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Discussions of the hippocampus often focus on place cells, but many neurons are not place cells in
any given environment. Here we describe the collective activity in such mixed populations, treating
place and non–place cells on the same footing. We start with optical imaging experiments on CA1
in mice as they run along a virtual linear track, and use maximum entropy methods to approximate
the distribution of patterns of activity in the population, matching the correlations between pairs
of cells but otherwise assuming as little structure as possible. We find that these simple models
accurately predict the activity of each neuron from the state of all the other neurons in the network,
regardless of how well that neuron codes for position. These and other results suggest that place
cells are not a distinct sub–network, but part of a larger system that encodes, collectively, more
than just place information.

I. INTRODUCTION

The hippocampal formation plays a key role in vari-
ous memory processes, and is crucial for spatial naviga-
tion. In humans, individual hippocampal neurons whose
activity is associated with specific items or episodes,
were found sparsely among a larger population of non-
responsive neurons [1–3]. In rodents, cells coding for
place, velocity, and head direction have been recorded
from the hippocampus and its neighboring structures [4–
6]. One well identified group of hippocampal neurons are
place cells [7]. These cells are active selectively when-
ever the animal visits a particular location, i.e. each
of these neurons has a specific place field in the envi-
ronment. Typically, once the animal is familiar with a
given environment, about 30% of CA1 pyramidal neu-
rons will fire with significant place fields, and the activity
of these cells constitutes a cognitive map [7] that spans
the full environment. Meanwhile, the remaining cells,
often referred to as silent cells [8], fire with little to no
spatial selectivity, and usually are less active over all [8–
12]. While some neurons qualify inarguably as place cells,
with strong, reliable place fields, for others the boundary
between “place” and “non–place” is arbitrary.

One way of interpreting the phenomenology of place
cells is that individual cells respond independently to the
location of the animal at any moment in time. This ap-
proach stems from the view of pyramidal cells responding
to specific combinations of complex features of the sen-
sory environment. However, activity in CA1 seems to be
more complex than a simple evoked response to external
stimulus, and cannot all be accounted for by this “sen-
sory features” view. A different approach is to treat the
cells as an interacting network, asking how their collec-
tive behavior can give rise to place modulated activity.
The latter idea has been widely employed in theoreti-
cal models of the hippocampus, which suggest attractor
dynamics as the potential mechanism underlying three
of the main functions of hippocampus: memory storage,
pattern separation, and pattern completion [14–17].

A large fraction of hippocampal studies focus on sub-
regions CA1 and CA3, and in particular on the sequen-
tial activity exhibited by their neurons spatial (and non-
spatial) fields. While it has been suggested that CA1
contributes to the order of a spatial memory sequence,
it is not yet known if CA1 is involved in the integration
of sequential elements of a memory, or in bridging events
that happen sequentially during an episode. [18–20]. Al-
though many of the models for hippocampal circuitry re-
fer to CA3 as the main attractor network in hippocampus
[21–26], other computational studies suggest that even
though CA1 has less recurrent connections than CA3, it
might still function as a continuous attractor, maintain-
ning the continuity of sequential activity [27, 28].

While some experimental studies have tried to char-
acterize the instability in the place code and to probe
the activity of the cells whose activity is not significantly
place modulated [29–32], little to no theoretical effort
has been dedicated to study the phenomenology of CA1
beyond position encoding. Furthermore, recent develop-
ment of large-scale neural imaging technologies now al-
lows us access to the activity of all neurons – place and
non–place coding – in a field of view. With this progress
arises the need for modeling approaches that will help
elucidate these large population–level codes.

Among the possible mathematical models that can re-
produce a given pattern of neural activity, we chose the
one that does so without incorporating additional struc-
ture or assumptions. This minimally informative model
is the one that maximizes the entropy of the system
[33, 34]. In this study, we use the maximum entropy
approach to build a model for the probability of all dif-
ferent joint activity patterns of the neurons. We report
a successful description of the full probability distribu-
tion inferred solely from mean activities and pairwise
correlations, which yields accurate predictions both for
higher-order phenomena in the network and for the ac-
tivity of individual place and non-place neurons in rela-
tion to the rest of the network. Finally, we show that
this collective description for the population as a whole
yields better predictions than the classical view of indi-
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FIG. 1. Experimental setup (A) Left panel shows a photograph of the experimental apparatus, consisting of spherical
treadmill, a virtual reality apparatus, and a custom two-photon microscope. Right panel shows a top view of the virtual
environment of a linear track. (Adapted from [13]). (B) Field of view under the microscope. Scale bar is 50µm. (C) Identifying
significant calcium transients: in gray, raw signal from a neuron in units of normalized fluorescence. In red (arbitrary height),
the binarization of the signal: the neuron is “on” (which is converted to a “1” value) in every time point the red line is not
0. Neuron is “off” (which is converted to a “0” value) in every time point the red line is 0 (see Appendix A for more details).
Dashed yellow horizontal line shows the 3.5σ threshold in the distribution of all fluorescence values. Points above this threshold
qualify in our initial step of binarization of the signal as potential activity events. (D) Distribution of the “on” activity events’
durations, on a log scale. (E+F) Zoom in examples of two raw activity transients (gray) and their binarized version (red).

vidual place cells as independently encoding locations on
a spatial map.

II. RESULTS

CELLULAR RESOLUTION IMAGING OF
NEURAL ACTIVITY IN THE MOUSE DURING

RUNS ALONG A VIRTUAL TRACK

We analyze data taken from transgenic mice that ex-
press a genetically encoded calcium indicator GCaMP3.
Our virtual reality setup allows imaging neural activity
with cellular resolution in awake, head-restrained mice
while they run on a spherical treadmill (Fig 1A). Each
imaging session included up to 80 simultaneously active
neurons in CA1 hippocampus, recorded as a mouse runs
along a 4-meter-long virtual linear track. Right before
the end of the track the mouse received a water reward.
Runs were consecutive in nature because once the mouse
reached the end of the virtual reality environment, the
next one started immediately. In agreement with the lit-
erature, sub-populations of the imaged neurons (usually
∼ 30) were found to be place cells, whose activity occur
in specific place fields along the environment. (Fig 2C,
and Fig 12 in Appendix E).

The raw data from this experiment is essentially a

movie. To reduce this to activity of individual neurons
as a function of time, we follow the pre-processing steps
described in the Experimental Procedures. In outline,
we correct the movies for motion of the brain, identify
each neuron as a region of interest in the movie, verify
these regions manually, and then associate the activity of
each cell with the integral of the fluorescence signal over
the corresponding region. We normalize the fluorescence
traces extracted from each neuron, and set a threshold
above which all maxima identified are recognized as po-
tential activity events; this threshold is set to ∼ 3.5σ,
where σ is the standard deviation of the distribution of
all fluorescence values of that session (dashed horizon-
tal yellow line in Fig 1D). Next, we discard transients
whose shape contradicts a rising-decaying pattern typi-
cal of neural activity (Appendix A. Finally, we binarize
the time series: a neuron state σi is defined as 1 for ev-
ery time bin during an identified activity event, and as 0
for the rest (and most) of the time, when it is silent, as
shown in Fig 1C. Since each point in our field of view is
scanned every 70 ms, we use the same discretization as
our effective “time bin” to binarize the signal. Panels E
and F of Fig 1 depict two events and their binarized ver-
sions. A closer look at panel E reveals a case where, while
the event was clearly identified as significant activity, our
algorithm found a part of the decay slope which best fits
a burst of activity followed by a single event rather than
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FIG. 2. Place and non–place related activity (A) Three
consecutive runs down the linear track. During each traver-
sal of the environment, 32 out of the 78 cells imaged in the
field of view exhibit place modulated activity. Place cells were
sorted based the averaged activity’s center of mass (panel C).
This is the thresholded continuous fluorescence signal as in
Fig 1C. (B) Binarized version of panel A. The sequential na-
ture of the place activity is preserved during the discretiza-
tion process. (C) Continuous neural activity averaged across
runs, calibrated against position. Sorted based on center of
mass. (D) Binarized neural activity averaged across runs,
calibrated against position. On the right, mean activity val-
ues corresponding to the neurons on the left. Non-place cells
are usually less active than place cells, yet rarely silent.

one unified burst of activity, since the fluorescence level
falls too quickly to be explained by continuous firing. For
more details about the final assignment of 0 and 1 val-
ues see 9 in Appendix B. Analysis was performed on all
concatenated frames from single sessions, which included
any time period the mouse was running, as well as the
inter-trial intervals and any time points where the mouse
was not engaged in the task if such existed (rare). Data
were used as a single stream, and no behavior-related in-
formation was incorporated into the model other than for
validation or visualization purposes.

THE MAXIMUM ENTROPY MODEL

A network of N neurons has Ω = 2N possible states,
even if we limit ourselves to describing each cell as being
active or silent, σi = 1 or 0, respectively, for each neuron
i. With N = 78 cells in our experiment, this number of
possible states is Ω ∼ 3 × 1023, a genuinely astronomi-
cal number. We expect that neural activity is organized,
and so the network does not wander at random among all
these possibilities. Although there are many ways that
we could try to characterize this organization, perhaps
the simplest approach is to ask for the probability dis-

tribution over all the possible states, P (σi): how likely
is it that we will find any particular combination of ac-
tive and inactive neurons at any one moment in time?
A probability distribution over Ω states is just a list of
Ω numbers that sum to one. In large networks, it is not
possible to conceive of an experiment that would allow
us to measure all these numbers. Thus, any attempt
to make a “probabilistic model” of neural activity must
rest on some (dramatically) simplifying hypotheses. As
emphasized long ago by Jaynes [33, 34], the maximum
entropy construction provides a path for building models
in which simplifying hypotheses are explicit and testable.

The idea of the maximum entropy method is to build
models that match certain experimental facts exactly,
but otherwise have as little structure as possible. Thus, if
we draw states out of the probability distribution, these
combinations of activity and silence across this network
will be as random as they can while still matching, on
average, the experimental facts that we have chosen as
being crucial. The choice of what to match embodies
our intuition, and the shorter the list of facts the more
drastic our simplification. We emphasize that there is no
obviously correct choice for which facts to match: each
choice represents a different simplifying hypothesis, and
must be tested, quantitatively.

In trying to choose which facts to match, we are look-
ing for a relatively small set of things we can measure,
reliably, which are sufficient to capture the way in which
the patterns of activity in the network are ordered. As an
example, we can get a very accurate model for the joint
distribution of velocities of all the birds in a flock by
matching the correlations between individual birds and
their near neighbors; the global ordering of the flock,
the correlations among fluctuations in the velocities of
distant birds, and even higher-order correlations among
multiple birds, all emerge from propagation of the near-
neighbor correlations, as predicted by the maximum en-
tropy model [35, 36]. Previous work on maximum en-
tropy approaches to the description of neural activity
has explored different possibilities for what should be
matched. At one extreme, the network might be char-
acterized by the fact that certain specific combinations
of activity and silence occur with surprisingly high fre-
quency, and we could match these frequencies for the
most common combinations [37]. At the opposite ex-
treme, we could focus on measures of global activity, and
match the frequency with which we see K out of N neu-
rons being active simultaneously, without regard to their
identity [38]. Here we pursue the original idea of match-
ing the mean activity of individual neurons, and the cor-
relations between pairs of neurons [39–41].

We expect that networks with different mean levels of
activity will behave differently, and so we insist that any
model of the network as a whole match the average ac-
tivity of each neuron. For each neuron i, we have σi = 1
when that neuron is active, and σi = 0 when it is silent;
matching the mean activity of each cell is the statement
that if we compute the mean in our model probability
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distribution P (σi) we get the same answer as from ex-
periment:

∑
{σi}

P ({σi})σj = 〈σj〉expt, (1)

where 〈· · · 〉expt is the average computed from the ex-
perimental data. Similarly, we know that correlations
between pairs of neurons capture some aspects of the
network’s coherent activity, and so we will test the hy-
pothesis that matching these correlations is sufficient to
predict all the possible higher–order structures. Mathe-
matically, the pairwise correlation between neuron i and
neuron j can be defined either as a covariance,

Cij = 〈(σi − 〈σi〉) (σj − 〈σj〉)〉, (2)

or as a correlation coefficient,

cij =
Cij√
CiiCjj

. (3)

To match this entire matrix of correlations, we need to
be sure that our model matches the matrix of second
moments, ∑

{σi}

P ({σi})σjσk = 〈σjσk〉expt. (4)

There are infinitely many probability distributions
that are consistent with the constraints in Eqs (1) and
(4). Among these, we want to choose the model that has
the least possible structure, or equivalently generates the
most random possible states. Although such a character-
ization may seem vague, Shannon proved that the only
consistent way to measure the (lack of) structure in a
probability distribution, or the degree of randomness, is
to compute the entropy of the distribution,

S = −
∑
{σi}

P ({σi}) log [P ({σi})] . (5)

Concretely, then, we want to find the probability distri-
bution that maximizes S while obeying the constraints
from Eqs (1) and (4). The formal solution to this con-
strained optimization problem is

P ({σi}) =
1

Z
exp[−E({σi})] (6)

E({σi}) = −
N∑

i=1

hiσi −
1

2

N∑
i,j=1

Jijσiσj. (7)

We note that this is mathematically equivalent to the
Boltzmann distribution for a set of Ising spins σi that
experience external magnetic fields hi and interact with
one another through couplings Jij [42]. The partition
function Z serves to normalize the distribution,

Z =
∑
{σi}

exp[−E({σi})]. (8)
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FIG. 3. Steps in building the maximum entropy model
(A) A typical field of view in CA1 hippocampus. Initial
steps include motion correction and identification of individ-
ual cells. (B) After discretizing the signal from each neuron,
we now have a matrix of all concatenated trials for all neurons
were each neuron was assigned a “0” or “1” value for every
moment in time. (C) Compute the statistical features of the
data to which we are going to fit the model. We require the
model to match exactly the first and second moments. (D)
Finding the values of a set of hi and Jij that match the sta-
tistical features of the data via Markov Chain Monte Carlo
simulation of the model. The result is a full probability distri-
bution, such that every possible population state is assigned
a specific probability to occur. (E) Sample population states
from the inferred distribution to obtain a matrix of synthetic
data. (F) To test whether the inferred distribution is a good
model, compare the same measures we computed on the real
data to those computed on the synthetic data.
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This formal solution for the probability distribution in-
volves parameters {hi, Jij}, and there are exactly as many
of these parameters as we have constraints from matching
the mean activity and pairwise correlations that we see
in the population; in principle, then, parameters of our
model are determined exactly by solving Eqs (1) and (4).
In practice, we can’t find the exact expectation values in
our model, and so we compute these (as is standard in
statistical physics) by Monte Carlo simulation. Thus we
“solve” Eqs (1) and (4) by using Monte Carlo to generate
an estimate of the left hand side of the equation, com-
paring to the right hand side (from the data), and then
adjusting the parameters until we get closer to equality;
for details see Appendix B. Our strategy, going from raw
fluorescence data to the model, is summarized in Fig 3.

MAXIMUM ENTROPY MODEL FOR A
POPULATION OF HIPPOCAMPAL NEURONS

We apply the maximum entropy approach to the ex-
perimental data on 78 CA1 neurons (2). The crucial
experimental quantities are the mean activities of each
neuron, shown in Fig 4A, and the pairwise correlations,
illustrated in Figs 4C and E. Because we have described
activity by a binary variable, the man activity measures
the fraction of time bins in which a neuron is “on” and
we see that this is quite small (∼ 0.03), as expected. Cor-
responding to these low probabilities, the parameters hi

in our model [Eq (7)] are relatively large and negative.

As noted in Fig 2, a significant fraction of cells in the
population are place cells. For these, we expect pos-
itive correlations between cells with overlapping place
fields, and negative correlations between cells with non-
overlapping place fields. More generally we see that the
distribution of correlation coefficients peaks, and has the
bulk of its weight, at cij small and negative (Fig 4E),
and the covariance matrix of the activity is dominated by
small negative terms far from the diagonal (Fig 4C). Cor-
responding to these experimental results, the coupling
constants Jij in the model also have a distribution peak-
ing at small negative values (Fig 4F), and if we view these
coupling as a matrix we see widespread, weakly negative
terms away from the diagonal, with a small set of positive
terms clustered near the diagonal (Fig 4D).

The basic properties that we see in these data are re-
produced in five other data sets, from different mice run-
ning through the same virtual track (Appendix C). There
are uncertainties in the parameters, but no sign that we
are overfitting, since learning the model from a limited
fraction of the data predicts mean activities and correla-
tions that agree with those computed from the remainder
of the data (Fig 9 in Appendix B).
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FIG. 4. Learning the maximum entropy model. (A)
Mean activity, 〈σi〉expt, for each one of the neurons, com-
puted from the data. (B) Coefficients (magnetic fields) hi,
in the model; positive values bias the cell to be active. (C)
Probability distribution of the correlation coefficients in the
data, cij for i 6= j as defined in Eq. 2. Note the peak of
slightly negative values indicating a significant population of
neurons being weakly negatively correlated, as expected from
place cells, whose firing is mostly orthogonal to each other.
(D) Probability distribution of the coefficients (coupling con-
stants), Jij, obtained after fitting the model. (E) Pairwise
covariances, Cij, as defined in Eq. 3, computed from the data.
Cij was set to 0 for ease of visualization. (F) Coupling con-
stants of the model, Jij. Positive couplings favor positively
correlated activity. Jii is redundant with hi and is set to 0.

MODEL PREDICTIONS

Maximum entropy models are, by definition, the least
structured models that can match particular experimen-
tal facts. But the set of facts we choose to match—
here, the mean activity and pairwise correlations of the
neurons—is small compared to the space of possible
states for the network, and there is no guarantee that
these few measured quantities provide a sufficient char-
acterization of the system. What is crucial, however, is
that everything else that we can predict about the be-
havior of the network from the model involves no new
parameters. Thus, what follows are predictions, not fits.

Although the mean probability of a single cell being
active is small (Fig 4), there are many neurons in the
population, and so it is possible to observe not just a
single cell being active but many cells being active simul-
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abilities, that the model assigns to every possible state in the
network. In blue, the distribution over states as they occur
in the experiment. In red, the distribution predicted from
the model itself. Data in both panels shown as mean and
standard deviations over random halves of the data.

taneously. While we do not have enough data to esti-
mate the probability of every distinct “word” built out
of combinations of activity and silence, we can estimate
the probability PN (K) that K out of the N cells in the
network are active in the same small window of time. As
shown in Fig 5A, there is significant probability out to
K ∼ 8, and we can follow the small probabilities out to
K = 12. Across most of this range, the model makes
correct predictions, within the (small) error bars of the
measurement.

The model that we have defined predicts the proba-
bility of every possible state that the network could oc-
cupy. It is natural to think not about the probabilities
themselves, but about their (negative) logarithm, which
measures how surprised we should be by each particular
pattern of activity [43]. In the equivalent Boltzmann dis-
tribution, the negative logarithm of the probability is the
energy. The model makes a prediction for the distribu-
tion of energies, but we can also walk through the data,
compute the energy of every state that we see, and thus
estimate the distribution of energies in the data. While
states with more cells active are less likely (Fig 5A), there
are more ways of choosing these active cells out of the
population, leading to a non–trivial distribution of ener-
gies, shown in Fig 5B. We see that theory and experiment
agree very well out to energies E ∼ 25. This energy is
equivalent to a probability of e−E ∼ 10−11, correspond-
ing to events that should occur once every few hundred
years. While of course we can’t know if we have correctly
predicted this tiny probability for any single state, what
we are seeing is that the model correctly predicts the
number of these rare states, each of which is seen only
once in the data.

Since we build our model out of the pairwise correla-
tions among neurons, it is natural to test the predictions
for higher–order correlations. The probability that K out

of N neurons are active, as in Fig 5A, is one combination
of all the higher–order correlations, but we would like to
look in more detail. To do this, we check the correlations
among triplets of neurons,

Cijk ≡ 〈(σi − 〈σi〉)(σj − 〈σj〉)(σk − 〈σk〉)〉 (9)

These correlations are small, but significantly non–zero
for most of the 7.6 × 104 distinct triplets in the popula-
tion. Figure 6A shows that the model correctly predicts
these correlations, within error bars, across the full dy-
namic range of the data.

To examine the quality of our predictions more closely,
we zoom in on the small (|Cijk| < 4× 10−4) correlations,
and compare the error in our predictions with the ex-
perimental error in measuring these triplet correlations.
Concretely, we make small bins along the Cijk axis, and
within each bin we compute the mean square difference
between predicted and measured correlations, as well as
the mean square error in our measurements. We then
plot the square root of these quantities, which we can
think of as error bars on predictions and measurements,
respectively, in Fig 6B. We see that the two measures of
error are essentially equal across a wide range of corre-
lation values: our model predicts the triplet correlations
with a precision that essentially matches the experimen-
tal error; one cannot do better.

For neurons in the hippocampus, one obvious source
of correlations is the existence of place fields: cells with
overlapping place fields should have positive correlations
in their activity, and cells with distant place fields must
be anticorrelated. We certainly see something of this pat-
tern in the data of Fig 4C, and it tempting to think that
all correlations could be understood in this way, in which
case our success in predicting triplet correlation may be
less surprising. To explore this possibility, we constructed
a model in which cells respond independently to the po-
sition of the animal along the virtual track. Given the
probability of each cell being active as a function of posi-
tion, as in Fig 2D, the model of “independent place cells”
has no free parameters (see Appendix D), and in partic-
ular we can predict correlations among pairs or triplets
of neurons. The prediction of individual pairwise corre-
lations based on place fields alone is not bad (Fig 11 in
Appendix D), but the prediction of global properties of
these correlations, such as their eigenvalues spectrum, is
worse, and the prediction of triplet correlations is much
worse.

In Figure 6C, we group triplets of neurons into bins
based on their observed correlation, and plot the mean
and standard deviation of predictions in each bin from
both the maximum entropy model and the independent
place field model. For the maximum entropy model, this
is just a different way of looking at the results in Fig
6A, and correspondingly we see that predicted correla-
tions form a tight band around the observed correlations.
But for the independent place cell model, predicted cor-
relations span a much smaller dynamic range, and for
the bulk of triplets with small |Cijk| there is almost no
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animal’s location can only poorly account for the higher–order structure in the data. The maximum entropy model captures
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systematic relationship between predictions and observa-
tions. These results suggest, strongly, that correlations
in the network are not simply a response to the environ-
ment, but are most accurately described as a collective
property of the network itself.

We further investigated if this collective behavior
can be accounted for by a few dominant components
that might exist in the network beyond place encoding.
Among the natural candidates are a global network exci-
tation signal and instability in place coding. As reported
in Appendix F and shown in Fig 13, these cannot account
for the correlation structure the network exhibits beyond
place encoding. It seems then that this population level
property is not a result of any simple, low dimensional
signal that we expect to see in the hippocampal network,
and that it stems from both place and the non-place cells.

If activity in a network is collective, then we should
be able to predict the activity of each individual neuron
from the pattern of activity in the rest of the network.
As noted above, the model we are exploring is mathe-
matically equivalent to model for spins in a magnet, and
thus the influence of the network on a single neuron can
be summarized by an “effective field”

heff
i = E(σ1, · · · , σi = 0, · · · , σN )

−E(σ1, · · · , σi = 1, · · · , σN ) (10)

= hi +
∑
j6=i

Jijσj. (11)

Positive effective fields favor neurons being active; more
precisely the probability of the single neuron i being ac-
tive is given by the logistic function,

P (σi = 1|heff
i ) =

1

1 + exp(−heff
i )

. (12)

Thus, the model predicts the probability of any single
neuron being active at any moment in time, given the
state of all the other neurons in the network.

To test the predictions of the model, we walk through
the data and at each moment, for each neuron, we com-
pute the effective field given the state of all the other
neurons [Eq (11)]; we also mark whether the target neu-
ron was active. Pooling all these data, we can plot the
actual probability of a cell being active as a function of
its effective field, and compare with the prediction of the
model [Eq (12)]. The results of this comparison, in Fig
7A, show that theory and experiment agree very well,
across the full dynamic range. Additionally, if the ef-
fective field correctly predicts the probability of a neu-
ron being active, then, conversely, a neuron being active
should predict a high value of the effective field. Thus, if
we compare moments when cell is active or inactive, we
should see very different distributions of the predicted
probability, and this is shown in Fig 7B.

In Figures 7A and B, we have pooled probabilities for
individual cells across time; in Figs 7C and D we focus
on two particular cells (indexed 14 and 77 in Fig 2). We
plot, as a function of time, the probability that a single
neuron should be active, given the state of all the other
neurons in the population; we emphasize again that the
model makes an unambiguous prediction, and that there
are no free parameters to adjust. The predicted probabil-
ity consists of a series of relatively brief peaks, separated
by periods of probability near zero, and this is reproduced
in the data, where we see that these neurons are active
only during the predicted peaks. The neuron in Fig 7C
has a clear place field in the environment (Fig 7E), and
the peaks of activity correspond to times when the mouse
passes (virtually) through the place field. Importantly,
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FIG. 7. Population effective field pre-
dicts the activity of individual neu-
rons. (A) Probability of neuron to be ac-
tive based on effective field. The relation-
ship between the computed effective field
and the probability of a neuron being active
(green) compared with the parameter free
prediction in Eq (11) (black). Shaded sil-
houette is standard deviation across. (B)
Predicted conditional probability distribu-
tions for all neurons to be active/silent for
all time points. P (σi = 1|heff): time points
where the neuron is active in the data col-
ored in orange. P (σi = 0|heff): time points
were the neurons are inactive colored in
blue. (C) Predicted probability vs time for
a place cell. Red x marks show times where
the neuron was active. The start and end of
each run along the virtual track are drawn
in yellow and striped yellow rectangles. (D)
Predicted probabilities vs time as in panel
C, but for a non–place cell. Example of all
time points in a specific time window. Red
x marks show time points where the neu-
ron was active in the data. The start and
end of each trial are drawn in yellow and
striped yellow rectangles. (E) Probability
of activity vs position for the place cell de-
picted above in panel C. (F) Probability of
activity vs position for the non-place cell de-
picted above in panel D.

the model we have built makes no reference to the posi-
tion of the mouse. Thus, to the extent that we are able
to predict the activity of place cells, this is because in-
formation about place is represented collectively in the
network. In contrast, the activity of the neuron shown in
Fig 7D is hardly spatially modulated in this environment,
yet the model still predicts brief periods of high probabil-
ity for the cell being active, separated by longer periods
of near zero probability, and again the actual moments
of activity follow these predictions quite well. Thus, it
appears that both place cells and the remaining neurons
that do not code for a particular location, are part of the
same patterns of collective activity. We emphasize that
these results hold true independent of the specific defini-
tion of which neuron is a place cell and which is not. Our
model predictions remain valid for any level of location
encoding of the cell, whether significantly, partially, or
hardly at all.

In addition to treating all neurons in the population
on an equal footing, we also looked into moments where
place cells fail to exhibit their typical place-modulated
activity. In Figure 8, panel A shows the probability pre-
dicted from our model for each of the the place cells in the
population during two successive runs along the virtual
track. Panel B shows for comparison the neural activity
for the same two runs. The first sequence is an example
for a run with missed fields (neurons 21 to 25) while in

the second sequence all place cells are active at the ex-
pected times. We see that our model of collective activity
in the network manages to capture accurately even these
moments where a place cell misses its place field. For
the second run where all neurons were active, the model
predicts no missed fields. In contrast to the success of
our model for collective activity, treating the cells as hav-
ing independent place fields necessarily predicts the same
pattern of activity during every run along the track (Fig
8C). Any variations must be ascribed to noise in the sys-
tem. In contrast, we find that a cell missing its place
field is not an individual deviation disconnected from the
rest of the population, but rather that the network state
is predictive of the place field being dropped.

The effective field heff
i [Eq (11)], which determines

the probability of a single neuron being active, can be
thought of as having three components. First, each neu-
ron has an intrinsic bias hi, independent of all the other
cells in the network. Activity in other neurons adds to
this bias, through the terms ∝ Jij in Eq (11), and we can
further separate this sum into contributions from place
cells and from non-place cells, which are the second and
third components of the effective field. In Fig 8D we
show a scatter plot of these last two contributions, sepa-
rating the case where the target cell i is itself a place cell
or a non-place cells. Perhaps the most important conclu-
sion is that contributions from the two classes of cells are



9

comparable: our ability to predict the activity of one cell
from the patterns of activity in the rest of the network
depends both on neurons with a clear place field in the
environment, as well as on those that are not strongly
place modulated, more or less equally. This reinforces
the conclusion that regardless of the level of place mod-
ulation in their activity, all cells are part of the same
patterns of collective activity.

III. DISCUSSION

We have explored a description of activity in the hip-
pocampus that focuses on the collective behavior of the
network, rather than on the sensory inputs or motor out-
puts. Extending a strategy that was originally applied
to populations of neurons recorded in the retina a lower
sensory area [39, 44–46], we have built this model by tak-
ing from experiment a few basic quantities, in particular
the mean activity of each neuron and the correlations
between activity in pairs of neurons. Beyond these con-
straints from experiment, we ask for a model that gener-
ates states of activity in the network that are as random
as possible, so that the only structure is that required to
match the constraints. This maximum entropy model is
learnable from the data; given the size of the data sets
to which we have access, there are no signs of over-fitting
(Figure 10 in Appendix C). The model is simple, yet it
passes a number of quite detailed tests.

Although the model is based on measurements of cor-
relations between pairs of neurons, it makes predictions
for the probability of any possible combination of activ-
ity and silence in the network. While we cannot estimate
the probabilities for each of these 278 ∼ 3 × 1023 states,
we can measure the probability that K out of the N neu-
rons in the network are active simultaneously (Fig 5A),
and we can measure the correlations among all 7.6× 104

distinct triplets of neurons (Fig 6A), and in both cases,
we see detailed, quantitative agreement between theory
and experiment. The central quantity in our model is the
energy or (negative) log probability, and we can predict
the distribution of this quantity across the network states
that actually occur in the experiment, deep into the tail
of rare states (Fig 5B). Finally, and perhaps most impor-
tantly, we can test the idea that activity in the network is
collective by predicting the activity of one neuron based
on the state of all the others (Fig 7). We have focused
on the analysis of a single data set, from 78 neurons in a
half an hour recording session, but essentially the same
results are found in 5 other data sets, as described in
Appendix (Fig B).

Our first conclusion is that the general strategy we
have adopted succeeds in describing the distribution of
activity across networks of ∼ 80 pyramidal neurons.
These results indicate that the maximum entropy method
is a viable path for constructing global models of joint ac-
tivity in central brain regions. We may yet find that the
small quantitative discrepancies between theory and ex-

periment are hints of things we are missing that become
clearer in larger networks, as in the retina [37, 46], but
the quantitative agreement that we do find here sets a
standard for what we should expect from such models.
We emphasize that the correlation structures we see in
this network are not simple: covariation among neurons
cannot be captured by linear projection into a low dimen-
sional space (Fig 7), nor can the higher–order correlations
be captured by a model of independent place cells, even
allowing for arbitrarily complex and disconnected place
fields (Fig 6C and Appendix D).

In the view of network activity as a collective whole,
we think of individual cells as following the state of the
network, as summarized by the “effective field” [Eq (11)].
An alternative view is that each neuron is encoding infor-
mation about the organism’s behavior and its sensory in-
puts. In the hippocampus, the natural variable is the po-
sition of the mouse along the (virtual) track, and indeed
32/78 of the cells in the population that we study here
have clear place fields (Fig 2) but the majority of cells
(46/78) do not. These “non–place” cells, whose activity
is not significantly spatially modulated, could function as
place cells in another environment, but they are far from
being “silent” [8, 31]. Because our model does not make
reference to place, both classes of neurons appear on the
same footing, but this leaves open the question of what
really is being represented.

The activity of individual place cells, by definition, car-
ries information about position, and we can quantify this
in bits: the information I(σi;x) that the state of neuron i
at one moment in time provides about the position of the
mouse along the virtual track. Since the cells are active
only in a few percent of the time frames, we expect this
average, momentary information to be small in absolute
terms, roughly ∼ 0.1 bits, as seen in Fig 8E. But we can
also ask how much information the activity of these neu-
rons provides about the effective field, that is a summary
of the state of the rest of the network, I(σi;h

eff
i ). Fig 8E

shows that, except for a few outliers, these two informa-
tion measures are equal within error bars, for each place
cell.

Non–place cells are defined by the fact that there is no
single place near which the probability of being active is
high. Nonetheless, this activity in these cells can convey
information about place, although typically less than the
place cells, as we expect. For almost all of the non–place
cells, however, we find that the information that activ-
ity provides about the effective field is much larger than
the information about position, I(σi;h

eff
i ) � I(σi;x), as

shown in Fig 8F. This means that the information shared
among neurons in the network is not entirely about place.
We suspect that it will be easier to discern the biological
significance of this collectively encoded information when
we can monitor larger populations of cells in a broader
range of environments.

Our results show that the activity of both place and
non–place cells can be given a compact, unified descrip-
tion as part of a single network exhibiting collective be-
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FIG. 8. Collective and place information (A) Predicted probability computed from the effective field in our model for all
place cells along two consecutive runs along the linear track. Time window shown is the same as in panels B and C. During
the first run, cells 21-25 are predicted to “miss” their place field. Indeed, comparing to the real data shown in panel B, there
is a missed field for these cells on that specific run, but all cells are predicted to be active in the second run. (B) Real data of
place cells activity during two runs down the linear track, corresponding to panels A and C; note the “missed” events for cells
21-25 in the first run. (C) Predicted probability computed from the independent place cells model for all place cells along two
consecutive runs along the linear track, as in A. Prediction for the two runs are almost identical, with no indication of when
fields should be missed. (D) Contributions from place cells and non–place cells to the effective field. Each point shown is a
time point from a specific neuron (sub–sampled 1:1000). The predicted probability includes a contribution from place cells (x
axis) and from non-place cells (y axis). A point was colored purple if the time point belonged to a place cell, and yellow if the
time point belonged to a non-place cell. Network contributions to both place and non–place cells seem to originate equally from
the two sub–populations. (E) Each point (with error bars for both axis) corresponds to the information that the activity of a
particular place cell carries about the state of the network vs. the information carried about the position of the animal. Place
cells carry similar amount of information about the state of the network and about the animal’s position. (F) As in panel E,
but for non–place cells. Non–place cells carry more information about the state of the network than about the position of the
animal. Note that some of them carry non–negligible position information, even though they do not have a sufficiently reliable
localized place field to be classified as place cells.

havior. All the quantitative features of this collective
behavior are predicted from the observed correlations be-
tween pairs of cells. We have seen that higher order cor-
relations are not predicted at all in a model where cells
respond independently to the animal’s location (Fig 6C
and Fig 11C), and that there are even quantitative de-
viations of the pairwise correlations from this place field
model (Fig 13C in Appendix F). Neither the pairwise
correlations Cij in the data nor the inferred interactions
Jij in our model are of low rank, and the deviations of the
correlations from the place field model also are not of low
rank, suggesting that there is no global additive modu-

lation of activity (Fig 13D in Appendix F). Place fields
can shift from trial to trial [29], but if we estimate these
shifts from our data there is no obvious global pattern
that could generate the appearance of collective behav-
ior (Fig 13D in Appendix F). Independent of its under-
lying mechanism, the fact that the network exhibits a
nontrivial pattern of collective behavior that is captured
by our relatively simple model does not seem to be an
obvious consequence of known deviations from a simple
place field model, and certainly such behaviors have not
been predicted quantitatively by previous models.

In our analysis, we investigated equal–time correla-
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tions; a reasonable next step is to incorporate temporal
correlations into the model. While recent studies have
offered interesting adjustments to our framework to ac-
count for time dependencies to data [47], the dynamical
aspect of the collective behavior of place and non–place
cells remains a challenge.

An interesting phenomenon observed experimentally in
dorsal hippocampus is “remapping”, which occurs when
an animal is moved from one familiar environment to
another, and the place cells in CA1 code for a different
cognitive map in each environment. When discussing
possible models for the hippocampal network, it is im-
portant to remember that these different maps partially
overlap — a fact which has been difficult to resolve with
the initial view of different spatial maps needing to be
orthogonal to one another. This conflict has led to two
possible mechanistic hypotheses: either we need a more
sophisticated attractor map architecture than has been
proposed previously, or the hippocampus conjunctively
encodes both map information and some other type of
information [48]. Our finding that each neuron has ac-
cess to the state of the rest of the network, and that
individual neurons’ activity, regardless of how well they
code position, are very well predicted by the network,
points toward the latter hypothesis. Taken together, the
evidence that the correlation patterns in the data only
partially arise from place encoding and that additional
information is encoded in the population–level, lead us
to believe that interactions among neurons in CA1 may
have equal or even greater influence than the animals
position on the observed neural activity.

IV. EXPERIMENTAL METHODS

Surgery. Optical access to the hippocampus was
obtained as described in [13]. Briefly, a ∼3mm circular
hole was cut into the skull centered at 1.8 mm lateral and
2.0 mm posterior to bregma on the left side of the skull.
The cortical tissue overlying the hippocampus was aspi-
rated, and a circular metal cannula with a #1 coverslip
affixed to the bottom was implanted, with a thin layer of
Kwik–sil (WPI) between the hippocampus and coverslip.

Virtual reality setup. Water–restricted mice were
trained to receive water rewards by running on a 4m
virtual linear track using a virtual reality setup similar to
that described in [49]. Mice ran on a Styrofoam treadmill
constrained to rotate only around the horizontal axis
(pitch) to prevent turning. Treadmill movement was
read out using an optical mouse, and a visual display
of the virtual environment was projected onto a 270◦

toroidal screen. Images were acquired using two photon
laser scanning microscopy as previously described [13].

Image processing. Images were analyzed using tool-
boxes and custom scripts written in Matlab. Acquired
images were motion–corrected by aligning to a template

image, and cell finding was performed on the corrected
movie using a modified version of the PCA–ICA algo-
rithm [50].
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Appendix A: From continuous fluorescence signal to
a binary time series

To convert the neural activity reported by the kinetics
of the GCaMP3 indicator, we used independent expo-
nential fits for the rise and decay time of the fluorescence
signal for each activity event. After identifying all max-
ima that can potentially be activity events, as described
in the main text, the rising phase of each response was
fit with a single exponential function. Traces whose time
course deviated more than 3 from average were discarded,
since they usually reflected residual motion artifacts or
external noise sources. Next, the decay trace was fit to a
double exponential f(t) = A0+A1e

−k1t+A2e
−k2t. In the

case that k2 was slower than 1σ from the average trace
for that cell, the time point was assigned a value of 1, as
it was assumed the cell kept on firing and the decay slope
was fit again from the next time point and on, repeating
until the slope was within 1σ from the average. In the
case the trace decayed faster than 1 from the average for
that neuron, the time point was assigned a 0 value.

Appendix B: Learning the model

To build the maximum entropy models constrained by
the firing rates and covariances computed from the data,
we performed Markov Chain Monte Carlo (MCMC). In
every cycle, we shift the values of our model parameters
{hi, Jij} in the direction of the gradient towards the solu-
tion. The log–linear form of the Boltzmann distribution
guarantees us convergence for any set of observed param-
eters {hi, Jij}. The algorithm we use leverages quasi–
Newton approximations, which estimate the Hessian of
the target distribution from previous samples and gradi-
ents generated by the sampler [51]. To ensure our final
solution is not sensitive to initial conditions, we incor-
porated a long enough burn–in period (usually 100,000
cycles) where we threw away the samples before starting
to record them. The estimate for our model parameters
{hi, Jij}, which serve as the coefficients of the observ-
ables in our cost function, lets us obtain the full prob-
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FIG. 9. Fitting the model - comparing model vs. data.
(A) First moments after the MCMC has converged. (B)
Second moments, after the MCMC has converged. (C) Cij

pairwise covariances values as given by the model that was
learned from of the data, compared to their values in the of
the data that was not used to fit the model. Values are very
well fit. (D) cij, pairwise correlation coefficients as given by
the model that was learned from of the data, compared to
their values in the of the data that was not used to fit the
model. Values are very well matched.

ability distribution for the joint activity of the neurons.
Once we have the distribution, we can sample synthetic
data from it, i.e. simulate a set of configurations (popu-
lation states), according to their probability to occur in
our model. Our probability distribution assigns a prob-
ability value for any possible configuration. To text for
overfitting, we used 3/4 of trials (randomly selected) to
train the model, and left out a 1/4 as a test set. Figure
9 shows the correlation values predicted by the model as
computed from the sampled population states, against
the ones computed from the test set. We can see they
are in agreement within error bars.

Appendix C: Survey of additional experiments

We analyzed 6 data sets recorded in CA1 of 4 GCaMP3
transgenic mice. The number of neurons in the data sets
ranged 21-78: 1. N = 78 (as described in the main text),
2. N = 69, 3. N = 21, 4. N = 68, 5. N = 46, 6.
N = 40. Each session lasted T ∼ 25 minutes, where
each run along the track lasted K ∼ 15 sec. A separate

model was constructed for each session. Performance of
the model for these datasets is summarized in Fig 10.
Four of the datasets are shown for ease of visualization.

Appendix D: Independent place cells

We have explored a model in which the states of neural
activity are a coherent, collective whole, with each cell’s
probability of being active determined by the activity of
the other cells in the network. This model makes no ex-
plicit references to external inputs, although these may
be encoded implicitly through the pattern of correlations.
A very different approach is to imagine that each neu-
ron is “responding” independently to the relevant sen-
sory stimuli, and since we are in the hippocampus the
natural stimulus variable is the (virtual) location of the
mouse. Indeed we made use of intuition from this model
when we rationalized the pattern of pairwise correlations,
arguing that the negative correlations arise because cells
representing different places in the environment cannot
be active simultaneously.

The idea of tracing correlations in neural activity back
to correlations in their inputs is very old, dating back to a
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time when it was hoped that analysis of correlations could
provide an unambiguous measure of anatomical connec-
tivity [52, 53]. The decomposition of correlations into
stimulus–driven (“signal”) and intrinsic (“noise”) com-
ponents remains popular in the analysis of more periph-
eral sensory systems. The standard approach in those
cases is to present precise repetitions of the sensory input,
and compare the correlations among neurons computed
from properly aligned with those computed after the tri-
als have been shuffled, leaving only the stimulus–driven
correlations. Importantly, this is an experiment we can
perform as observers of the brain, but not a distinction
that is available to the brain itself. Nonetheless it is
interesting to ask how model of neurons independently
encoding place would compare to the maximum entropy
model of collective activity that we have considered here.

Following conventional methods, we can estimate the
probability that each neuron will be in the “on” state
during the time bin when the mouse visits a particular
place along the virtual track as in Fig 2C We see that, for
32/78 neurons, there is a clear position near which the
probability of being active is very high, even close to one,
with activity having near zero probability away from this
point; these are classical place fields. For the there 46/78
cells, however, the peak probability of being active is not
very high, the activity is much more diffuse, and in sev-
eral cases there are multiple low peaks. We have referred
to these as “non–place cells” in the main text, although
it is clear that they carry some spatial information, even
if not conforming to the classical picture of place cells.

Let us refer to the place field of cell i as Fi(x); this
is the probability that cell i will be active in a time bin
when the mouse is at virtual position x. If all cells are
responding to the position variable independently, then
we can generate synthetic sequences of activity just by
reference to these probabilities as they vary along the
trajectory x(t). Further, we can predict the expectation

values of the binary variables {σi} and their correlations:

〈σi〉pl =

∫
dxP (x)Fi(x), (D1)

〈σiσj〉pl =

∫
dxP (x)Fi(x)Fj(x), (D2)

〈σiσjσk〉pl =

∫
dxP (x)Fi(x)Fj(x)Fk(x), (D3)

where the subscript pl reminds us that these predictions
arise from a place field model. In Fig 11A we show the
predictions for the pairwise correlations,

Cpl
ij = 〈σiσj〉pl − 〈σi〉pl〈σj〉pl, (D4)

compared with what we see experimentally.

The predictions from an independent place field model
do a reasonable job of reproducing the observed pairwise
correlations. Although one can find significant disagree-
ments, the overall trends are captured, and there is even
detailed quantitative agreement between model and data
for many of the pairs. The picture changes substantially
when we try to predict the correlations among triplets of
neurons, as we did with the maximum entropy model in
Figs 5A and B. In Fig 11B we show the triplet correla-
tions predicted by the model of independent place fields,
compared with the experimental data.

The model of independent place fields significantly un-
derestimates the correlations among triplets of neurons,
so that a plot of predicted vs observed Cijk has a slap of
∼ 1/2 across the full dynamic range (Fig 11B). But if we
zoom in on the most common, small correlations, we see
that the situation is much worse. Throughout the win-
dow shown in Fig 11C, the model of independent place
field predicts essentially zero triplet correlations,
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Appendix E: Defining place cells

In order to identify which neurons qualify as place cells,
we first divided the virtual 4-meter-long track into 20 spa-
tial bins and summed the number of on moments every
neuron had in each bin. Following the strategy described
in [54], to categorize how good a description of a loca-
tion is given by an individual neuron, we measured the
extent to which the information is concentrated in a spe-
cific place. We assigned 5 spatial bins as the range for
a potential place field. The neurons mean activity (over
all trials) center of mass determined the location fields
center bin. Spatial bins of the place field were defined as
the center bin and 2 more bins from each side. Next, we
implemented a two–step approach as described in previ-
ous studies. First, we computed the spatial information
for each neuron per place field [54–56].

I =

5∑
k=1

pk
〈σi〉k
〈σi〉

log2

〈σi〉k
〈σi〉

. (E1)

where pk is the probability of the mouse to be in the
k-th bin of the place field, 〈σi〉k is the mean activity of
neuron i in the k-th bin of the place field, 〈σi〉 is the
overall mean activity and k runs over the spatial bins of
the place field. Note that if we were to extend this cal-
culation to all bins, we would get the measure for any
place information in the neural signal (not necessarily lo-
calized), I(σi;x), described in the main text. The second
step in our two–step approach is to perform a shuffling
test [57, 58], shifting the entire sequence of activity for
every neuron in each trial by a random interval. The end
of the run was wrapped to the start to create a circular
permutation, and the interval was picked at random from
a uniform distribution of all durations between 3 secs to
the trials duration. We repeated the process 500 times
per neuron and computed the spatial information each
time. This procedure has the advantage of effectively
decoupling the neural activity from the mouses location,
while not breaking its temporal structure. A neuron qual-
ified as a place cell if its information per active time bin
(“on” moment) was at least in the 80th percentile of the
shuffled distribution for that neuron. In the case of a
neuron with more than one field, the procedure was per-
formed for each field separately and success in either of
them would have qualified the neuron to be a place cells
(rare). Out of the 78 neurons in the main data set we
reported here, 32 qualified as place cells according to the
shuffling criterion. This fraction was similar in the other
5 datasets we analyzed, ranging from 28% to 41%.

Appendix F: Investigating the collective behavior of
the network

To further explore potential explanations that could
account for the covariation of the neurons that we ob-
serve, since place–coding alone does not, we looked into
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FIG. 12. Place fields of place and non-place cells. (Left
column) place fields of randomly chosen place cells out of the
top 32 cells reported in Fig 2D in the main text. Panels A-E
correspond to cells # 2, 8, 15, 26, 30. Cell #2, shown in panel
A, is an example for a rare case of a place cell with two place
fields. (Right column) place fields of randomly chosen cells
that did not pass the criterion to qualify as place cells out of
the bottom 46 cells reported in 2D in the main text. Panels
F-J correspond to cells # 38, 42, 51, 61, 75. Note that some
of them do have a certain level of spatial tuning.

two known sources of variability in CA1 neural activity:
global changes in the network excitation and trial-by-trial
changes in place field locations. First, we ask whether the
global pattern of correlations among pairs of neuron (Fig
13A) might be the result of activity in the network being
confined to a space with dimensionality much lower than
the number of neurons, as has been suggested in other
systems [59–61]. To test this possibility, we compute the
eigenvalues of the covariance matrix Cij as defined in Eq
(2) in the main text, with the results shown in blue in
Fig 13D. The covariation among neurons cannot be cap-
tured by linear projection into a low dimensional space,
nor can the higher–order correlations be captured by a
model of independent place cells, even allowing for ar-
bitrarily complex and disconnected place fields (Fig 11C
and Fig 6C in the main text). Moreover, the eigenvalue
spectrum of the difference in correlations between the
data and the place–related activity shows no sign of be-
ing low rank either (Fig 13D (in red)), indicating that
no simple model for global modulation of the network
that we might attempt to write down could successfully
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FIG. 13. Alternative explanations for the collective behavior of the network. (A) Pairwise covariance matrix Cij of
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activity was too low to determine a meaningful center of mass. No single global mode captures all the variance.

capture it.
Next, we turn to the trial-by-trial changes in place field

locations. This instability of the place cells code, origi-
nally referred to as “excess firing variance” [29], is char-
acterized by changes in discharge during different passes
of the animal through the same location. In the posi-
tional domain, place fields occasionally get dropped or
even missed completely (e.g. Fig 8B in the main text).
We explored the changes in their locations by compar-
ing trials. In Fig 13E we show all place fields location
changes, δLil:

xCMi =

∑
t x(t)σi(t)∑
t σi(t)

(F1)

δLil = xCMil 〈xCMi 〉 (F2)

For neuron i in any trial l, xCMi is the place cells activi-

tys center of mass in that trial, and 〈xCMi 〉 is the center of
mass averaged across all trials (“true location”). Decom-
position of the location shifts matrix (Fig 13E) reveals no
single pattern or global mode that could account for the
collective behavior of the system. We conclude that nei-
ther of the global phenomena we tested accounts for the
collective nature of the system. Indeed, we have not ruled
out the possibility that there is a different variable of a
more complex nature that is nonlinearly embedded in the
data and could capture the observed covariation beyond
position coding. However, since neither the covariance
matrix of the data itself, nor the difference between this
matrix to the covariance matrix of place–related activity
only, is low rank, no single linear variable could help ex-
plain the data simply by addition to the low dimensional
feature of place coding.
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