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CA1 place cells are considered crucial for spatial memory, but data are lim-
ited regarding whether their representations of space evolve over times-
cales of weeks or more1. Some theories suggest place cells should retain 
stable place fields for long-term retention of familiar environments1. 
Alternatively, dynamic aspects of place coding may facilitate distinct 
memory traces of different events occurring in the same environment2. 
Studies of modest numbers of cells recorded electrically over, at most,  
a week3–9 have found cells with stable place fields, but the data were 
too sparse to assess how coding evolves at the ensemble level.

We used a viral vector (AAV2/5-CaMKIIα-GCaMP3) to express 
the Ca2+-indicator GCaMP3 (ref. 10) in pyramidal cells, a preparation 
for time-lapse imaging of CA1 over weeks11 and a miniaturized (<2 g) 
microscope for Ca2+ imaging in freely behaving mice12 (Fig. 1a). We 
thereby tracked somatic Ca2+ dynamics of 515–1,040 pyramidal cells 
per mouse on repeated visits to a familiar track over 45 d.

We first verified CA1 cells’ place coding attributes as mice explored 
various arenas. We saw 73–740 cells, (n = 13 mice) undergoing Ca2+ 
excitation in single fields of view (Fig. 1b–d, Supplementary Fig. 1 

and Supplementary Movie 1). Ca2+ dynamics generally displayed 
quiescent periods interrupted by prominent transients. This fits with 
in vitro studies showing GCaMP3 reports spike bursts well, but, for 
solitary spikes, yields weak signals easily masked by background fluo-
rescence or noise11. We computationally extracted13 individual cells 
and their dynamics from each session’s Ca2+-imaging data, without 
regard to mouse behavior (Online Methods).

As expected of place cells, many pyramidal cells exhibited Ca2+ 
excitation when the mouse explored a specific portion of its arena 
(Fig. 1d). When we placed mice in two different arenas at the same 
location in the room, but with distinct shape, color and orientation 
cues, a subset of cells re-mapped2, showing spatially distinct patterns 
of Ca2+ excitation in the two arenas. As in prior work, some cells 
had place fields in only one arena. Thus, one can optically detect 
CA1 place cell activity in freely behaving mice, consistent with a  
Ca2+-imaging study in mice exploring a virtual reality14.

To study place cells over weeks, we trained mice to run back and 
forth on a linear track; Ca2+ imaging occurred on ten sessions over 45 d 
(Fig. 2a). As in prior studies in linear environments15, many cells had clear  

Long-term dynamics of CA1 
hippocampal place codes
Yaniv Ziv1,5, Laurie D Burns1,5, Eric D Cocker1,  
Elizabeth O Hamel1, Kunal K Ghosh2, Lacey J Kitch1,  
Abbas El Gamal2 & Mark J Schnitzer1,3,4

Using Ca2+ imaging in freely behaving mice that repeatedly 
explored a familiar environment, we tracked thousands of 
CA1 pyramidal cells’ place fields over weeks. Place coding 
was dynamic, as each day the ensemble representation of this 
environment involved a unique subset of cells. However, cells 
in the ~15–25% overlap between any two of these subsets 
retained the same place fields, which sufficed to preserve an 
accurate spatial representation across weeks.

1James H. Clark Center, Stanford University, Stanford, California, USA. 2David Packard Electrical Engineering Building, Stanford University, Stanford, California, USA. 
3Howard Hughes Medical Institute, Stanford University, Stanford, California, USA. 4CNC Program, Stanford University, Stanford, California, USA. 5These authors 
contributed equally to this work. Correspondence should be addressed to M.J.S. (mschnitz@stanford.edu) or Y.Z. (yziv@stanford.edu).

Received 29 October 2012; accepted 9 January 2013; published online 10 February 2013; corrected online 11 February 2013 (details online); doi:10.1038/nn.3329

Integrated
microscope

Microendoscope

GCaMP3-
expressing 

CA1 neurons

Digital data
to computer

Base plate

a

d

c

C
el

l n
um

be
r

15

1

b

Cell 244

Cell 348 Cell 159

Cell 448Cell 329

Cell 198

Dorsal

Rostral

N
orm

alized
density of C

a
2+ activity s

–1

0

1
Figure 1  Ca2+ imaging in freely behaving mice. (a) A tiny microscope 
equipped with a microendoscope images cells expressing GCaMP3. The 
microscope’s base is fixed to the skull, for repeated imaging of the same 
cells. (b) Shown are 705 cells (red) identified by Ca2+ imaging in a behaving 
mouse, atop a mean fluorescence image (green) of CA1. Blood vessels 
appear as shadows. (c) Relative fluorescence changes (∆F/F) for 15 cells. 
(d) Spatial distributions of the mouse’s location during Ca2+ excitation for 
six example cells in a mouse that explored two arenas. Top panels, blue 
lines show the mouse’s trajectory and red dots mark its position during  
Ca2+ events. Bottom panels, Gaussian-smoothed (σ = 3.5 cm) density  
maps of Ca2+ events, normalized by the mouse’s occupancy time per unit 
area and the cell’s maximum response in the two arenas. Scale bars:  
100 µm (b), 10 s (horizontal) and 5% ∆F/F (vertical) (c), and 20 cm (d).
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place-coding properties that usually depended strongly on the mouse’s 
running direction (Fig. 2b–d). For detailed analyses, we focused on four 
mice and used a conservative definition of place field by requiring statisti-
cally significant mutual information between a cell’s Ca2+ excitation events 
and the mouse’s location16. With this definition, ~20% of cells had place 
fields for left, right or both directions (Fig. 2c–e). The set of place fields 
fully covered the track, with the ends covered more densely than the inte-
rior (Fig. 2f,g). The mean place field size was ~27% of the 84-cm track, in 
the range for mice14,15,17,18. For each place field, we detected Ca2+ activity 
in 17 ± 14% of passes (n = 1,656 place fields, mean ± s.d., range = 2–87%). 
Across days 5–35, the percentages of cells on each day with place fields 
for right (12 ± 1%, mean ± s.e.m.) or left (12 ± 1%) motion did not vary  
(n = 7 sessions, 4 mice, Kruskal-Wallis ANOVA, P = 0.77 for right, 0.88 
for left; Fig. 2e). Nor were there changes in the distributions of place 
fields’ locations or sizes (Kolmogorov-Smirnov test, P = 0.06–0.99 for 
locations and 0.02–0.99 for sizes, both compared with a significance 
threshold of 2.4 × 10−3 that includes the Dunn-Sidák correction for the 21  
pairwise comparisons; Fig. 2g,h). We saw no discernible changes to cells’  
morphologies or substantial changes in mean Ca2+-transient amplitudes 
or baseline fluorescence within or across sessions (Supplementary Fig. 2). 
Thus, photobleaching was negligible, and neither GCaMP3 expression 
nor illumination had perceptibly deleterious effects on cell health.

For cells seen on multiple days, bootstrap analysis showed that errors 
in aligning cells’ locations across sessions were <1 µm (Supplementary  
Fig. 3). This precision more than sufficed, as even the closest cells  
had ≥6 µm between centroids. Each mouse yielded 515–1,040 cells 
total (n = 4 mice), more than the maximum (740) seen in one session, 
but consistent with anatomical data.

A majority of cells was active in one or two sessions (57 ± 1%, mean 
± s.d., n = 2,960 cells, 4 mice); 2.8 ± 0.3% were active in all ten sessions 
(Fig. 3a,b). However, each session had the same percentage (31 ± 1%) 
of active cells out of the full tally (Kruskal-Wallis ANOVA, P = 0.46; 
Fig. 3b). Cells came in and out of this active subset, but the overlap in 
active subsets from any two days was only moderately time depend-
ent: ~60% for sessions 5 d apart, ~40% for 30 d apart (Fig. 3c).

Between any two sessions, there was ~15–25% overlap in the subsets 
of cells with statistically significant place fields, declining from ~25% 
for sessions 5 d apart to ~15% for 30 d (Fig. 3c). Notably, when indi-
vidual cells did show place fields in more than one session, the place 
fields’ locations were generally identical (Fig. 3d). This is an inde-
pendent validation of our image registration protocol. Although cells 

came in and out of the place-coding ensemble, place fields’ invariant 
locations, along with the slowly declining overlap in place-coding 
ensembles, led to spatial representations that retained a clear resem-
blance while decaying over time (Fig. 3e–g).

We next sought factors that influenced cells’ recurrences in the place-
coding ensemble. If cell physiological or coding parameters are key, 
Ca2+ activity or place-coding parameters might correlate with recur-
rence probabilities. If network dynamics are more important, the data 
might reveal no relationships between cells’ characteristics and recur-
rence probabilities. Notably, the numbers of sessions in which cells 
had Ca2+ activity or place fields were uncorrelated with their rates and 
amplitudes of Ca2+ activation (Supplementary Fig. 4). Cells with high 
place-coding stability in single sessions had virtually the same recur-
rence odds as other cells (Supplementary Fig. 5). Neither inclusion 
of Ca2+ transient amplitudes in the computations of place fields nor 
variations in how we extracted cells from the raw data altered these 
findings (Supplementary Figs. 6 and 7).

Given place fields’ invariant locations, did the ~15–25% overlap 
between different days’ coding ensembles suffice to retain a stable 
spatial representation? We used Bayesian decoding to study how well 
we could reconstruct the mouse’s location from the Ca2+-imaging data 
(Fig. 3h–j and Supplementary Fig. 8). We created a set of decoders of 
a common mathematical structure, trained each decoder on a portion 
of one day’s data, and tested it on other data. When test and train-
ing data were from the same day, estimates of mouse location were 
excellent (median error nearly always <7 cm) and highly significant 
compared with shuffled test data (P < 10−160, Kolmogorov-Smirnov 
test). We then asked how well a decoder trained on data recorded 
on one day would perform on data recorded on other days. In com-
parisons between decoders using the same number of cells, perform-
ance declined only modestly with the interval between training and 
testing and remained very significant for 30-d intervals (P = 10−27, 
Kolmogorov-Smirnov test). Thus, the ~15% commonality in place-
coding subsets across 30 d sufficed to deduce the mouse’s trajectory 
using a decoder trained on data of 30 d prior.

Although GCaMP3 does not faithfully report single spikes10, our 
approach can sense isolated spike bursts. To evade analyses of place 
coding by using only solitary spikes, cells would have to avoid burst 
spiking across entire sessions while still encoding spatial information. 
We do not exclude this possibility, but consider it unlikely, given the 
important place-coding role ascribed to bursts19 and the observed 

Figure 2  Basic aspects of CA1 place codes are stable for weeks. (a) Black, training days; red, imaging. (b) The mouse’s trajectory (blue lines) and its 
locations during cellular Ca2+ excitation (red dots) illustrate place cell activity. (c,d) Gaussian-smoothed (σ = 8.75 cm) maps of Ca2+ activity on the 
track, for the subsets of cells on day 15 with significant place fields during left (c) or right (d) motion. Dark blue marks the lack of a place field for one 
of the two directions. Cells from four mice were pooled, ordered by place fields’ centroid locations. Ca2+ maps were normalized by each cell’s maximum 
activity during left (c) and right (d) motion. (e) Fraction of cells with significant place fields, expressed as a percentage of cells found in each session 
(807–1,000 total cells per day, n = 4 mice), for each motion direction (bars) and in total (inset). (f) Place fields for each session, displayed as in c and 
d, ordered by centroid location on each day and pooled across four mice and both motion directions. (g) Spatial distributions of place fields’ centroid 
locations (3.5-cm bins, n = 4 mice, 178–268 cells per day). Color key is shown in h and indicates day of imaging. (h) Cumulative distributions of place 
fields’ widths; median (±33% confidence interval), 24 ± 3.5 cm. Scale bars: 10 cm (b) and 84 cm (f). Error bars, s.e.m.
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lack of correlation between cellular Ca2+ activity and involvement in 
place coding. Improved Ca2+ sensors should reveal a greater portion 
of spiking activity and could amend our findings with GCaMP3.

Our data indicate that retention of spatial information in CA1 
combines stable place field locations with ~15–25% odds an individ-
ual cell will recur in the place code. Prior long-term recordings had 
stressed place-field stability and usually focused on tens of cells or 
fewer. By reliably tracking ~3,500 CA1 cells over weeks11, we found 
that place-coding ensembles have a fluctuating membership. This 
supports prior reports of individually stable place fields, but shows 
CA1 coding has day-to-day dynamism at the cellular level while 
preserving spatial information in the ~15–25% overlap between 
coding ensembles from any two days. Conversely, each episode in a 
familiar arena has a unique signature via the ~75–85% of cells that 
do not overlap in coding ensembles from any two sessions (Fig. 3c). 
It is possible that coding turnover is a long-term form of the spike-
rate re-mapping seen over shorter intervals2. Such a coding scheme 
might aid episodic memory by creating distinct traces for events 
occurring in the same environment but at different times.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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Figure 3  Place fields are spatially invariant and temporally stochastic while preserving a stable representation at the ensemble level. (a) We found  
Ca2+ activity in 826 cells in one mouse over 45 d. Color as in b. (b) Histogram of the number of sessions in which each of 2,960 cells from four mice 
was active. Error bars, s.d. from counting statistics. Inset, a constant fraction of all cells detected over ten sessions was active each day. Colored 
data, individual mice; black, mean ± s.e.m. (c) If a cell had Ca2+ activity in one session, the odds (blue data) that it also did in a subsequent session 
declined with time. If a cell had a statistically significant place field in one session, the odds (red data) that it had a place field in a subsequent session 
also declined with time. Mean ± s.e.m. (d) Distributions of centroid shifts (colored by days between sessions, mean ± s.e.m.) were indistinguishable 
(Kolmogorov-Smirnov test, P ≥ 0.17), sharply peaked at zero and highly distinct from the null hypothesis that place fields would randomly relocate  
(P = 4 × 10−67, Kolmogorov-Smirnov test). Inset, cumulative histograms of shift magnitudes; 74–83% were ≤7 cm. Median shift (3.5 cm) was much less 
than the median place field width (24 cm). (e–g) Place-field maps for cells found on multiple days, ordered by place fields’ centroid positions on day 5 
(e), day 20 (f) or day 35 (g). Data pooled across four mice. (h) Time-lapse decoders retain accuracy over 30 d. Reconstructions of the mouse’s trajectory 
(colored curves) and its actual position (black curves); three paired reconstructions comparing time-lapse decoders trained on data from day 5 (right), 
using all cells with place fields on both days of each pair, and decoders trained on data from the same day as the test trial (left). Each pair used an equal 
number of cells, optimally chosen at left to minimize errors. (i) Median errors in estimating the mouse’s position were ~7–13 cm, even for decoders 
trained on data from 30 d prior (black, mean ± s.e.m.). Red, decoders trained on data from the same day as test data, using equal numbers of cells as 
black points and optimally chosen to minimize errors. Gray, errors using shuffled traces of Ca2+ activity from the same day as training data (averaged over 
10,000 shuffles). (j) Cumulative distributions of decoding error magnitudes (mean ± s.e.m.) for test and training data separated by the indicated times 
or (gray) for decoders tested on shuffled data. Scale bars: 100 µm (a), 84 cm (e–g), and 2 s (horizontal) and 10 cm (vertical) (h).
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ONLINE METHODS
Viral vector. University of North Carolina Vector Core packaged AAV2/5 vectors 
(~2 × 1012 particles per ml) expressing GCaMP3 via the Camk2a promoter20. 
We used immuno-staining of virally infected CA1 tissue to verify GCaMP3 and 
CaMKII co-expression in the same cells.

Mice. Stanford APLAC approved all procedures. Male C57BL/6 mice (aged 
8–12 weeks at start, housed 2–3 per cage with a running wheel) underwent 
two procedures under isoflurane (1.5–2%, vol/vol). We first injected AAV2/ 
5-CaMKIIα-GCaMP3 (refs. 10,14) (250 nl) into CA1 (–1.9 mm from Bregma,  
1.4 mm mediolateral, –1.65 mm dorsoventral). A week after viral transduction we 
implanted a glass guide tube just dorsal to CA1, as described previously11.

Ca2+ imaging. We used the integrated microscope as described for imaging  
CA1 (ref. 12), with minor adaptations for time-lapse studies11,21. The first session 
(~4 weeks after second surgery) began by installing the microendoscope into the 
guide tube of isoflurane-anesthetized mice, guided by two-photon imaging of 
CA1 through the microendoscope11,21,22. The microendoscope was a gradient 
refractive index lens (GRINtech GmbH, 0.44 pitch length, 0.47 NA) and relayed 
light from CA1 to a focal plane outside the mouse. After verifying GCaMP3 
expression, we fixed the microendoscope in the tube using ultraviolet-curing 
adhesive (Norland, NOA 81).

We lowered the integrated microscope toward the microendoscope until  
we saw GCaMP3 fluorescence using the microscope’s LED light source  
(0.05–0.2 mW). After finding a suitable imaging site, we attached to the cranium 
the microscope’s base plate using dental acrylic and Cerebond. This plate stayed 
with the mouse even when the microscope was detached. We generally darkened 
the acrylic with carbon powder (Sigma, 484164).

Mice displayed vigorous activity ~1–2 min after release from anesthesia. 
We chose isoflurane for its rapid clearance from tissue, but nevertheless waited 
20–30 min before imaging. Illumination (<0.4 mW) lasted ~3 min per imag-
ing trial. Each session on the track involved 4–7 trials, over which the mouse 
usually ran >50 roundtrip passes. During ~3 min between trials, the mouse 
rested in a holding chamber. After all trials, we waited another 10–15 min, 
then briefly (~5 min) re-anesthetized the mouse to detach the microscope.  
A typical session yielded <25 min of video (19.9 Hz, 480 × 480 pixels covering  
~0.34 mm2 of CA1).

In the following sessions, we re-attached the microscope to its base while 
the mouse was isoflurane anesthetized (~5 min), then waited 20–30 min before 
imaging. We verified the field of view matched prior sessions or made slight 
focal adjustments12. Subsequent steps were as described above.

Behavioral analysis. During Ca2+ imaging the mouse explored a square 46 × 46 ×  
15 cm3 arena (acrylic), a circular arena (21-cm radius, red plastic) or an 84 × 4.5 ×  
4.5 cm3 elevated linear track (aluminum). For 3 d prior to Ca2+ imaging on this 
track, we trained water-scheduled mice to run back and forth for water rewards 
at the ends. An overhead camera (Prosilica, EC640) recorded this behavior using 
infrared LEDs (Lorex, VQ2120) and dim room lights for illumination.

We analyzed videos using MATLAB (Mathworks) and set all pixels to zero 
or one if their intensities were, respectively, above or below 10% of the median 
intensity. This demarcated the mouse because of its dark fur. We determined the 
mouse’s position as the centroid of each binary image and calculated its velocity 
after smoothing the position data (0.5-s sliding average).

Basic processing of Ca2+-imaging videos. Analysis used ImageJ (US National 
Institutes of Health) and MATLAB routines. Because the microscope’s sensor 
had a Bayer color filter12, we zeroed all pixels in the red and blue channels and 
demosaiced GCaMP3 signals in the green pixels by Bayer interpolation using the 
MATLAB function demosaic(). Image rows were read out successively; to correct 
for the slightly variable number of LED pulses illuminating each row, we normal-
ized each demosaiced pixel by the mean intensity in its row. The illumination 
exhibited mild spatial non-uniformity, so we also normalized each pixel by the 
ratio of the mean intensity along its column to that of a reference column. We 
coarse-grained images to 240 × 240 pixels, each of which was the mean of four 
pixels at the finer density.

We used rigid image registration to correct lateral displacements of the brain. 
We created an image stack, F2(t), as the difference between the original stack, 

F(t), and a smoothed version of F(t) (20-pixel-radius smoothing filter). Within 
F2(t), we selected a high-contrast subregion to provide a fiducial marker. To 
mutually register all frames of F2(t), we used an ImageJ plug-in based on the 
TurboReg algorithm23. For each registered frame of F2(t), we applied the same 
coordinate transformation to F(t), yielding the registered stack F′(t).

Identification of neurons. As is typical for Ca2+ imaging, we re-expressed reg-
istered images as relative changes in fluorescence, ∆F′(t)/F′0 = (F′(t) – F′0)/F′0, 
where F′0 is the mean image obtained by averaging the entire movie. We identified 
spatial filters corresponding to individual cells using an established cell-sorting 
algorithm that applies principal and independent component analyses12,13,24. 
Cells’ spatial filters were based on Ca2+ activity (temporally down-sampled 4×) 
over the entire session, not just when the mouse was running. For each filter, we 
zeroed all pixels with values <50% of that filter’s maximum intensity.

Detection of Ca2+ transients. We used each cell’s thresholded spatial filter to 
extract its Ca2+ activity from the ∆F′(t)/F′0 stack. We removed baseline fluctuations 
(ascribed to Ca2+ activity outside the focal plane or in neuropil) by subtracting 
the median trace (200 time bins sliding window) and applied a 5 frame (~250 ms)  
sliding average. We identified Ca2+ transients by searching each trace for local 
maxima that had peak amplitude more than two s.d. (2σ) from the trace’s baseline, 
≥10 frames (~0.5 s) when the mean intensity surrounding the peak was >2σ, and 
separation of >6 frames (~300 ms) from adjacent Ca2+ transients. We set a Ca2+ 
transient’s occurrence to the temporal midpoint in the rise to peak fluorescence 
from the most recent trough, approximating a time midway in the corresponding 
spike burst. To correlate Ca2+ activity to mouse behavior, we offset Ca2+ transient 
occurrences by ~250 ms because of GCaMP3’s known delayed response10.

On ~7% of all detected Ca2+ transients, fluorescence increases occupied more 
pixels than a single spatial filter. To mitigate the effects of this spillover, we took 
a conservative approach, allowing only one cell among a group of neighbors to 
register a Ca2+ transient in a ~250-ms window. We defined neighbors as cells 
whose spatial filters had nonzero pixels within 30 µm of each other. If multiple 
Ca2+ transients arose within ~250 ms in neighboring cells, we retained only the 
transient with the greatest peak ∆F′(t)/F′0 value.

Registration of cells across sessions. We mapped all cells from each session 
by assembling their thresholded spatial filters onto a single image. Picking one 
day’s map for reference (usually day 15), we aligned the others to this via a scaled 
image alignment using TurboReg23 (Supplementary Fig. 3a). This corrected 
slight translations, rotations or focus-dependent magnification changes between 
sessions and yielded each cell’s location in the reference coordinate system.

Next, we visually identified candidate cells across sessions that might be the 
same neuron seen on multiple occasions. We applied two observations: our 
registration procedures had submicron precision (Supplementary Fig. 3b–e) 
and the distance between centroids of neighboring somata was always >6 µm 
(Supplementary Fig. 3f). We therefore considered a candidate set of cells to be 
the same neuron if all pairwise separations were ≤6 µm. If any of the pairwise 
separations exceeded 6 µm, we split the set into two or more.

Place fields. To analyze place fields, we identified movement periods when the 
mouse ran continuously >0.5 cm s–1. In addition, in open field arenas the speed 
had to exceed 1 cm s–1 at some point during the movement; on the track it had 
to transiently exceed 9.2 cm s–1. These criteria rejected small movements such 
as grooming, rearing or head turning.

On the linear track, we considered 3.5-cm spatial bins and excluded the last  
7 cm at each end where water rewards were given. In open field arenas, bins were 
4 cm2. We divided the number of Ca2+ transients in each bin by the mouse’s total 
occupancy time there, applied a Gaussian smoothing filter (linear track, σ = 8.75 cm;  
open field, σ = 3.5 cm), and normalized each place field by its maximum value. 
On the track, we separately considered place fields for left and right running 
directions. The number of bins in which a place field had a value ≥50% of its 
maximum determined the place field’s width. We tabulated each place field’s 
position as its centroid.

Statistical analysis. For each place field (calculated for one running direction), we 
computed the mutual information25 between Ca2+ transients and the mouse’s loca-
tion (7-cm bins). We also performed 10,000 distinct shuffles of the Ca2+ transient  
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times and calculated the mutual information for each shuffle. This yielded the  
P value of the true mutual information relative to the shuffles. P ≤ 0.05 indicated 
a significant place field for that running direction.

To generate the null hypothesis for place fields’ displacements between a pair 
of days, we used the place fields’ measured locations, but shuffled cells’ identities 
on each of the days. We calculated the distribution of all displacements, averaged 
over 1,000 distinct pairs of shuffles. Figure 3d shows the mean null hypothesis 
curve found by averaging over all pairs of days.

Decoding. We used Bayesian methods26,27 to estimate mouse location based on 
cells’ Ca2+ transients (Supplementary Fig. 8).

20.	Gradinaru, V. et al. J. Neurosci. 27, 14231–14238 (2007).
21.	Barretto, R.P., Messerschmidt, B. & Schnitzer, M.J. Nat. Methods 6, 511–512 

(2009).
22.	Barretto, R.P.J. & Schnitzer, M.J. in Imaging: a Laboratory Manual (ed. R. Yuste) 

Ch. 50 (Cold Spring Harbor Laboratory Press, 2011).
23.	Thévenaz, P., Ruttimann, U.E. & Unser, M. IEEE Trans. Image Process. 7, 27–41 

(1998).
24.	Nimmerjahn, A., Mukamel, E.A. & Schnitzer, M.J. Neuron 62, 400–412 (2009).
25.	Shannon, C.E. & Weaver, W. The Mathematical Theory of Communication (University 

of Illinois Press, 1949).
26.	Brown, E.N., Frank, L.M., Tang, D., Quirk, M.C. & Wilson, M.A. J. Neurosci. 18, 

7411–7425 (1998).
27.	Quian Quiroga, R. & Panzeri, S. Nat. Rev. Neurosci. 10, 173–185 (2009).

np
g

©
 2

01
3 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.


	Long-term dynamics of CA1 hippocampal place codes
	Methods
	ONLINE METHODS
	Viral vector.
	Mice.
	Ca2+ imaging.
	Behavioral analysis.
	Basic processing of Ca2+-imaging videos.
	Identification of neurons.
	Detection of Ca2+ transients.
	Registration of cells across sessions.
	Place fields.
	Statistical analysis.
	Decoding.

	Acknowledgments
	AUTHOR CONTRIBUTIONS
	COMPETING FINANCIAL INTERESTS
	References
	Figure 1 Ca2+ imaging in freely behaving mice.
	Figure 2 Basic aspects of CA1 place codes are stable for weeks.
	Figure 3 Place fields are spatially invariant and temporally stochastic while preserving a stable representation at the ensemble level.


	Button 3: 
	Page 1: Off



