes, but
further experiments will be necessary to assess this possibility.

Our results motivate consideration of a conceptual framework for
decision-making and working memory in which sensory information
used for the decision activates a neuronal sequence of activity. The
sequence begins in a choice-independent state, which could be
mediated by neurons that are not choice-specific (Supplementary
Fig. 7b), and then moves towards a choice-specific trajectory and away
from other trajectories in a manner dependent on the incoming
information. A decision is proposed to be reached when the sequence
of activity intersects a choice-specific trajectory; different decisions
involve intersections with different trajectories. Upon reaching a
decision, a working memory can be maintained by continuing along
that choice-specific trajectory. Changing decisions would occur through
transitions between trajectories, but as time progresses in the task, the
state space distance between trajectories increases, in effect creating a
larger barrier to change. In this view, decision-making and working
memory utilize an ordered progression through a sequence in which
information moves from one population of neurons to another over
time. The framework we propose is an extension of a point-of-view first
considered in describing the dynamics underlying behavioural choices
in the leech nervous system37. It has some similarities with (and some
differences from) drift/diffusion-to-bound, race, and recurrent network
models of decision-making implemented as neuronal integrator
winner-take-all circuits2,16. These models are similar to the trajectory-
based view in that different decisions correspond to a divergence in state
space surrounding a separatrix. However, these models differ from the
sequence framework in that decisions are reached when the activity
approaches a choice-specific fixed point with working memory
maintained as stable activity at that point. Thus, although these
circuits can demonstrate divergent trajectories to reach the fixed points
associated with different choices, the trajectories are defined by
relatively homogeneous changes in the activity of the population,
and the same set of neurons participate in all stages of the decision-
making and working memory process.

METHODS SUMMARY
Using a previously described virtual-reality system10, male C57/BL6 mice were
trained using operant conditioning to navigate through a virtual T-maze to
receive water rewards. Translation and rotation in the virtual environment were
controlled by the mouse’s running on a spherical treadmill. Training was
performed using shaping implemented as a set of six mazes of increasing task
difficulty. Retrograde tracing was performed using fluorescent beads, and
anterograde tracing was performed following injections of adeno-associated virus
(AAV) containing GFP or GCaMP3. Muscimol injections for PPC inactivation
were made bilaterally ,350mm beneath the dura (50 nl, 1 ng nl21). Imaging was
performed using a custom two-photon microscope incorporated with the virtual-
reality system, as described previously12. Imaging occurred at 2–6 weeks after
injection of AAV2/1-synapsin-1-GCaMP3 virus35. A complete description of
the experimental methods and data analysis is available in the Supplementary
Information.
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