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Abstract 

Memories are not stored as a continuous stream but instead are discretized into distinct epi-

sodes. The boundaries of these events represent an abrupt change in context, allowing memo-

ries to be associated with others related to the same event. Although event segmentation has 

been studied extensively in humans, the topic has largely been ignored by research address-

ing mechanisms at the level of single neurons. We recorded from hippocampal neurons while 

rats performed an odor digging task, executing hundreds of trials over several days of learning. 

Despite variability in the environment and behavior of rats, many neurons showed reliable tran-

sient increases at the beginning and end of trials, and ensembles exhibited striking self-similar-

ity in representational state across trials. Populations encoded trials, inter-trial intervals, and 

transitions at the start and end of trials, in a multidimensional state space of orthogonal repre-

sentations. These findings suggest a role not previously attributed to the hippocampus, and 

shed new light on the function of non-spatial hippocampal activity in supporting episodic 

memory.  
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Introduction  

For animals to successfully interact with their environment they need to construct neural represen-

tations that allow them to identify the current context and select appropriate behavioral responses, and 

they need to rapidly transition between these representations when the context changes. A large litera-

ture has suggested that hippocampal activity patterns represent the environmental context (Colgin et 

al., 2008; Holland and Bouton, 1999; Nadel, 2008; Rudy, 2009) and we have shown that distinct hippo-

campal representations are essential for the ability to retrieve context-appropriate memories while 

avoiding interference from memories that belong to other contexts (Bulkin et al., 2016; Butterly et al., 

2012; Smith and Bulkin, 2014). The hippocampus has the capacity to generate many distinct represen-

tations (Alme et al., 2014) and the environmental factors that induce the formation of a new representa-

tion (i.e. remapping) have been studied extensively (Anderson and Jeffery, 2003; Colgin et al., 2008; 

Leutgeb et al., 2007, 2005; Muller and Kubie, 1987; Schlesiger et al., 2018). Changes in the non-spatial 

characteristics of the context, such as behavioral demands, strategy and motivation, are also known to 

induce remapping (Eschenko and Mizumori, 2007; Ferbinteanu and Shapiro, 2003; P. J. Kennedy and 

Shapiro, 2009; Skaggs and McNaughton, 1998; Smith and Mizumori, 2006; Terrazas et al., 2005; 

Wood et al., 2000). Studies of hippocampal representations during context transitions have shown pat-

terns that are rapid and abrupt, rather than a gradual progression through intermediate representations 

(Jezek et al., 2011; Kelemen and Fenton, 2010; T. J. Wills et al., 2005). However, these studies neces-

sarily involved artificial experimental conditions unlike those commonly encountered in day to day expe-

rience (e.g. an unexpected and dramatic change in the visual environment, described as ‘teleportation’ 

by the authors (Jezek et al., 2011)). Much less is known about more mundane and highly predictable 

changes in the context such as walking from the living room into the kitchen. Indeed, it is not clear 

whether the hippocampus treats contiguous spaces as distinct contexts and if so, how hippocampal 

representations transition from one to the other.  
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In this paper we leverage a large dataset of 2056 neurons recorded during a complex multi-stimulus 

olfactory discrimination task with two behaviorally and spatially distinct areas (a trial area and an inter-

trial waiting area) and a predictable trial structure to interrogate the dynamics of hippocampal represen-

tations. We discovered that hippocampal populations form two distinct representations of the trial and 

ITI epochs, and that the shift between these representations was accompanied by a surge of activity 

among subsets of hippocampal neurons. These firing patterns resembled a phase transition: the hippo-

campal state before trials transformed to a distinct state during trials, and then transformed back at the 

end of trials, with an identifiable transitory activity pattern between states.  

 

Results 

We recorded the responses of hippocampal CA1 neurons while rats were engaged in a memory-

guided odor discrimination task (Butterly et al., 2012). On each trial, a removable divider was lifted and 

rats ran from an inter-trial waiting area to approach two cups containing scented digging medium 

(Fig.1A). Odors were drawn from a set of 16 distinct odors, presented in 8 pairings with one odor in 

each pair always rewarded with a buried sucrose pellet. On some trials (Fig. 1B, E), rats approached 

the rewarded cup and dug for a reward. On other trials rats approached the unbaited cup first (Fig. 1F), 

and either correctly rejected the stimulus (Fig. 1C) or incorrectly dug for a reward (Fig. 1D) after which 

the trial continued until they obtained the reward in the baited cup. Following the reward, rats returned 

to the inter-trial waiting area. Recordings took place over a period of up to 10 days, as rats learned re-

ward contingencies for two sequentially presented sets of odor pairings in a task design used to probe 

for mnemonic interference. Results of the investigation into interference have been reported previously 

(Bulkin et al., 2016). 
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Figure 1. Reliable neuronal responses to the start and end of trials despite large variability in 

spatiotemporal patterns of behavior. Rats performed trials in 60cm x 46cm wooden boxes (A). The 
boxes were bisected by a removable divider (dotted line in A). One side of the box served as the inter-
trial waiting area, and rats performed trials in the other side. During the trials, rats dug for a reward bur-
ied in one of two cups, placed in cup holders indicated by the two circles in A. Panels B through D 
show example positional trajectories, beginning 3 seconds before the trial start (black squares) and ex-
tending 3 seconds after the trial end (black circles). B shows a trial where the rat first approached the 
cup on the right, which was the baited cup for this trial, and dug for a reward. C shows a trial where the 
rat approached and sampled the unbaited cup (on the left), correctly rejected it, and then dug for a re-
ward in the baited cup on the right. D is similar to C, except that the rat made an error by digging in the 
cup on the left, but then approached the baited cup on the right and found the reward. Panels E and F 
illustrate the time line and variability in how the trials proceeded. The median time of arrival at the cup 
(blue), the time spent retrieving the reward and returning to the ITI side of the box (black), and the du-
ration of the ITI (red) are given. The histograms illustrate the variability in the duration of these epochs. 
Panel F shows the same data for trials in which the rats approached both cups (i.e. trials with trajecto-
ries like those shown in C and D). Note the use of a log scale for the abscissa in E and F. Panels G 
and H show data from an example trial start and trial end neuron. At the top the average firing aligned 
on the start (left) and end (right) is shown. Below a heatmap shows the firing on each trial. At the bot-
tom, the trajectory of the rat is shown for a period matching the above plots, with color indicating the 
instantaneous firing rate of the neurons.  
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Individual Neurons Respond at Trial Boundaries 

Many neurons showed transient increases in activity at the start and end of trials, often selective for 

one of these two epochs.  Figure 1G-H show the responses of example ‘trial start’ and ‘trial end’ neu-

rons. The upper panels show responses that are strongly time-locked to the start and end of trials, de-

spite considerable variability in timing of behavior (Fig. 1E-F). The lower panels of Figure 1G-H show 

the trajectory of the rat with color indicating the instantaneous firing rate. These data show that eleva-

tion in activity was spatially unrestricted, and that the rat often traversed similar territory during these 

two epochs, suggesting that activity was better explained by a temporal description of firing rate than by 

a spatial account. 

The large numbers of neurons with activity patterns like those seen in Figure 1G-H led to transient 

increases in multi-unit firing rate that began just before the start of trials (as the divider was lifted) and 

then again at the end of the trials as rats returned to the inter-trial waiting area (Fig. 2A-D). Similar to 

the example responses shown in Figure 1G-H, this activity was not attributable to purely spatial factors.  

Most neurons were selective for either the trial start or trial end (Fig. 2E, blue and red) even though 

these epochs occurred in similar locations. Firing was not distributed randomly around the environment, 

but instead we observed elevated activity near the boundary between the trial and ITI areas (Fig. 2F). 

These apparent ‘spatial’ regions of elevated firing were clearly modulated by the start and end of trials. 

Firing measured at the same locations during epochs associated with the trial start and end was distinct 

(Fig. 2G, red and blue traces), and was elevated compared to firing far from trial boundaries (Fig. 2G, 

black trace), indicating that activity was not modulated solely by spatial location.  

Transient activity at the start and end of the trials was not likely associated with sharp-wave ripples. 

Rats were rarely immobile at these times, and field potentials showed robust theta oscillations, and so 

ripples were infrequent at the start and end of trials (Buzsáki et al., 1992). Increased activity at the trial 

start/end was also not attributable to increased running speed at the start and end of trials. Although 

activity was correlated with running speed overall, we found that firing rates were higher at the time of  
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the trial start and trial end than at instances of similar running speed occurring during the trial and ITI 

epochs, suggesting that trial start/end activity was above what would be expected based on running 

speed alone (Supplemental Fig. 1).  To statistically confirm this, we computed a series of linear regres-

sions for each session defining multi-unit firing rate as a function of running speed, separately for data 

selected from the trial start and trial end and the inter-trial interval (ITI). The slopes of the resulting re-

gression lines taken from the trial start/end data were similar to the slopes based on ITI data (paired t-

test, p>.01 for start and end), yet the intercept was significantly higher for data selected from the trial 

 

Figure 2 Increase in activity of hippocampal neurons at trial start and end. Panels A and B show average multi-
unit firing rate aligned on trial start and end. Firing rates of each unit were binned (100ms bins) and smoothed with a 5 
bin moving average. The shaded region indicates SEM over units. Panels C and D show average normalized firing 
rate aligned on trial start and end for all units. Binned activity was normalized by z-scoring using the average and 
standard deviation of each unit’s rate over the entire session. The trial-averaged traces were then sorted based on the 
time of the maximum rate. Panel E shows a scatter plot of peak firing rate of each neuron in a window +/- 3s with re-
spect to trial start (abscissa) versus trial end (ordinate). For each unit a single crosshair is plotted, centered on the av-
erage peak rate, and extending +/- one SEM (over trials). Units with SEM overlapping with unity are shown in gray 
(513/2056 units), those above unity are shown in blue (810/2056 units), and those that fall below unity are shown in 
red (733/2056 units). Panel F shows the average firing rate in 1.5 cm square spatial bins. Points between the centers 
of the bins have been linearly interpolated. The horizontal line indicates the location of the removable divider (see Fig. 
1A). Panel G shows average multi-unit firing rate for locations in 3cm bins in the axis orthogonal to the divider (i.e. ver-
tical in F), calculated separately for rates occurring within 2 seconds of the start of the trial (red) or end of the trial 
(blue) or more than 2 seconds from either (black). Panel H shows average firing rate around the start of the trial plotted 
separately for correct (green) and error (pink) trials, only neurons with trial start responses have been included (688 
neurons, Fig. 3A). The inset shows the average activity in a window +/-500ms on the trial start. Shaded region and 
error bars indicate SEM over units. 
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start (paired t-test, p<10-6) and end (paired t-test, p<10-6). This suggests that activity at these times 

showed a global increase unrelated to running speed.  

Interestingly, the magnitude of the trial start response (average firing rate +/- 500ms around trial 

start) was somewhat larger on trials in which the rat made the correct choice on the subsequent trial 

(Fig. 2H; 641units, paired t-test: p<.001). This effect was probably not driven by reward related activity, 

or a reduction in the reward prediction error when rats identified the odor and could therefor predict an 

impending reward. Rats rarely arrived at the first cup within 500ms (Fig. 1E-F), and we saw no evi-

dence of a decision (e.g. a change in trajectory) before this time.  

To assess the relative contributions of spatial and temporal factors in shaping the activity of individ-

ual neurons, we modeled the firing rate of each neuron as a function of the rat’s location and the time of 

the nearest trial start and end. Because position and time partially covaried (i.e. position was not ran-

dom at times near the trial start and end), we used an extension of a constrained Poisson generalized 

linear model (GLM) that orthogonalizes covariates to disambiguate the independent contributions of 

factors affecting firing rate (Truccolo et al., 2004). This strategy has been previously used specifically 

for distinguishing effects in the face of nuisance correlations between factors shaping hippocampal ac-

tivity (Lepage et al., 2012; MacDonald et al., 2011). For each neuron we fit three Gaussian functions to 

the average activity: two one dimensional curves that described firing rate as a function of time with re-

spect to trial start and end, and a two dimensional surface that described firing rate as a function of the 

location of the rat. We then described the firing rate of the neuron as the weighted sum of these three 

functions (effects of trial start, trial end, and position), using the projection described in Lepage et al 

(2012) to form estimates of temporal effects that could not be accounted for by covariation between the 

times of trials and the location of the rat. Finally, we computed the statistical significance of each coeffi-

cient via a normal approximation of the bootstrap estimate (Efron and Tibshirani, 1994). Supplementary 

Figure 2A-F show responses and fits of example temporally and spatially modulated neurons that were 

disambiguated by this analysis.  
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 The majority of neurons were signifi-

cantly modulated by space (1601/2056; 

Fig. 3A). Yet many of these neurons 

showed additional modulation by the trial 

start or end (859/1601; Bonferroni cor-

rected for tests of trial start and end re-

sponses). Importantly, because the 

model orthogonalized spatial and tem-

poral covariates, the trial start/end re-

sponses were not spuriously identified 

due to rats traversing through a place 

field at the beginning or end of trials. Ra-

ther, neurons represented both location 

and time with respect to the trial bounda-

ries. Approximately half of the neurons 

showed some modulation by one of the 

temporal factors (1004/2056, Bonferroni 

corrected), and a similar quantity of cells 

had activity that was affected by the trial start and trial end (start: 688 neurons; end: 757 neurons). Plot-

ting the average firing rate for start/end responsive and spatially sensitive neurons revealed that firing 

patterns were similar for neurons with a trial start/end response whether or not the neuron was also 

modulated by space, and that spatially sensitive neurons that lacked a trial start/end response showed 

larger firing rates during ITI epochs (Fig. 3B-C; Supplemental Fig. 2G-H). In order to control for the pos-

sible contribution of running speed to trial start/end firing, we repeated the GLM and included a linear 

 

Figure 3 Independent Spatial and Temporal Responses in Over-

lapping Neuronal Populations Panel A shows a venn diagram indi-
cating the classified responses of neurons. Each unit was submitted to 
a generalized linear model (GLM) which orthogonalized components 
defined by spatial and temporal Gaussian fits to average response 
data. The diagram tallies the number/percent of neurons with a signifi-
cant term in the model for the noted component. Panels B and C show 
average normalized firing rate for units with (+) and without (-) signifi-
cant spatial and trial start (B) or trial end (C) coefficients. The GLM 
successfully identified start and end responsive neurons, evidenced 
by the clear peak in the average firing rate of these neurons compared 
with unresponsive neurons. Units classified as exclusively spatial (i.e. 
Start-/End- Space+) showed somewhat elevated firing rates in the in-
ter-trial interval (before the trial start in B and after the trial end in C). 
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term for running speed. Firing was modulated by running speed for many neurons (773/2056), but ac-

counting for variance due to running speed had little effect on the number of neurons marked as re-

sponsive to the trial start/end (Supplemental Fig. 2I-J). 

  

Distinct Population States Represent the Trial and ITI 

Inspection of the neural activity in Figure 2 revealed two important details about the dynamics of 

hippocampal firing as rats started and ended trials: a prominent increase in firing at the trial boundaries 

(Fig. 2A-B), and distinct populations of neurons were recruited during trial and ITI epochs (Fig. 2 C-D). 

Unlike the transient activity increases at the trial boundaries, non-overlapping populations during trials 

and ITIs are potentially consistent with spatial models of hippocampal activity as these two epochs 

were necessarily in distinct spatial locations (Fig. 1A). This presents an essential challenge of compar-

ing temporal and spatial dynamics in the hippocampus: distinct events often occur in distinct locations. 

We next performed a series of population analyses to understand whether the extent of neural dissimi-

larity between trials and ITIs could be explained based on differences in the rat’s position, or whether 

trial boundaries marked a state transition such that neuronal dissimilarity exceeded what would be ex-

pected based on positional disparity alone.  

To measure ensemble similarity, we tabulated population vectors (PVs; vectors containing firing 

rates in 100ms bins) and computed pairwise correlations between them. We averaged the pairwise cor-

relation coefficients between PVs drawn from different trials, at times surrounding the start and end of 

trials (+/- 3s). Figures 4A-B show the average values (across recording sessions) for each pair of com-

parisons. The color of each point in the images indicates the average cross-trial correlation between 

one temporal bin and another. Points lying on unity quantify the similarity of ensemble activity from trial 

to trial at the same time with respect to the trial start/end, while off-unity points indicate cross-trial simi-

larity at proximal times.   
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Examination of the cross trial correlation plots (Fig. 4A-B) reveals several striking characteristics of 

large scale hippocampal activity patterns. Both plots show a strong peak at the center, indicating that 

trial start/end firing patterns are similar from one trial to the next, an outcome which reflects the reliable 

bursts of firing seen at the trial boundaries (Fig. 2A-B). Correlations along the unity line declined from 

this peak as time passed from the trial start, but remained high throughout the trial epoch. For example, 

firing patterns occurring ~1.5 sec into the trials (see ● , Fig. 4A) were surprisingly well correlated across 

trials. At that time, the rats had typically arrived at the first odor cup (Fig. 1E-F), encountered one of the 

 
Figure 4 Distinct population states in trials and inter-trial intervals. Panels A and B show cross trial population 
vector correlations around trial start and end. For each session, firing rates were tabulated to form population vectors 
and pairwise correlations were computed using vectors in a 6 second window around the trial start (A) or end (B) from 
different trials (each pairwise correlation involved two unique trials at two time points). Correlation values were aver-
aged to form a map for each recording session, the average of these maps is shown. Points in the image between 
bins have been linearly interpolated. The symbols overlaid on the plot in A highlight times of interest discussed in the 
text. Panel C shows a summary of cross-trial correlations. The height of the bars indicates the average value in the 
corresponding quadrant of the maps shown in A-B. Error bars indicate SEM across sessions. Panel D measures the 
performance of a linear discriminant classifier trained with a subset (50%) of population vectors selected from trials 
and ITIs to classify the epoch of the vector (i.e. whether it occurred in an ITI or a trial). The classifier was tested sepa-
rately on vectors selected from a window 3 seconds before/after the trial start (red points) and trial end (blue points). 
Confidence intervals were estimated using an iterative process, randomly selecting vectors 1000 times, with the 5% 
lower C.I. identified as the 5th percentile of the iterated dataset. Lines span from this point to the median performance 
across iterations for each session. The abscissa indicates the number of simultaneously recorded neurons in the ses-
sion. Panel E shows pairwise correlations between population vectors as a function of the distance between positions 
that the rat occupied when the activity occurred. Correlations were computed separately for pairs in which both vec-
tors were selected from trial epochs (cyan), ITI epochs (blue), or when one vector was selected from each epoch 
(green). Error bars indicate SEM. 
 



12 
 

sixteen possible odor cues, and decided whether to dig or proceed to the second cup, depending on 

the valence of the odor cue. Even more noteworthy, firing patterns taken from quite distant times within 

the trials were also well correlated. For example, the firing patterns occurring 0.5 sec into the trial were 

surprisingly similar to firing occurring two seconds later (i.e. 2.5 sec into the trial, see ♦ , Fig. 4A), de-

spite the fact that the rats were engaged markedly different and highly variable behaviors at those two 

time points (Fig. 1E-F). Rats were nearly always approaching the first odor cup at 0.5 sec, but at the 2.5 

sec time point they could be digging in the first cup, investigating or digging in the second cup (if the 

first cup was not rewarded), consuming the reward, or returning to the ITI side of the chamber. This 

was not likely driven by spatial location since the trial structure meant that rats rarely occupied the 

same location at these two different time points (Fig. 1B-D). Firing patterns within the ITI epoch also 

showed a large degree of similarity (Fig. 4A lower left and 4B upper right), although these correlations 

were significantly lower than those for population vectors taken from the trial epoch (Fig. 4C; paired t-

test: T(83)=4.59, p<10-4). Another important feature that is apparent in these plots is the sharp bound-

ary between the trial and ITI epochs. In contrast to the remarkable self-similarity of firing patterns taken 

from within an epoch, correlations were significantly lower for vectors drawn from different epochs (Fig. 

4C; paired t-tests: ITI vs. cross T(83)=18.89, p<10-31; trial vs. cross T(83)=14.27, p<10-23). This sug-

gests that activity was distinct across the two epochs (Fig. 4A-B, upper left and lower right). Indeed, 

correlations for vectors taken only 1 sec apart but from different epochs (i.e. 0.5 sec before and 0.5 sec 

after trial start, see , Fig. 4A) were much lower than those for vectors taken twice as far apart but 

within the trial epoch (see ♦ , Fig. 4A). Similar patterns were found when correlations were measured 

using Kendall’s rank correlation coefficient, which is arguably more robust to the relatively sparse firing 

patterns seen in hippocampus (Neymotin et al., 2017) (Supplementary Fig. 3A-C). 

The striking self-similarity of firing patterns within each epoch, and the sharp decline in similarity 

when rats transitioned from the trial epoch to the ITI, suggest that hippocampus treats these two 

epochs as distinct contexts. Consistent with this idea, we could accurately decode population activity as 
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belonging to the trial or ITI using linear discriminant analysis. We used an iterative process wherein we 

trained linear classifiers using a randomly selected subset of half of the PVs and measured perfor-

mance of the classifiers on the remaining half. We repeated this process 1000 times, providing a distri-

bution of performance values (proportion of PVs correctly classified). Classifier performance (Fig. 4D) 

was virtually always above chance, and showed high accuracy: on average 85% of vectors surrounding 

the trial start and 84% of vectors surrounding the trial end were correctly classified. Classification errors 

were most likely to occur near the trial boundaries (Supplementary Fig. 3F-G), a period when ensem-

bles encoded the boundary itself rather than the surrounding epoch. 

While hippocampal output reliably differentiated the task epochs, the increased similarity of ensem-

ble activity within epochs could simply be due to spatial factors since any two PVs drawn from a single 

epoch were more likely to correspond nearby locations than two PVs selected from different epochs. 

Even the greater similarity within trials than within the ITI could have been influenced by spatial factors 

since spatial behavior was more constrained during trials. In order to determine whether these spatial 

factors did, in fact, account for the within-epoch similarity, we compared PV correlations for subsets of 

data with fixed ranges of spatial distance. We labeled each pair of PVs using the distance between the 

associated positions (locations occupied by the rat at the time of the PV) and binned pairwise correla-

tion values based on distances (Fig. 3E). If ensemble activity was governed purely by space, the se-

lected epoch would make no difference in the correlation values and an overall decrease in correlation 

with distance would be expected. In fact, even at very low distances, PVs were more similar within 

epochs than across epochs, and within trial similarity was higher than within ITI similarity (repeated 

measures ANOVA: main effect of epoch F(2,166)=19.15, p<10-7; main effect of distance 

F(21,1743)=182.9, p<10-15; interaction F(42,3486)=6.053, p<10-15). Indeed, correlations for population 

vectors taken 10-20 cm apart during a trial were as similar as population vectors taken just 1 cm apart 

but which spanned the trial start boundary (Fig. 4E, dashed line). This increased similarity between vec-

tors selected from trial epochs persisted at larger distances, with a noticeable ‘bump’ in the similarity 
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curve for PVs that occurred when positions were separated by about 20cm. This distance is of particu-

lar note as the odor stimuli used in the experiment were presented in cups separated by 20cm (Fig. 1A) 

and we occasionally observed examples of individual neurons that showed increased activity as rats 

sampled the odors and dug in the cups, regardless of which cup (see also (Eichenbaum et al., 1987; 

Muzzio et al., 2009)). The observation that the trial and ITI epochs were more similar than would be 

suggested by spatial considerations alone is consistent with the idea that the hippocampus represents 

the two epochs as distinct contexts and differentiates them accordingly.  

 

Dynamics of Hippocampal Ensembles during State Transitions 

The dissimilarity between population activity in trial and ITI epochs, above what is predicted from 

space alone, suggests that hippocampal ensembles undergo a comprehensive state transition at the 

boundaries of each trial event. Under a phase transition framework, the increase in hippocampal multiu-

nit activity at the start and end of trials might serve to drive this transition, pushing the hippocampal 

state past a critical point to allow a shift in representational state (Steyn-Ross et al., 2010). As such, we 

next sought to characterize the hippocampal state itself rather than relying on pairwise correlations to 

make inferences about the clustering of hippocampal representations. We took a dimension reduction 

strategy using principal components analysis (PCA). Because PCA produces an orthogonal transfor-

mation to a set of linearly uncorrelated variables accounting for descending quantities of variance, it al-

lows for a representation of high dimensional neural activity that captures important covariation among 

ensembles. However, while the individual components identify a mapping of the raw data based on var-

iance, the sign of PC scores is irrelevant. Thus, averaging PC scores across sessions provides no in-

formation on how a typical ensemble changes. To circumvent this issue we built a large matrix of 

pseudo-population vectors containing the firing rates of all of the units in our dataset (n=2056). To com-

bine PVs across multiple sessions, we labeled vectors based on their time relative to the trial start and 

trial end. We took activity from 100ms bins extending +/-5 seconds around each trial’s start and end. 
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We then randomly sampled (with replacement) a vector from a given bin from each session 200 times, 

generating typical 2056 dimensional vectors for that moment in time. Repeating this process across 

bins produced a matrix with 40000 observations (200 time points x 200 iterations). We subjected this 

entire matrix to PCA. Importantly, although the pseudo population vector matrix was assembled using 

temporal labels, PCA is blind to these labels and simply provides loadings (i.e. a coefficient for each 

neuron) such that the first principal component accounts for maximal variance and each additional com-

ponent accounts for a decreasing amount of variance.  

Figure 5A shows the scores of the first three principal components for each vector in the pseudo-

population vector. Points taken from the ITI (before trial start or after trial end) are shown in cooler col-

ors, and points during trials (after trial start or before trial end) are shown in warmer colors. A curve 

showing the trajectory through PC-space was constructed by applying the coefficients identified from 

PCA back to the (raw) average firing rates in the time +/- 5s around the trial start and end. The projec-

tions of this three-dimensional representation to each of the two-dimensional planes are shown as 

‘shadows’ on the axes. PC1, capturing the largest amount of variance, distinguished the epochs: trials 

and ITIs formed completely non-overlapping clusters (Fig. 5B; see blue vs. red clusters in 5A). PC2 

identified trial boundaries, clearly distinct from the trial and ITI epochs, but not from each other (Fig. 

5C). PC3 made this distinction, differentiating trial start activity from trial end activity (Fig. 5D).  

These results provide a view of the state transition of hippocampal ensembles over the course of 

trials. Despite a variety of individual neural firing patterns in the trial and ITI epochs, clear clusters of 

ensemble activity form that identify these distinct contexts. At the start and end of trials, ensembles 

must transition from one representation to the other, and they do this by traversing orthogonally through 

the trial start and trial end PC space. This pattern is similar to a phase transition in that one steady state 

of population activity moves to another state indirectly: the ensemble passes through a specific and reli-

able intermediary.   
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Figure 5 Principal component analysis indicates a phase transition at event boundaries. Using a bootstrap ap-
proach, a pseudo-population vector matrix was assembled to simulate typical firing vectors at time points +/- 5 sec-
onds around the trial start and end. This matrix was submitted to PCA to obtain principal component scores for each 
time sample. (A) Three dimensional plot of the first three principal component scores. Colored squares and circles 
indicate scores of the principal components around the trial start and end respectively, warmer colors indicate points 
selected from time bins in the trial while cooler colors indicate time points selected from the ITI. The event boundaries 
are indicated with black markers. A line traces the trajectory through PC space, computed by applying the coefficients 
obtained by PCA and taking the weighted mean of average peri-event firing (Fig. 1C-D). The colored surface is 
shown to aid interpretation of the three-dimensional structure, and was formed by linear interpolation. Projections of 
the three-dimensional data into each two-dimensional pair are shown on the axis boundaries. (B-D) The PC data 
shown in A, plotted as a function of time for each principal component. As with the line shown in A, these values were 
computed by applying the coefficients obtained from PCA to the average firing rate traces for each unit. (E-G) Spatial 
PC heatmaps computed using the same strategy as in panel A, but assembling a pseudo-population matrix based on 
spatial location rather than the time of individual population vectors (see text). Coefficients from PCA were applied to 
the individual unit spatial firing heatmaps to compute a weighted average. The maps have been linearly interpolated 
between sampled locations.  
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To confirm that this approach yielded a view of the hippocampal state that was not artificially im-

posed by grouping vectors based on time with respect to events, we repeated the analysis but com-

bined vectors across sessions using a purely spatial method. To do this, we formed a matrix of PVs for 

each session, and labeled each vector with the position of the rat at the time associated with the activ-

ity. We then sampled PVs from each session (with replacement), concatenating vectors that occurred 

when the rat was in the same spatial bin (3 cm square bins). In this manner, we formed a large matrix 

of vectors in 2056 dimensional space, each vector marking typical population firing rates for a particular 

spatial location. This is an identical procedure to the method described above but here vectors were 

combined based on spatial location of the rat rather than the time with respect to trial start and end. We 

subjected the spatial pseudo-population vector to PCA to obtain coefficients for each neuron, and used 

the coefficients to create average spatial maps in PC space (Fig. 5E-G). The pattern is strikingly similar 

to what we found with our time locked analysis. PC1 distinguished the trial and ITI epochs, it was most 

distinct between regions associated with trials and ITIs (compare Fig. 5E top and bottom). PC2 marked 

the event boundaries, values near the divider are distinct from values far from the divider (Fig. 5F). In 

contrast to the time locked analysis where PC3 distinguished the trial start and end (Fig. 5D), the spa-

tially binned PCA did not clearly distinguish them (Fig. 5G). This was expected because the trial start 

and end occurred in the overlapping locations.  

The strong hippocampal transitions at trial boundaries were specifically dependent on trial start/end 

responsive neurons. When the same analysis was restricted to the subset of neurons with significant 

event boundary responses, as identified with our GLM approach (Fig. 3), the shape of the resulting pat-

tern in PC-space was virtually identical (Supplementary Fig. 4A). Yet the pattern was completely differ-

ent when the neurons without trial start/end responses were analyzed (Supplementary Fig. 4B), despite 

the similarity in sample size (1004 responsive vs. 1052 un-responsive cells). The separation between 

ITI and trial PVs captured by PC1 was preserved when trial start/end cells were excluded, but the tran-

sitional signal between these events that was evident in PC2 and PC3 was completely eliminated.  
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Discussion 

In this paper we examined the responses of 2056 neurons while rats engaged in an olfactory 

memory task with a repeated trial structure. We focused our analyses on activity differences between 

trials and inter-trial intervals, as well as the transition between these epochs. We observed a large-

scale shift in the activity state of the hippocampus at the start and end of trials, a transient increase in 

activity that marked a transition between two highly distinct states. We found that individual neurons 

were modulated by both spatial and temporal factors, driving an ensemble representation that clearly 

identified the trial and inter-trial interval epochs and the boundaries between them (trial start and trial 

end). The dynamics resembled a phase-transition-like pattern: populations transformed from one 

steady state to another at the moment of trial start or end, with a transient increase in firing that co-oc-

curred with the transition.  

The self-similarity of hippocampal firing patterns from one trial to another was striking. Although 

different trials shared some behavioral and sensory features (an increase in running speed, investiga-

tion of odors, digging for and consumption of the reward), there was also a great deal of variation from 

one trial to the next. This included the trajectory of the rat, the olfactory experience of sixteen distinct 

odors, the left or right position of the reward, and whether the rewarded odor was encountered first by 

chance or the initial odor cup was rejected in favor of the second. Thus, the similarity of firing patterns 

was not simply driven by identical sensory input and motor behavior on each trial. Because the se-

quence of events in the trials was determined by the voluntary behavior of the rat and the randomiza-

tion procedures (e.g. the left or right location of the rewarded odor cup), the rat’s experience became 

increasingly distinct as the trial progressed. Despite this increase in behavioral/environmental variabil-

ity, firing patterns remained quite similar. This is even more striking for correlations of time points that 

were several seconds apart, when behavior and sensory experience were virtually always different (Fig. 

4A). These results are consistent with previous findings that hippocampal firing patterns occupy a local 
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minimum in state space where firing patterns are relatively stable and insensitive to small changes in 

the environment, until environmental change is sufficient to abruptly push the firing patterns into a new 

state space (T. J. Wills et al., 2005). However, previous studies involved subtle changes in the shape of 

the environment and similar foraging behaviors. Here we show that a self-similar hippocampal state 

persists even in the face of highly variable sensory input and behaviors during the performance of a 

complex memory task.  

The observation of an abrupt shift in the representation when the rats transitioned between the tri-

als and ITIs is similar to findings from studies that manipulated the environmental context (Jezek et al., 

2011; Kelemen and Fenton, 2010; T. J. Wills et al., 2005), suggesting that the hippocampus treated the 

trial and ITI areas as distinct contexts even though they were both part of a contiguous environment 

which was only divided by a barrier for part of the time. Consistent with this idea, firing patterns for dif-

ferent locations were far more distinct than would be expected based on spatial distance alone as long 

as they came from different trial and ITI epochs, even for immediately adjacent locations (Fig. 3E). This 

may be due to the markedly different task demands and motivational characteristics of the trial and ITI 

epochs since changes in the behavioral context are also known to induce remapping (Eschenko and 

Mizumori, 2007; Griffin et al., 2007; P J Kennedy and Shapiro, 2009; Skaggs and McNaughton, 1998; 

Smith and Mizumori, 2006). Indeed, Keleman and Fenton (2010) showed that even in a single environ-

ment, the hippocampus can maintain two distinct maps and rapidly shift between them as needed to 

meet dynamic behavioral demands. Our findings are consistent with the idea that the hippocampus en-

codes contextual information, broadly defined to include spatial and non-spatial features of the situation 

(Smith and Bulkin, 2014). Indeed, part of the surprising stability of the trial and ITI representations could 

be related to the distinct and stable task requirements associated with each epoch.  

The large scale multi-unit discharge at the trial start and trial end coincided with the transition be-

tween two distinct hippocampal representations, which raises the possibility that this burst of firing 

might serve to drive firing patterns out of one attractor space and into another (Rolls, 2007; Tom J Wills 
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et al., 2005), pushing activity past a critical point to allow a shift in representational state (Steyn-Ross et 

al., 2010; Tkačik et al., 2015). Previous studies have identified individual neuronal responses near the 

start or end of trials (Ainge et al., 2007; Grieves et al., 2016; Hollup et al., 2001; Smith and Mizumori, 

2006), but the impact of the response on population dynamics was only apparent when we examined 

the activity of large numbers of neurons. An intriguing possibility is that these bursts of firing may be in-

volved in demarcating event boundaries. The hippocampus may play a critical role in event segmenta-

tion, the process of breaking continuous experience into discrete episodes (Zacks and Swallow, 2007). 

Hippocampal involvement in encoding the sequence of events (e.g. (Allen et al., 2016; Devito and 

Eichenbaum, 2011; Terada et al., 2017), for review see: (Davachi and DuBrow, 2015; Eichenbaum, 

2014)) is consistent with an event segmentation explanation of ensemble activity, and recent work in 

humans found that an increase in activity in hippocampus is associated with event boundaries defined 

by change in distributed cortical representations (Baldassano et al., 2017). Event boundaries are often 

defined by a change in context, such as when a subject moves from one room to another or switches 

from one behavioral task to another (Horner et al., 2016), as was the case at the trial boundaries in the 

present study. We also found that a stronger representation of the trial start was associated with better 

performance, which is superficially similar to the finding that event segmentation in humans is linked to 

memory performance (Sargent et al., 2013; Zacks et al., 2006). However, this work has largely focused 

on the spontaneous segmentation of unique events, unlike the highly predictable and structured nature 

of our training trials so additional study will be needed to determine whether the multi-unit bursts we ob-

served at trial boundaries are involved in more spontaneous forms of event segmentation. 
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Materials and Methods 

Surgical and recording methods  

Rats were surgically implanted with custom built moveable electrode arrays containing 16 insulated platinum irid-

ium tetrodes, each composed of four 17 µm wires (California Fine Wire, Grover Beach, CA). Arrays were im-

planted with electrode tips located bilaterally just above the dorsal hippocampus (3.5mm posterior and 2.5mm lat-

eral to bregma). Following recovery from surgery, the tetrodes were slowly lowered into the CA1 cell layer and 

rats began training on the behavioral task. Tetrodes were advanced over initial training and then left in place once 

rats reached asymptotic performance on the behavioral task. Multiunit recordings were sorted into constituent 

units using standard clustering techniques. We report on the activity of 2056 units recorded from 10 rats over 84 

sessions (see Supplementary Table 1), counting individual recordings of units recorded over sessions (i.e. some 

units refer to a single neuron that was recorded on multiple sessions). Field potentials were sampled at 32kHz 

from one wire in each tetrode, and filtered between 0.1 and 6kHz, a representative signal was chosen from a tet-

rode located in the cell layer. All procedures complied with the guidelines established by the Cornell University 

Animal Care and Use Committee. 

 

Behavioral Procedure and Apparatus 

Ten adult male Long-Evans rats were trained on a task designed to induce proactive mnemonic interference. De-

tails on the task and the relationship between hippocampal activity and interference have been described else-

where (Bulkin et al., 2016; Butterly et al., 2012; Law and Smith, 2012; Peters et al., 2013). Recordings took place 

in wooden chambers with a 60cm by 45cm floor and a removable divider (Supplementary Figure 1A). One side of 

the chamber served as an intertrial waiting area, the other contained two cups filled with odorized digging sub-

strate. One of the cups was baited with a buried sugar pellet, reliably marked by odor, and rats learned to discrim-

inate between 8 pairs of odors to retrieve rewards. On each trial, the divider was lifted, rats approached the cups 

and sampled odors, and dug for the sugar pellet. Rats were free to approach the baited cup first and completely 

ignore the unbaited odor (Supplementary Fig. 1B). Trials in which the rat sampled the unbaited odor and did not 

dig were marked as a correct rejection (Supplementary Fig. 1C) Trials were marked as errors if the rat dug in the 

unbaited cup (Supplementary Fig. 1D), any displacement of bedding was considered a digging response. Once 

the rat reached a behavioral criterion of 90% correct choices, a new set of odor pairs was presented, and training 
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on this new set continued for 5 days. A subset of rats learned this new set in a distinct context. In the present pa-

per, we focused on the responses within each session at the start and end of trials, the results of manipulating the 

context on behavioral performance and hippocampal ensemble activity have been described previously (Bulkin et 

al., 2016). Recordings were only taken on sessions with at least two units, although in most cases many more 

units were isolated: at least 10 units in 74/84 sessions (mean units/session 24.5; Supplementary Table 1 summa-

rizes the number of units by rat/session). 

 

Data Analysis 

Instantaneous Firing Rate 

For each neuron, spike counts were binned across the entire session (100ms bins) and smoothed with a 5 bin 

moving average to construct a vector of instantaneous firing rate (IFR). This trace was normalized by subtracting 

the average and dividing by the standard deviation (i.e. z-scored) to produce a normalized IFR (IFRz). Because 

units showed a similar range of activity, analyses showed qualitatively similar results when using IFR or IFRz, but 

the latter prevented neurons with higher overall firing rates from dominating the analyses. Units with average 

rates greater than 4 spikes/second over the entire session were labeled as putative interneurons, and were not 

included in any of the analyses (235/2291 units were eliminated). Population vectors were defined as n x 1 vec-

tors of IFRz at a given time, where n is the number of simultaneously recorded neurons. 

The start and end of trials were identified as the moment the rat crossed an imaginary line corresponding to 

the location of the removable divider. Generally, rats only crossed this line once in each direction on each trial, but 

on those trials in which the rat entered the trial region and then returned back to the inter-trial waiting area only 

the first entry was used to mark the start of the trial. Trial start and end firing rate traces were calculated by linear 

interpolation of the IFR vector at times spanning +/-3s on each event. Spatial heatmaps were calculated by identi-

fying the average firing rate of each neuron in 1.5cm square bins spanning the floor of the apparatus.  

 

Local Field Potentials 

The local field potential data was downsampled to 2kHz. The theta-delta ratio was identified as by filtering the sig-

nal (theta: 5-12Hz; delta: 2-4Hz) with a non-causal FIR filter, calculating RMS power with a 500ms sliding window, 

and taking the quotient.  



30 
 

 

Running Speed 

Running speed was computed by applying a 1 second boxcar average to position, to eliminate spurious changes 

due to detection of the rats position or movement of the head. Average firing rate was calculated for binned run-

ning speeds (15 bins) separately for times near the event boundaries (+/- 1 second), in the trial (1 second after 

the start to 1 second before the end) and in the ITI (1 second after the trial end to 1 second before the trial start). 

A linear regression was calculated for data collected in each epoch to describe multi-unit activity as a function of 

running speed. The slope and intercept of these regressions were compared for neurons showing a slope that 

was significantly different from 0 (F-test, p<.01). 

 

Generalized Linear Model  

The strategy for applying a generalized linear model (GLM) that orthogonalized the contributions of spatial and 

temporal covariates was adapted from (Lepage et al., 2012; Truccolo et al., 2004). This approach relies on a ge-

ometry in the Fisher information of the GLM likelihood estimator to disambiguate activity due to a combination of 

multiple covariates. Applying this method to two-dimensional spatial data required a parameterization of spatial 

firing functions as activity depends on an interaction between the x and y co-ordinates defining the rat’s position. 

As such, we first described the both the temporal and spatial firing rate by fitting Gaussian curves and surfaces to 

the average firing data: 

𝑓𝑠𝑝𝑎𝑐𝑒(𝑥, 𝑦) = 𝛽1 (𝑒
− 

(𝑥−𝜇𝑥)2

2𝜎𝑥
2  − 

(𝑦−𝜇𝑦)
2

2𝜎𝑦
2

) + 𝐶 

𝑓𝑠𝑡𝑎𝑟𝑡(𝑡𝑠) = 𝛽2 (𝑒
−
(𝑡𝑠−𝜇𝑠)

2

2𝜎𝑠
2 ) + 𝐶 

𝑓𝑒𝑛𝑑(𝑡𝑒) = 𝛽3 (𝑒
−
(𝑡𝑒−𝜇𝑒)

2

2𝜎𝑒
2 ) + 𝐶 

 

We modeled the coefficients 𝛽1, 𝛽2, 𝛽3 by fitting a Poisson family GLM with a linear link function.  Given the 

rat’s location (𝑥, 𝑦), and the time relative to trial start (𝑡𝑠) and end (𝑡𝑒), the firing rate for each neuron was mod-

eled as: 
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𝐸(𝐹𝑖𝑟𝑖𝑛𝑔𝑅𝑎𝑡𝑒 |𝑥, 𝑦, 𝑡𝑠, 𝑡𝑒) = 𝑓𝑠𝑝𝑎𝑐𝑒(𝑥, 𝑦) + 𝑓𝑠𝑡𝑎𝑟𝑡(𝑡𝑠) + 𝑓𝑒𝑛𝑑(𝑡𝑒) 

 

We also computed a model which included an additional factor for running speed: 

𝑓𝑟𝑢𝑛𝑠𝑝𝑒𝑒𝑑(𝑟𝑠) = 𝛽4(𝑟𝑠) + 𝐶 

 

Because a linear link function in a Poisson GLM includes the possibility for negative rates, the 𝛽1, 𝛽2, 𝛽3,𝛽4 pa-

rameters were restricted to be greater than or equal to 0.  Since the true values could never be exactly zero, this 

does not break down the asymptotic orthogonalization results from (Lepage et al., 2012).  The restriction of the 

parameter space means that parameters estimated to be 0 would have a negatively biased standard error in com-

parison to the traditional Wald-test and Likelihood Ratio Tests for generalized linear models.  For this reason, we 

instead used a normal approximation significance test adapted from the normal theory bootstrap intervals given in 

(Efron and Tibshirani, 1994) to test if each parameter was significantly different than 0. If the bootstrapped sample 

for a parameter contained more than 10% of values selected exactly at 0, then a quantile-based significance test 

was used (Efron and Tibshirani, 1994).  The quantile-based significance test was used in this case as the normal-

ity assumption on the bootstrapped sample no longer holds, however the quantile-based tests were not used 

across all observations to allow p-values to be calculated to more than 3 significant digits for significant parame-

ters. The bootstrap was completed by randomly sampling 1 second blocks of data for each neuron with replace-

ment.  The blocking was done to account for the temporal dependencies in the data set (Gonçalves and Politis, 

2011).    Within each neuron, 250 bootstrap samples were created for each parameter in order to obtain a p-

value.  A significant effect was tabulated as any coefficient value with p<.01, for comparisons that grouped trial 

start and end responses together these p values were Bonferonni corrected.  

 

Cross-Trial Distance Analysis 

To compute cross-trial instantaneous ensemble firing rate similarity (Fig 3A-C), population vectors of instantane-

ous firing rate were assembled for times spanning +/-3seconds in 100ms intervals around each trial’s start and 

end. For each time point in each trial, the pairwise correlation between the associated population vector and all 

population vectors from all other trials at each time point was calculated. The average of these values was taken 
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for each rat to form a cross trial correlation map for the session, each pixel representing the average correlation 

between population vectors taken from two time points across all pairs of trials. Correlation was calculated using 

both Pearson’s r and Kendall’s τ. 

   

Classification of Trial versus ITI Responses 

To identify the ability of neuronal populations to identify the current epoch, we trained linear discriminant classifi-

ers to mark epoch based on activity. We first assembled population vectors spanning +/-3 seconds around the 

trial start and trial end, labeling each vector with the epoch in which it occurred. We took a random subset of half 

of these vectors and trained a linear discriminant classifier, separately for data occurring around the trial start or 

trial end, and tested the classifier on the remaining 50% of the data. This process was repeated 1000 times, on 

each iteration a different random subset was used to train/test the performance of the classifier. The overall per-

formance of the classifier was measured as the median performance across iterations, and the 5th percentile of 

iterations was used to identify whether the classifier performed above chance.  

 

Principal Component Analysis 

To investigate the population dynamics of the event boundaries across the entire dataset, we created a synthetic 

dataset by sampling activity from defined time points around the trial start and end. This allowed visualization of 

activity in co-ordinates scaled by key sources of variance across a large population of neurons. One strategy for 

forming this synthetic dataset would be to randomly select activity from each neuron at a given time with respect 

to the event boundaries, however this approach would randomize covariance between neurons. Instead, we se-

lected vectors from each session, preserving information about inter-neuron covariance when possible (i.e. within 

session) and randomizing when covariance data was unavailable (i.e. across sessions). 

For each recording session (𝑠𝑒𝑠), we constructed population vectors (𝑃𝑉⃑⃑⃑⃑  ⃑) as the instantaneous firing rate 

at time points (𝑡) spanning +/- 5s around each trial’s (𝑡𝑟𝑖𝑎𝑙) start and end in 100ms intervals. 

 

𝑃𝑉⃑⃑⃑⃑  ⃑
𝑛⨯1(𝑠𝑒𝑠, 𝑡𝑟𝑖𝑎𝑙, 𝑡) = [

𝑥1

𝑥2

⋮
𝑥𝑛

] 
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In the above equation, 𝑥1 indicates the firing rate of neuron 1 from recording session 𝑠𝑒𝑠, trial number 𝑡𝑟𝑖𝑎𝑙 at the 

time specified by 𝑡. For instance, 𝑃𝑉⃑⃑⃑⃑  ⃑(8,14,1) would contain the firing rates of all neurons recorded during session 

8, on trial 14, 5.0 seconds before the trial start. 

We then randomly selected a trial from each session and combined the population vectors across sessions (𝜈 =

84 total sessions), holding 𝑡 constant, to form pseudo-population vectors 𝑃𝑃𝑉⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  . 

 

𝑃𝑃𝑉⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  
𝑁⨯1(𝑖𝑡𝑒𝑟, 𝑡) =

[
 
 
 
 𝑃𝑉⃑⃑⃑⃑  ⃑(1,rand, 𝑡)

𝑃𝑉⃑⃑⃑⃑  ⃑(2,rand, 𝑡)
⋮

𝑃𝑉⃑⃑⃑⃑  ⃑(𝜈,rand, 𝑡)]
 
 
 
 

 

 

𝑃𝑃𝑉⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   contains the firing rate of all 𝑁 neurons (𝑁=2056), on randomly selected trial, at some specific time (𝑡) with 

respect to the trial start or end. It indicates what an ensemble of 𝑁 neurons might look like at a given time.  

We repeated this process over 200 iterations, and over all time windows, to form a 𝑁 ⨯ 𝑀 matrix. Each column of 

the matrix contains an iteratively selected ensemble firing rate at some time with respect to trial start or end.  

 

𝑃𝑃𝑀𝑁⨯𝑀 = [𝑃𝑃𝑉⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  (1,1) 𝑃𝑃𝑉⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  (1,2) ⋯ 𝑃𝑃𝑉⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  (1, 𝑛𝑖𝑡𝑒𝑟) 𝑃𝑃𝑉⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  (2,1) ⋯ 𝑃𝑃𝑉⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  (𝑛𝑡 , 𝑛𝑖𝑡𝑒𝑟)] 

 

The total number of columns of 𝑃𝑃𝑀, denoted as 𝑀, is the product of the number of iterations (𝑛𝑖𝑡𝑒𝑟) and the num-

ber of sampled time points (𝑛𝑡):  

 

𝑀 = 𝑛𝑖𝑡𝑒𝑟 ⋅ 𝑛𝑡 = 200 ⋅ 200 = 40,000 

 

PC scores for the first 3 components of 𝑃𝑃𝑀 were plotted directly, and a trajectory through PC space was calcu-

lated by applying the coefficients to produce these components back to the raw peri-event firing data. 

An identical approach was taken for space, but here the grouping variable we used to combine vectors across 

sessions was the location of the rat associated with the instantaneous activity rather than the time of occurrence: 
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𝑃𝑃𝑉⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  
𝑠𝑝𝑎𝑐𝑒(𝑋, 𝑌, 𝑖𝑡𝑒𝑟) =

[
 
 
 
 𝑃𝑉⃑⃑⃑⃑  ⃑(1,rand, 𝑋, 𝑌)

𝑃𝑉⃑⃑⃑⃑  ⃑(2,rand, 𝑋, 𝑌)
⋮

𝑃𝑉⃑⃑⃑⃑  ⃑(𝜈,rand, 𝑋, 𝑌)]
 
 
 
 

 

 

Rather than selecting randomly across trials, the spatial population vectors are selected from the set of firing rates 

associated with a specific (𝑋, 𝑌) location in space. 𝑋and 𝑌 were bins that spanned the range of the recording ap-

paratus, in 20 pixel (about 3cm) square bins. After eliminating bins that were not visited by all of the rats in the 

experiment, 208 spatial bins remained, producing a spatial pseudo-population matrix (𝑃𝑃𝑉⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  
𝑠𝑝𝑎𝑐𝑒) with a similar size 

as the one used in the temporal analysis: 

𝑀𝑠𝑝𝑎𝑐𝑒 = 𝑛𝑖𝑡𝑒𝑟 ⋅ 𝑛(𝑋,𝑌) = 200 ⋅ 208 = 41,600 

 

Statistical Analysis 

No statistical tests were used to pre-determine sample size, but the sample was similar or larger to those gener-

ally used within the field. Paired t-tests were used to compare the slope and intercept from regressions of firing 

rate to running speed for each session, the firing rate at the trial start for correct and error trials, and pairwise cor-

relation of population vectors taken from within or across epochs. Population vector similarity for matched dispari-

ties of space were submitted to a one-way repeated measures analysis of variance (factors: epoch, distance). 

Significance testing for the GLM used to categorize neurons based on response type, and classifier used to iden-

tify epoch based on population activity are described above.  
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Supplementary Table and Figures  

 Session 

Rat 1 2 3 4 5 6 7 8 9 10 Avg. 

1 10 2 9 11 16 12 18 27 26 27 15.8 

2 21 45 43 42 30 47     38.0 

3 4 2 16 14 39 62 55 54 55 46 34.7 

4 12 15 12 9 18 16 10 9 9 9 11.9 

5 4 10 15 38 37 19 11 15 14  18.1 

6 54 48 34 51 46 49 46 43 36  45.2 

7 12 12 2        8.7 

8 24 23 29 24 16 17 18    21.6 

9 14 15 12 14 25 29 17 22 19 20 18.7 

10 24 21 27 30 34 38 31 25 23 17 27.0 

Avg. 17.9 19.3 19.9 25.9 29.0 32.1 25.8 27.9 26.0 23.8  

 

Supplementary Table 1: Number of Units Recorded from Each Rat on Each Session.  



36 
 

 

Supplementary Figure 1. Running speed does not explain trial start and end responses. Average firing rate is plotted 
against running speed for each of four epochs (start and end epochs include data within 1s of the trial start and end, and ITI 
and trial epochs included data more than 1s from these events). Although running speed showed a strong correlation with fir-
ing rate, activity was elevated near the trial start and trial end across all speeds.  
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Supplementary Figure 2. Orthogonalized generalized linear model disambiguates spatial and temporal Responses. 
Panels A-C show an example trial start unit (same unit as Supplementary Fig. 2A). A-B show the average and instantaneous 
firing rate across trials with respect to trial start and end, the red trace shows the temporal Gaussian fit to this activity. C shows 
spatial firing rates with contoured lines indicating the spatial Gaussian fit. Note that while this unit shows clearly temporally 
locked activity, the data might be interpreted as spatial by looking at the heatmap alone. The GLM resolved this, fitting a model 
with a significant coefficient for the trial start Gaussian, but not the spatial Gaussian. Panels D-F show the same plots for an 
example spatial unit. Similar to the unit shown in A-C, this neuron might appear to have a trial start/end response by inspection 
of the average firing rates, but this was due entirely to the large number of trials in which the rat entered a place field before 
the trial start or after the trial end. The GLM identified a model with a significant spatial component and no significant trial start 

or end components. G-H show the fit μ parameter (the peak time of the Gaussian fit) of the start/end components of the GLM, 

for all neurons with a significant/non-significant responses to the categories indicated in the legend (+ indicates a significant 
response, - indicates a lack of significant response). H shows the results of a GLM that included an additional term for running 
speed. J shows the proportion of neurons identified as running speed sensitive in each of the regions of the Venn diagram 
shown in I. 
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Supplementary Figure 3. Confirmation of distinct population states in trials and inter-trial intervals. A-C match those 

shown in Figure 3 A-C, but use Kendall’s rank correlations (τ) to estimate population vector similarity. The structure is similar, 

although no significant difference between within-trial epoch and within ITI epoch correlations was identified. This appears to 
be due to the spread of the event boundary response peak (i.e. the red region near the origin). D-E show the values of the 
maps in Figure 3A-B along the unity line. This represents the cross-trial population vector correlation at matching time points. 
The shaded region indicates SEM across sessions. F-G show the probability of an error in the classification result shown in 
Figure 3D as a function of the time of the classified vector. For each session, the conditional probability of an error over time 
was calculated (i.e. given that an error occurred, what was the probability that it occurred at each time point). Data at time=0 
with respect to trial start and end were not classified. Note the sharp rise near the event boundaries, these data were the most 
challenging for the classifier to accurately label. 
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Supplementary Figure 4. PCA phase transition patterns depend exclusively on trial start/end sensitive units. Figure 5A 
is reproduced for two, non-overlapping, subsets of units. Panel A shows data from only those units that were labeled as trial 
start or end sensitive (Bonferroni corrected; n=1004) by GLM. Panel B shows data from the complement: units that were not 
labeled as start or end sensitive (n=1052). The insets illustrate the regions of the Venn diagram shown in Figure 3 that were 
included. Note that while A almost perfectly reproduces the pattern in the full dataset (shown in Figure 5A), B shows a com-
pletely different structure: the distinction between trial and ITI epochs was preserved (blue vs. red clusters), but a representa-
tion of the event boundaries was completely lost. 


