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SUMMARY

How information encoded in neuronal spike trains is
used to guide sensory decisions is a fundamental
question. In olfaction, a single sniff is sufficient for
fine odor discrimination but the neural representa-
tions on which olfactory decisions are based are
unclear. Here, we recorded neural ensemble activity
in the anterior piriformcortex (aPC) of rats performing
an odor mixture categorization task. We show that
odors evoke transient bursts locked to sniff onset
and that odor identity can be better decoded using
burst spike counts than by spike latencies or
temporal patterns. Surprisingly, aPC ensembles
also exhibited near-zero noise correlations during
odor stimulation. Consequently, fewer than 100 aPC
neurons provided sufficient information to account
for behavioral speed and accuracy, suggesting that
behavioral performance limits arise downstream of
aPC. These findings demonstrate profound trans-
formations in the dynamics of odor representations
from the olfactory bulb to cortex and reveal likely
substrates for odor-guided decisions.

INTRODUCTION

Active sampling is an important component of sensory process-

ing that can result in chunking of information into short, discrete

epochs of a fraction of a second, as exemplified by visual fixa-

tions. In olfaction, rodents exhibit rapid stereotyped respiration

at theta frequency (called sniffing) during active exploration

(Wachowiak, 2011; Welker, 1964). Behavioral experiments

have shown that a single rapid sniff can support accurate

odor discrimination (Uchida and Mainen, 2003; Wesson et al.,

2008), suggesting that each sniff generates a relatively com-

plete ‘‘snapshot’’ of an olfactory world, and constitutes a unit

of odor coding (Kepecs et al., 2006). Despite these observations,
however, how sensory information is represented on this

timescale and how it is transformed in the brain to ultimately

control behavior remain unclear.

Studies in the olfactory bulb, the first relay in the olfactory

neural pathway, have shown that odor stimulation triggers

diverse temporal patterns of activity at the level of the olfactory

nerve inputs and mitral/tufted cells, the exclusive outputs of

the olfactory bulb (Cang and Isaacson, 2003; Friedrich and

Laurent, 2001; Hamilton and Kauer, 1989; Junek et al., 2010;

Macrides and Chorover, 1972; Margrie and Schaefer, 2003;

Meredith, 1986; Spors and Grinvald, 2002; Wehr and Laurent,

1996; Wellis et al., 1989). During sniffing, spiking activity of

mitral/tufted cells show diverse and reliable temporal patterns

at the resolution of tens of milliseconds (Carey and Wachowiak,

2011; Cury and Uchida, 2010; Shusterman et al., 2011). These

dynamic response patterns, in particular, those in the initial

portion of the response (�100 ms), convey substantial odor

information compared to the total spike counts contained in

the entire period of a theta sniff cycle (Cury and Uchida, 2010),

suggesting that timing of spikes plays a critical role in rapid

and accurate odor coding in the olfactory bulb.

Compared to the olfactory bulb, relatively little is known about

how odor information is coded by neurons in the olfactory cortex.

Neurons in the olfactory bulb project broadly to the cortex

without apparent topography (Ghosh et al., 2011; Miyamichi

et al., 2011; Nagayama et al., 2010; Ojima et al., 1984; Sosulski

et al., 2011) and odor stimulation activates widely distributed

neurons in the cortex again without apparent topography (Illig

and Haberly, 2003; Rennaker et al., 2007; Stettler and Axel,

2009), suggesting that the olfactory cortex might use a different

mechanism for odor coding than the olfactory bulb. To elucidate

coding principles in the olfactory cortex that underlie rapid olfac-

tory decisions, here we examined (1) how active sniffing shapes

neural responses, (2) whether spike times or rate carry more

information, and (3) the nature of odor coding at the ensemble

level. We show that odor inhalation triggers a transient burst of

spikes time-locked to inhalation onset. In contrast to the olfac-

tory bulb, timing of spikes conveyed little additional information

compared to the total spike counts, demonstrating a profound

transformation of coding mechanisms between the olfactory
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Figure 1. Odor Mixture Categorization Task and Behavioral Performance

(A and B) Schematic of odor mixture categorization task. Rats were trained to respond to the left or right reward port depending on the dominant component in

a mixture. Task difficulty was varied by changing ratios of two odorants of a given odor pair (A/B: 0/100, 32/68, 68/32, 100/0). Three pairs of odors were used and

all the stimuli were randomly interleaved in a session. Odors are indicated by colors: yellow, caproic acid; red, 1-hexanol; blue, ethyl 3-hexenoate; magenta,

dehydroxy linalool oxide; green, citralva; cyan, cumin aldehyde. Intermediate colors represent binary mixtures of the pure odors.

(C) Task timing and respiration patterns. An odor was delivered in the odor port upon entry with a pseudorandom delay of 0.2–0.5 s. In a self-paced version of the

task (reaction time paradigm, black line), rats were allowed to respond as soon as they decided to leave the port. In the go-signal paradigm, rats had to wait until

a tone (go-signal, gray line) is played 700 ms after odor onset. Respiration patterns were monitored using a temperature sensor in the nasal cavity (the voltage

signal from a nasal thermocouple). The gray shading indicates the timing of odor sampling.

(D) Psychometric curve. The behavioral performance for the 12 odors (same color code as A) were fitted by a sigmoid curve as a function of mixture ratio. Task

performance accuracy was higher for pure compared to mixture stimuli.

See also Figure S1.
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bulb and cortex. Furthermore, odor stimulation reduced corre-

lated noise among neurons, which facilitated the efficiency of

population coding in the olfactory cortex.

RESULTS

We recorded spiking activity of olfactory cortical neurons in rats

while simultaneously monitoring their sniffing and performance

in a two-alternative choice odor mixture categorization task

(Uchida and Mainen, 2003; Figure 1A). The stimuli consisted of

three or four odor pairs with each odor delivered either alone

(100/0, 0/100) or in mixtures (68/32, 32/68) (Figure 1B). All stimuli

were randomly interleaved and one odor of each pair was

assigned to the right and the other to the left choice port, with

mixtures rewarded according to the dominant component. One

set of subjects (n = 5) performed a reaction time version of the

task, taking one to two sniffs between odor onset and response

initiation (1.71 ± 0.01; see Figure S1B available online; Uchida

and Mainen, 2003). A second set of subjects (n = 3) was trained

to wait for a tone (Rinberg et al., 2006) at 700 ms delay from odor

valve onset in order to enforce a longer odor sampling period

(Figure 1C) and more sniffs (3.84 ± 0.03, p < 0.05 compared

to reaction time paradigm; Figure S1B). In both paradigms,

rats sniffed at theta frequency during odor sampling (7.18 ±

0.29 and 6.35 ± 0.27 s�1, respectively; Figure 1C). Task perfor-

mance accuracy was higher for pure than mixture stimuli across

all pairs, but was independent of the training paradigm and of the

number of sniffs taken within a given paradigm (Figures 1D, S1C,

and S1D). Thus, as previously reported (Uchida and Mainen,

2003), a single sniff was sufficient for maximal performance by

rats in this odor mixture categorization task.

We recorded from ensembles of up to 21 neurons (9.4 ±

4.7, mean ± SD) in the anterior piriform cortex (aPC) using chron-
1088 Neuron 74, 1087–1098, June 21, 2012 ª2012 Elsevier Inc.
ically implanted tetrodes during performance of the above tasks

(see Experimental Procedures for details). From a total of 460

well-isolated single neurons, 179 neurons recorded using a fixed

panel of 6 odorants formed the primary data set for the subse-

quent analyses. Given the similarity of behavioral performance

in reaction-time and go-signal paradigms, data from these ex-

periments was pooled (91 neurons from the reaction time para-

digm and 88 neurons from the go-tone paradigm).

Sniffing ofOdors Triggers Transient SpikeBursts Tightly
Locked to Inhalation Onset
Previous studies have noted relatively brief, burst-like responses

in PC (McCollum et al., 1991;Wilson, 1998), but these studies did

not explicitly compare neural responses with respiration. We

found that odor responses in aPC consisted typically of a tran-

sient burst of spikes time-locked to the onset of odor inhalation.

Aligning spike times relative to the onset of the first sniff after

odor onset revealed a much tighter temporal organization than

was apparent by aligning on odor valve opening (Figures

2A–2C). Indeed, some responses were detectable only using

sniff locking (Figures S2A and S2B). Responses peaked rapidly

(Tpeak: 99 ± 45 ms from the first inhalation onset, median ± SD;

Figure 2D) and returned to baseline rapidly (full-width at half

max: 32 ± 24 ms, median ± SD; Figure 2E). Thus, odor-evoked

transients lasted approximately one sniff cycle (158.1 ±

40.2 ms, mean ± SD).

Odor Stimulation Evokes Broadly Distributed,
Moderately Sparse Ensemble Neurons
Single neurons in aPC showed robust and stimulus-specific

responses to odor stimuli (Figure 3A). Relatively little selectivity

for spatial choices (left versus right) or reward outcomes was

observed (Figure 3B). As a population, 45% of aPC neurons
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Figure 2. Sniffing of Odors Triggers Transient Spike Bursts Tightly Locked to Inhalation Onset

(A and B) Activity of an example aPC neuron. Raster plots represent neural activity with each row corresponding to a single trial (n = 37 trials) and each tickmark to

a spike. Peri-event histograms are overlaid (green and red, smoothed with a Gaussian filter with the standard deviation of 7.5 ms). Trials are aligned to onset of

odor valve opening (A) or first sniff after odor valve opening (B). In (B), periodic spontaneous activity before t = 0 that reflects sniffing is evident.

(C) Comparison of peak firing rates between the two alignment conditions (odor valve opening versus first sniff onset). Instantaneous firing rates were calculated

after smoothing the peri-event histogram using a Gaussian filter (SD: 7.5 ms). The arrow denotes the example in this figure (A and B). A baseline firing rate (0 to

0.5 s before odor valve onset) was subtracted for each neuron-odor pair. The peak firing rates are higher when triggered by the first inhalation onset (p < 10�10,

Wilcoxon signed-rank test).

(D) Histogram of peak timing. Data from 243 odor-responsive neurons.

(E) Histogram of temporal half width of peak firing. Same data as in (D).

See also Figure S2.

Neuron

Odor Coding in the Piriform Cortex
were activated by at least one of the six odors tested while 28%

were activated by two or more (Figures 3C, 3D, and S3; p < 0.05,

Wilcoxon rank-sum test). Conversely, each odor caused signifi-

cant responses in 16.5% ± 3.1% of aPC neurons (mean ± SD,

n = 6 odors, 10.3% excitatory, 6.2% inhibitory). The probability

of response of a piriform neuron to an odor was well-fit by

a binomial distribution with an extra allowance for nonrespond-

ing neurons (Figure 3D). We calculated a population sparseness

of 0.41 and a lifetime sparseness of 0.61 (see Experimental

Procedures), somewhat lower than previously observed in aPC

of anesthetized rats (Poo and Isaacson, 2009). Therefore, aPC

responses were observed in broadly distributed, moderately

sparse neural populations, largely consistent with previous

studies (Poo and Isaacson, 2009; Rennaker et al., 2007; Stettler

and Axel, 2009; Zhan and Luo, 2010).

Spike Counts Carried More Reliable and Rapid
Information Than Temporal Patterns
The latency and peak timing of aPC responses varied across

neurons and odors, raising the possibility that these parameters

may carry odor information (Cury and Uchida, 2010; Figures 4A

and 4B). However, both of these timing parameters were anti-

correlated with spike counts (Figures 4C and 4D), suggesting

that the information conveyed by these variables might be

redundant. In order to quantify the amount of information carried

by different response variables (i.e., latency, peak timing and
spike counts), we performed a decoding analysis to ask how

accurately an ideal observer could classify each individual trial

as belonging to one of six odor stimuli. By comparing decoding

accuracy using vectors consisting of different variables derived

from aPC responses, we compared the relative importance of

each coding strategy. As decoders (ideal observers), we used

linear classifiers including perceptrons and support vector

machines with linear kernels. These decoders essentially calcu-

late a weighted sum of inputs followed by a threshold and there-

fore resemble a biophysical decoding of aPC information that

might actually be implemented in downstream areas.

Input codes based on the total number or rate of spikes in a

sniff cycle provided the most reliable performance in odor

classification, whereas codes based on first spike latency or

peak timing performed significantly worse (Figure 4E). Further-

more, combining latency or peak timing with rate failed to

improve decoding accuracy. Although it has been postulated

that spike times may provide a more rapid coding mechanism

(Cury and Uchida, 2010; Gollisch and Meister, 2008; Thorpe

et al., 2001), we found that decoders using spike count actually

performed faster than those based on spike latency or peak

timing (Figure 4F), demonstrating that spike counts can convey

information both more quickly and in a more reliable manner.

Furthermore, decoding based on complete temporal patterns

of activity in a sniff cycle did little to improve decoding accuracy

(Figure 4G). Finally, using phase of spike occurrence with
Neuron 74, 1087–1098, June 21, 2012 ª2012 Elsevier Inc. 1089
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Figure 3. Moderately Sparse, Distributed Population Odor

Responses in aPC

(A) Odor-evoked responses of an example neuron during first sniff cycle after

odor onset. The bottom colors indicate odors tested (same colors as in Fig-

ure 1B). The middle plot shows the firing rates in first sniff after odor valve

opening (40–160 ms from inhalation onset) as a function of odor stimuli. The

dashed line indicates the firing rate at the preodor sniff. The top colors indicate

the magnitude of odor response to each stimulus. The response magnitudes

were calculated as a comparison with blank (no odor) trials using signal

detection analysis (area under the receiver operating characteristics curve,

auROC; see Experimental Procedures). Scale is shown in (C) (red: excitatory

response with perfect discriminability, black: no discriminability [no response],

blue: inhibitory response with perfect discriminability).

(B) Statistical analysis of neural activity during first sniff (40–160 ms window

from sniff onset) (three-way ANOVA performed for each neuron with factors of

stimulus identity, choice direction and reward outcome, p < 0.05). Neural

responses during this period mostly reflect odor stimuli but not behavioral

choice or reward outcomes.

(C) Summary of odor responses (179 neurons). Odor response magnitudes

were indicated as in (A), top (also see color scale). Nonsignificant responses

(p > 0.05, Wilcoxon rank-sum test) are shown in black. The example neuron in

(A) is indicated by the arrow. Neurons are sorted by preodor firing rates in an

increasing order.

(D) Histogram of number of pure odorants that activated a given neuron

(p < 0.05, Wilcoxon rank-sum test). Two lines represent binomial fits with

(purple; nonresponsive p0 = 0.50, the other neuron respond with p = 0.16/

(1-p0) = 0.33) or without allowance of extra nonresponsive neurons (orange; p =

0.16). As a population, 45% of aPC neurons were activated by at least one of

the six odors testedwhile 28%were activated by two ormore (<0.05,Wilcoxon

rank-sum test).

See also Figure S3.
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respect to sniffing cycle instead of absolute time did not improve

the decoding accuracy (Figure 4H). Together, these results

suggest that spike rates or counts are the predominant carrier

of olfactory information in the aPC, and that the dependence of
1090 Neuron 74, 1087–1098, June 21, 2012 ª2012 Elsevier Inc.
odor coding on spike timing is greatly reduced compared to

the olfactory bulb (Cury and Uchida, 2010).

Information Conveyed by the Spike Counts Provided
in Burst Activity Can Account for the Speed
and Accuracy of Odor Discrimination
We next compared the performance of aPC populations

decoded using linear classifiers to the performance of the

animal. Decoding based on total spike counts in the first sniff

using the entire 179 neurons gave nearly perfect performance

on pure odors (Figures 5A and 5B). For both pure and mixture

stimuli, the accuracy of the classifier reached a level compa-

rable to that of the animal using only about 70 neurons (Fig-

ure 5A). Analysis of the time course of decoding using a short

sliding time window showed that the maximum information

could be read out from the initial burst of activity within

100 ms after the first inhalation onset and that the rate of infor-

mation dropped thereafter (Figures 5B and 5C). Comparing the

first and second sniff separately, spikes in the first sniff gave

significantly higher accuracy than those in the second sniff

or the last sniff before odor port exit (Figure 5D; p < 0.05,

c2 test), and using both the first and second sniff cycles resulted

in only a small increase in accuracy (Figure 5D). Therefore, spike

counts in ensembles of aPC neurons appear to be sufficient to

explain both the speed and accuracy of decisions in an odor

mixture discrimination task.

Spike Counts in Ensemble Activity Correlate with
Behavioral Choices
If firing rates across ensembles of aPC neurons are used by the

brain to form behavioral responses, and if sensory uncertainty

reduces performance accuracy, as in the mixture trials, then

we might be able to observe trial-by-trial correlations between

decoding based on these neural representations and the

animals’ choices. To test this idea, we first compared neuronal

firing rates on correct and error choices for a given stimulus,

a measure analogous to ‘‘choice probability,’’ a measure that

has been used previously to test the role of a neural representa-

tion in behavior (Britten et al., 1996; Cury and Uchida, 2010;

Parker andNewsome, 1998).We found a low average correlation

between the firing rates of individual neurons and subjects’

choices (avg. choice prob. = 0.51 ± 0.011; Figures 5E and 5F).

This correlation was somewhat smaller than those found in

previous observations in visual cortex (0.53–0.7; Britten et al.,

1996; Cohen and Newsome, 2009; Dodd et al., 2001; Uka and

DeAngelis, 2004). However, if the information for choices is

distributed across a large number of uncorrelated aPC neurons

such that the contribution of single neurons is diluted (Cohen

and Newsome, 2009), then we reasoned that the accuracy of

decoding based on simultaneously recorded ensembles may

be correlated on a trial-by-trial basis with behavioral choices.

Indeed, we found that patterns of spike counts across aPC

neurons in correct trials provided significantly higher decoding

accuracy than patterns in error trials (Figure 5G; p = 0.030,

Wilcoxon test). In contrast, decoding using peak timing or

latency did not show a significant difference between correct

and error trials (Figures 5H and 5I; p > 0.05, Wilcoxon test).

Therefore, spike rates in aPC not only carry substantial stimulus
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Figure 4. Rapid and Accurate Readout of Odor Information Based on Spike Counts in First Sniff

(A) Activity of an example neuron in response to two different odors. This neuron responded to the two odors with different temporal profiles.

(B) Trial-to-trial relationship of peak timing and total spike counts (same neuron and odors as in A). Each dot corresponds to one trial. Peak time is defined as the

time when the smoothed firing rate profile reaches the maximum firing rate within the first sniff cycle.

(C and D) Correlation coefficients between spike counts and peak timing (C) and latency (D) for 908 neuron-odor pairs. Black bars indicate significant correlations

(p < 0.05).

(E) Odor decoding accuracy of a linear decoder based on different firing features. Information contained in ensemble neural activity (179 neurons) in one sniff

(40–160 ms from inhalation onset) was quantified by the accuracy with which a linear classifier (support vector machine with a linear kernel) can correctly identify

one out of six odors on a trial-by-trial basis (see Experimental Procedures). Decoding accuracy for six pure odors (black) and six odor mixtures (gray) are plotted

separately. Latency: time of first spike. Peak: time of peak firing rate. Count: total spike count. L&C: latency and spike count. P&C: peak time and spike count.

(F) Odor decoding accuracy with increasing window lengths. Decoding using peak timing does not result in any faster performance than that using only spike

counts. A total of 179 neurons are used. The decoding is based on trials with pure odors. Chance performance level is 16.67% (=1/6, horizontal thin line). Black

horizontal dashed line indicates the behavioral performance level for pure odors. Three curves (L&C, P&C, and Count) are highly overlapping.

(G) Odor decoding accuracy of a linear classifier, plotted as a function of bin size (10 ms to 160 ms, i.e., temporal resolution). A 160ms time window after the first

sniff was first equipartitioned into smaller sized bins (80, 40, 20, or 10ms, respectively) and then the spike counts in all the bins were used for classification. Black,

pure; gray, mixture stimuli. Black and gray horizontal dashed lines indicate the behavioral performance levels for pure and mix odors, respectively.

(H) Odor decoding accuracy based on spike counts and phases for pure and mixture trials. Spike time: spike counts in 160 ms 3 1 bin. Phase: spike counts in

eight bins equipartitioning the first sniff cycle. Note that bin widths vary by trials in Phase. For fair comparisons, decoding accuracy was plotted against the mean

number of spikes per trial instead of the number of neurons.

Neuron

Odor Coding in the Piriform Cortex
information, they are also correlated at an ensemble level with

the behavioral choices of the animal.

Near-Zero Noise Correlations during Odor Inhalation
The above results indicate that odor information is coded by

a large number of neurons in aPC. A critical feature of information

coding in neuronal ensembles is the structure and magnitude

of correlated fluctuations in firing, which can affect the ability

of downstream neurons to decode the information. A simple

example of ensemble decoding is population averaging or pool-

ing. By this strategy, neuronal noise can, in principle, be elimi-

nated by averaging the activity of a large number of neurons.

However, if noise is not random across neurons, that is, if

neural activity cofluctuates across neurons, the benefit of pool-

ing can be significantly curtailed (Cohen and Kohn, 2011; Zohary

et al., 1994). The choice probability analysis suggested that aPC
neurons are actually veryweakly correlated. To testmore directly

whether such correlations affect representations of odors in the

olfactory cortex, we analyzed the ‘‘noise correlations’’ between

pairs of simultaneously recorded aPC neurons (see Experimental

Procedures). Noise was defined as the trial-to-trial variability of

spike counts in a sniff cycle (40–160 ms after the first sniff onset)

around the mean response under a given stimulus condition.

Noise correlation was defined as the correlation coefficient

between the noise of two neurons to multiple presentations of

a given odor stimulus. We found surprisingly low noise correla-

tions among aPC neurons (0.0046 ± 0.0988; mean ± SD; n =

936 pairs; Figures 6A and S5). In fact, both the mean and the

standard deviation of noise correlations of the aPC data were

similar to trial-shuffled data in which all correlations are removed

(0.00011 ± 0.0870; Figures S5C–S5F), suggesting that deviations

from zero were mostly due to the effect of finite sample size
Neuron 74, 1087–1098, June 21, 2012 ª2012 Elsevier Inc. 1091
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Figure 5. Information Conveyed by the Spike Counts in the Burst Activity Can Account for the Speed and Accuracy of Odor Discrimination

(A) Decoding accuracy as a function of the number of neurons. Total spike counts within 40–160ms after the first sniff onset were used. Black: pure; gray: mixture

stimuli. Dashed lines indicate behavioral performance levels.

(B) Time course of odor decoding accuracy. A vector consisting of instantaneous spike counts of 179 neurons in a sliding window (width, 50 ms; step, 5 ms) was

used for the input to a classifier. Training of the classifier and testing were done at every time point.

(C) Time course of odor decoding accuracy after the second sniff onset.

(D) Odor decoding accuracy at different sniff cycles. 1, first sniff; 2, second sniff; L, last sniff before odor port exit. +, sum of the spike counts from first and second

sniffs. &, spike counts from the first and second sniffs are treated as independent inputs to a classifier. Note that the last sniffs contain first or second sniff

depending on how many sniff the animal took in a given trial. The neural response at the first sniff is more informative than the second and the last sniffs.

Combining first and second sniffs improved decoding accuracy only a little (statistically not significant either for pure or mixture odors, p > 0.05, c2 test).

(E) Comparison of the responses of an example neuron to the same odor on correct trials and error trials.

(F) Choice probabilities: correlations between a trial-to-trial variability in neural activity and a choice toward neuron’s preferred direction. Only mixture odor trials

were used to obtain a larger number of error trials. The fraction of neurons with significant choice probabilities >0.5 is significantly larger than the fraction with

significant choice probabilities <0.5 (p < 0.05, c2 test) although the mean choice probability was not significantly larger than 0.5 (Wilcoxon sign-rank test, p > 0.5).

A neuron’s preferred choice direction was determined as a direction for a pure odor with significantly higher firing rate than the paired pure odor. Only neuron-

mixture odor pairs where two pure odors showed significantly different responses (area under receiver operating characteristic curve >0.7 or <0.3) and with

numbers of trials for each choice more than five were used for the analysis.

(G–I) Odor decoding accuracy for correct and error trials using simultaneously recorded ensemble neurons (n = 19 sessions). Total spike counts within 40–160ms

(G), Peak time (H) and latency (I) from the first sniff onset were used. Only trials with mixture odors, where most of error trials are available, were used. A classifier

was first trained using correct trials, and decoding accuracy was obtained using test trials that are composed of correct or error trials. p < 0.05 for spike counts

(Wilcoxon test).

See also Figure S4.
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(Ecker et al., 2010). Moreover, we observed no dependence of

the magnitude of noise correlations on the number of evoked

spikes over a range of rates <5 to >100 spikes , s�1 (Figures

S5A and S5B). Therefore, near-zero noise correlations in aPC
1092 Neuron 74, 1087–1098, June 21, 2012 ª2012 Elsevier Inc.
were not a consequence of low firing rates (Cohen and Kohn,

2011; de la Rocha et al., 2007; Kohn and Smith, 2005).

In the neocortex, neighboring neurons with similar stimulus

tuning tend to exhibit correlated trial-by-trial fluctuations in firing



A

B

D

)
%( 

sri
a

p 
n

or
u

e
N

20

10

0

Noise correlation
-1 0 1

n
oit

al
err

o
c l

a
n

gi
S

0.1

0

-0.1

0.1

0

-0.1

n
oit

al
err

o
c 

e
si

o
N

n
oit

al
err

o
c 

e
si

o
N

S D S D
Electrode Electrode

1

0

-1

-1 0 1
Signal correlation

Same

Different

C

P<0.05

Trial-shuffled

Figure 6. Near-Zero Noise Correlations in aPC

(A) Histogram of noise correlations. Noise correlations were calculated using

spike counts in the first sniff cycle after odor onset (40–160 ms). A similar

distribution of noise correlations was obtained after trial-shuffling (magenta),

indicating that most neuron pairs had zero noise correlations. Black bars

indicate correlations significantly different from zero (p < 0.05).

(B) Signal correlations (similarity in odor response tuning for a pair of neurons)

compared between neuron pairs from same (S) and different (D) electrodes.

Neuron pairs from same electrode showed slightly higher signal correlations

(p > 0.05, Wilcoxon rank-sum test). The error bars are SEM across neuron-

odor pairs.

(C) Noise correlations compared between neuron pairs from same and

different electrodes. There was no difference in noise correlations (p > 0.05,

Wilcoxon rank-sum test). The error bars are SEM across neuron-odor pairs.

(D) No dependency between noise correlations and signal correlations.

Neuron pairs recorded from same (S) and different (D) electrodes are indicated

by black and orange dots, respectively. Neither the slope nor intercept of the

regression lines were significantly different from 0 (red and black lines,

p > 0.05, linear regression), indicating no relationship between noise correla-

tions and signal correlations.

See also Figure S5.
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rate (Bair et al., 2001; Cohen and Kohn, 2011; Zohary et al.,

1994), thought to arise from common inputs, and it has been

postulated that these ‘‘structured’’ or ‘‘limited-range’’ correla-

tions are particularly detrimental to the efficiency of population

coding (Averbeck et al., 2006; Sompolinsky et al., 2001). We

therefore examined whether noise correlations between aPC

neurons are low even when their odor tuning is similar. To quan-

tify the similarity of odor tuning between pairs of neurons,

we calculated the correlation coefficient of the mean odor

responses across all 12 stimuli used (i.e., signal correlation).

This analysis showed that signal correlations were low both for

aPC neurons recorded on the same tetrode and for those re-

corded on different tetrodes (p > 0.05, Wilcoxon rank-sum test;

Figure 6B). Similarly, noise correlations were near-zero regard-

less of whether neurons were recorded on the same or different

tetrodes (p > 0.05, Wilcoxon rank-sum test; Figure 6C). Most

importantly, the noise correlations of pairs of aPC neurons

were independent of their signal correlations (regression slope:

0.0156 ± 0.0090, not significantly different from zero, p > 0.05;

Figure 6D). These results suggest that, during odor stimulation,

aPC neurons act largely as independent encoders regardless

of their distance or the similarity of their odor tuning.

Odor Inhalation Quenches Noise Correlations
Neuronal variability and noise correlation are not static, but can

be modulated by attentional state (Cohen and Maunsell, 2009;

Mitchell et al., 2009), perceptual learning (Gu et al., 2011), and

stimulus input (Bhandawat et al., 2007; Churchland et al.,

2010; de la Rocha et al., 2007; Kazama andWilson, 2009). There-

fore, in order to gain insight into how near zero noise correlations

arise in aPC, we tested how trial-to-trial correlations across

neurons are modulated during the course of events in each trial.

For this analysis, since odor stimuli were not always present,

we calculated the correlation coefficients of spike counts without

subtracting the mean responses of each stimulus condition (see

Experimental Procedures for more details). We found that when

rats begin active sampling (sniffing) in anticipation of odor

presentation, the aPC population was globally activated, with

the mean population firing rate increasing by around 30% (Fig-

ure 7A). Surprisingly, during the same period the mean pairwise

correlation across the entire population dropped, implying

a possible positive impact on population coding (Zohary et al.,

1994). However, correlations between similarly tuned pairs

increased (Figures 7B–7D and S6A–S6C; regression slope,

0.0916 ± 0.0092, significantly different from zero, p < 0.01),

implying a possible negative impact on population coding

(Sompolinsky et al., 2001). In order to estimate the net effect,

we performed decoding analysis using simulated data in which

spike counts obtained during odor stimulation were trial-shuffled

to generate noise correlation structures with different means and

signal correlations while preserving the mean odor response

profile of individual neurons (see Experimental Procedures for

details). We found that correlations of the type observed during

the pre-odor-sampling period, had they persisted into the

odor-sampling period, would have significantly eroded the effi-

cacy of decoding, reducing classifier performance by more

than 5%–10% (p < 0.01, t test; Figures 8A–8C and S7).We calcu-

lated that 2–3 times more neurons would have been required to
Neuron 74, 1087–1098, June 21, 2012 ª2012 Elsevier Inc. 1093
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the first sniff after each task event were used. Preodor port: 500 ms before
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achieve the same level of decoding performance had pre-odor

correlation levels been maintained (Figure 8D). The simulation

also indicated that the effects would be even larger with larger

ensembles. We also found that trial-to-trial variability in spike

count, as measured by the Fano factor and the coefficient of

variation, was significantly reduced by odor onset (Figures S6D

and S6E). Thus, potentially deleterious population correlations

are increased during the period of high sniffing preceding odor

onset but these correlations are quenched during the arrival of

the stimulus (Churchland et al., 2010).

DISCUSSION

Transformation of Odor Representation between the
Olfactory Bulb and Piriform Cortex
Together with recent studies of neural coding in the olfactory

bulb (Carey and Wachowiak, 2011; Cury and Uchida, 2010;

Shusterman et al., 2011), this study demonstrates that odor

representations are profoundly transformed between the bulb

and the aPC. While these studies show that odor responses in

the olfactory bulb exhibit complex temporal patterns carrying

stimulus information, here, we show that those in the aPC consist

primarily of a simple burst of firing, locked to respiration. Further-

more, the baseline firing rates are higher in the olfactory bulb

compared to the piriform cortex (12.9 ± 6.4 Hz in the olfactory

bulb; 6.15 ± 9.01 Hz in the aPC; mean ± SD; Cury and Uchida,

2010, and the present study). As a consequence, whereas in

the olfactory bulb extracting information from mitral/tufted cells

requires decoding of temporal patterns (Cury and Uchida,

2010), in the aPC most odor information can be read out using

only spike counts of neurons.

Why might the olfactory bulb and cortex areas use different

strategies for odor coding? One important consideration is the

substantial anatomical differences between the two areas: while

a relatively small number of neurons (20–50 mitral cells) transmit

odor information from each of the approximately 1000 input

channels (glomeruli) in the olfactory bulb, this information is

broadcast to an olfactory cortex that contains an estimated

two orders of magnitude more neurons (Shepherd, 2004).

Because of this expansion in coding space the necessity to

maximize the rate of information transmitted per neuron and

per unit time in the olfactory bulb will be much greater than in
odor port in. A bar with a star indicates significance between two epochs

and a star without a horizontal bar indicates the significance against all the

other epochs (the error bars are across neuron-odor pairs, ANOVA with LSD

method).

(B) Mean correlation as a function of task epochs. The error bars are for

neuron-odor pairs.

(C) Regression slopes for the trial-to-trial correlation and signal correlation

relationship as a function of task epochs. Trial-to-trial correlations were

computed at each epoch while signal correlations were computed at the first

sniff (generalized linear model with Holm method). The error bars are SEM

across neuron-odor pairs.

(D) Trial-to-trial correlations as a function of signal correlations. Two task

epochs, preodor (green) and first sniff (red), are plotted separately (p < 0.05 for

slopes, generalized linear model). The error bars are SEM across neuron-odor

pairs.

See also Figure S6.
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the aPC. The cortex can therefore better afford to employ a rate-

based coding strategy based on a larger number of neurons and

a widely distributed code. One significant advantage of rate-

based code over temporal code is that downstream areas can

more readily read out such a code or combine it with other kinds

of information encoded in rates. This might then facilitate

proposed functions of the piriform cortex such as forming asso-

ciative memories (Franks et al., 2011; Haberly, 2001).

The mechanism of the temporal-to-rate transformation

remains to be determined. In insects, temporally dynamic

responses in the antennal lobe (AL, considered equivalent to

the olfactory bulb) are transformed into sparse responses in

the mushroom body (MB, considered equivalent to the PC).

Various mechanisms have been proposed to underlie this pro-

cess, including (1) oscillatory spike synchronization, (2) short

membrane time constants of MB neurons, (3) feedforward inhibi-

tion, and (4) highly convergent connectivity between the AL

and MB (Perez-Orive et al., 2002, 2004). In zebrafish, different

mechanisms appear to shape the responsiveness of cortical

neurons: neurons in the dorsal telencephalon (Dp) effectively

discard information about synchronous firing in the olfactory

bulb due to cortical neurons’ slow membrane time constants

and relatively weak feedforward inhibition (Blumhagen et al.,

2011). It will be important to examine whether PC neurons in

mammals are tuned to temporal patterns of activity in the olfac-

tory bulb (Carey and Wachowiak, 2011; Cury and Uchida, 2010;

Shusterman et al., 2011), and if so, which aspects of temporal

patterns are important.

Neural Substrate for Rapid Olfactory Decisions
Our findings bear on the relationship between psychophysical

limits and neuronal representations, a central subject in sensory

physiology (Parker and Newsome, 1998). We found that, by

monitoring spikes from as few as 50–100 aPC neurons, a simple

decoder based on firing rates could extract more than enough

information in a single sniff cycle to account for the behavioral

accuracy of rats in the odor categorization task. We also

found that while single neuron activity was not on average

different between correct and error trials (low average ‘‘choice

probability’’), population activity-based decoders performed

significantly better on correct compared to error trials. Rate

information peaked within 100 ms during the first sniff, and
accuracy was then computed using the trial-shuffled ensemble activity. The

green and red circles indicate preodor and first sniff, respectively.

(B and C) Decoding accuracy using decorrelated (black, gray) and correlated

ensembles (green, light green) as a function of number of neurons. Pure (B) and

mixture (C) odors were plotted separately. The mean and slope of the corre-

lations observed during the pre-odor period were used to simulate correlated

ensembles. The dashed lines denote the animals’ behavioral performance

for each condition. The decorrelated ensemble results are the same as in

Figure 5A.

(D) Equivalent ensemble sizes. The number of neurons required to achieve the

same decoding accuracy between decorrelated and correlated ensembles

were obtained from (B) and (C). The dotted lines represent ratios (3:1, 2:1, 1:1)

of the numbers of neurons between decorrelated versus correlated ensem-

bles. As the size of a population increases, disproportionately more neurons

are required to achieve the same performance in the presence of structured

noise correlations.

See also Figure S7.
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aggregating information over longer periods in multiple sniff

cycles failed to significantly augment decoding performance,

providing an explanation for the rapid speed of olfactory discrim-

ination performance and the lack of speed-accuracy tradeoff

over longer periods (Uchida andMainen, 2003). Therefore, these

observations provide substantial evidence linking a rate-based

population code to behavioral performance.

Near-Zero Noise Correlations Facilitate Odor Coding
We found that an optimal linear decoder of aPC neurons can

reach levels of performance superior to the animal itself using

<100 neurons out of the estimated population of around 106

neurons (Shepherd, 2004). The aPC clearly contains an

extremely robust representation of odor identity. What then ulti-

mately limits behavioral accuracy? While similar observations in

the visual system have attributed behavioral performance limits

to the reduced efficiency of pooling in the actual network of

neurons due to ensemble correlations (Shadlen et al., 1996;

Zohary et al., 1994), this appears not to be the case in the

aPC. During odor stimulation, aPC networks have near zero

mean noise correlation, more than one order of magnitude lower

than that generally reported in the neocortex (0.05–0.2; Cohen

and Kohn, 2011; Gawne and Richmond, 1993; Lee et al., 1998;

Zohary et al., 1994; Figure 6A), similar to that reported in the

primary auditory cortex of anesthetized rats (Renart et al.,

2010) and area V1 of awake monkeys (Ecker et al., 2010).

More importantly, aPC neurons also lack the positive relation-

ships between signal and noise correlations that are typically

observed (Bair et al., 2001; Gu et al., 2011; Zohary et al.,

1994). However, the absence of such correlations is not simply

due to the distributed connectivity of the olfactory cortex: Such

structured correlated activity can and does emerge prior to

odor onset and simulations demonstrated that such correlations

would have substantially reduced the efficiency of population

coding. However, we found when driven by odor stimulation,

these prestimulus correlations are quenched. While we cannot

rule out the possibility that additional correlations that we were

unable to measure with this data set might affect decoding,

behavioral performance in the odor mixture categorization task

appears to be limited neither by the level of noise of the sensory

representation nor by correlated fluctuations among the popula-

tion of neurons. We therefore conclude that the limits of perfor-

mance must be set either by the ability of downstream circuits

to accurately read out of these representations or by other

non-sensory sources of variability.

Whether prolonged odor sampling can improve the accuracy

of odor discrimination has been controversial. Some studies

have suggested that the accuracy of odor discrimination can

be improved with longer odor sampling over 500 ms (Rinberg

et al., 2006) or more (Friedrich and Laurent, 2001). It has been

suggested that the accuracy of discrimination of highly similar

odor pairs might depend on the refinement of odor representa-

tions through temporal evolution of neural activity (Friedrich

and Laurent, 2001) or through temporal integration of sensory

evidence. However, the result of the present study suggests

that these processes are unnecessary. These findings indicate,

instead, that performance accuracy is affected not only by stim-

ulus information but additionally by other task parameters that
1096 Neuron 74, 1087–1098, June 21, 2012 ª2012 Elsevier Inc.
may affect the ability of the animal to choose accurately

based on olfactory stimulus representations (H. Zariwala et al.,

2005, Soc. Neurosci., abstract). It remains to be seen whether

similar conclusions can be drawn in different olfactory tasks

such as odor detection, discrimination at low concentrations, or

more complex tasks. The present study indicates that neuronal

recording in animals performing these behavioral tasks will be

a critical step toward addressing these fundamental questions.

EXPERIMENTAL PROCEDURES

All procedures involving animals were carried out in accordance with NIH

standards and approved by the Cold Spring Harbor Laboratory and Harvard

University Institutional Animal Care and Use Committee (IACUC). All values

were represented by mean ± SEM unless otherwise noted.

Behavior

Rats were trained and tested on a two-alternative choice odor mixture

categorization task where water was used as a reward as described pre-

viously (Cury and Uchida, 2010; Uchida and Mainen, 2003). Odor delivery

was controlled by a custom-made olfactometer (Cury and Uchida, 2010;

Uchida andMainen, 2003). In total, eight rats were used. Five rats were trained

to perform in a reaction time version of the task (Uchida and Mainen, 2003),

and the other three rats in a go-signal paradigm (Rinberg et al., 2006) (see

Supplemental Experimental Procedures). Three rats (two of them trained

with go-signals) were tested on a standardized stimulus set of three odor pairs:

(1) caproic acid and citralva, (2) ethyl 3-hexenoate and 1-hexanol, and (3) dihy-

droxy linalool oxide versus cumin aldehyde (Figure 1B). Each of these odors

was diluted 1:10 in mineral oil, and further diluted by filtered air by 1:20

(1:200 total).

Neural Recording

After reaching asymptotic performance in behavioral training, each rat was

implanted with a custom-made multielectrode drive (Cury and Uchida, 2010)

in the left hemisphere in the aPC (3.5 mm anterior to bregma, 2.5 mm lateral

to midline) and a bipolar stimulating electrode in the olfactory bulb (Kashiwa-

dani et al., 1999; Schoenbaum and Eichenbaum, 1995) under anesthesia.

Extracellular recordings were obtained using six independently adjustable

tetrodes. To monitor sniffing, during drive implantation, a temperature sensor

(thermocouple) was implanted in one nostril (Cury and Uchida, 2010; Uchida

and Mainen, 2003).

SUPPLEMENTAL INFORMATION

Supplemental Information includes eight figures and Supplemental Experi-

mental Procedures and can be found with this article online at doi:10.1016/

j.neuron.2012.04.021.
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