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SUMMARY
Flexibility is a hallmark of memories that depend on the hippocampus. For navigating animals, flexibility is
necessitated by environmental changes such as blocked paths and extinguished food sources. To better un-
derstand the neural basis of this flexibility, we recorded hippocampal replays in a spatial memory task where
barriers as well as goals were moved between sessions to see whether replays could adapt to new spatial
and reward contingencies. Strikingly, replays consistently depicted new goal-directed trajectories around
each new barrier configuration and largely avoided barrier violations. Barrier-respecting replayswere learned
rapidly and did not rely on place cell remapping. These data distinguish sharply between place field re-
sponses, which were largely stable and remained tied to sensory cues, and replays, which changed flexibly
to reflect the learned contingencies in the environment and suggest sequenced activations such as replay to
be an important link between the hippocampus and flexible memory.
INTRODUCTION

Flexibility in the use of learned associations about the world is

critical to survival and has long been considered an indicator

of cognition (Kohler, 1925; Tolman, 1948; Bayne et al., 2019).

An important aspect of flexibility is the ability to adapt when

the structure of the environment changes unexpectedly (Ra-

shotte, 1987; Kabadayi et al., 2018; Hebb and Williams, 1946;

Alvernhe et al., 2012; de Cothi et al., 2020). Dynamic environ-

ments pose a substantial challenge to animal navigation,

requiring both flexibility within and rapid adaptation across con-

texts. Lesion studies point to the hippocampus as being essen-

tial for both aspects of behavioral flexibility. Hippocampal lesions

in rodents produce deficits in the ability to flexibly navigate to a

learned goal from unpredictable locations (Morris et al., 1982)

or to make flexible inferences across learned odor pairs (Eichen-

baum, 2004) and in humans leads to deficits in the ability to ima-

gine new experiences (Hassabis et al., 2007). Moreover, damage

to the hippocampus results in performance deficits on spatial re-

planning tasks that require the construction of novel routes to

familiar goals in the presence of barriers or shortcuts (Thompson

et al., 1984; Winocur et al., 2010; Maguire et al., 2006; Rose-

nbaum et al., 2015).

Hippocampal place cells fire selectively to the conjunction of

spatial and nonspatial cues in the environment. As such, the hip-

pocampus has been thought to encode a cognitive map of the

environment (O’Keefe and Nadel, 1978), one that individuates

states as well as encodes state relationships to support flexible,
inferential behavior (Muller et al., 1996; Eichenbaum and Cohen,

2014; Whittington et al., 2020). The hippocampus readily forms

distinct representations across contexts (Alme et al., 2014; Leut-

geb et al., 2005; Wood et al., 2000; Frank et al., 2000; Ferbin-

teanu and Shapiro, 2003; Kennedy and Shapiro, 2009; Kentros

et al., 2004; Muzzio et al., 2009; Monaco et al., 2014; Kelemen

and Fenton, 2010; Muller and Kubie, 1987; Bostock et al.,

1991; Moita et al., 2003; Komorowski et al., 2009), thus in theory

enabling the formation of new cognitive maps adapted to the

context-specific needs of the animal (Smith and Mizumori,

2006; Stachenfeld et al., 2017). However, remapping to encode

context is not always observed (Berke et al., 2009; Ainge et al.,

2012; Griffin and Hallock, 2013; Duvelle et al., 2019). Strikingly,

place fields are largely unperturbed by the introduction and

manipulation of barriers, whether or not those manipulations

necessitate small (Muller and Kubie, 1987; Rivard et al., 2004)

or large (Alvernhe et al., 2008, 2011; Duvelle et al., 2021) changes

to the behavioral policy. This is especially perplexing given the

importance of the hippocampus in such replanning tasks

(Thompson et al., 1984; Winocur et al., 2010; Maguire et al.,

2006; Rosenbaum et al., 2015), and raises the question of

whether a significant but possiblymore covert hippocampal neu-

ral correlate of behavioral adaptation to changes in spatial con-

tingencies can be found.

Place cells participate in rapid sequenced reactivations called

‘‘awake replays’’ that can depict past and future behavior (Diba

and Buzsáki, 2007; Foster and Wilson, 2006; Davidson et al.,

2009; Pfeiffer and Foster, 2013) and have been linked to planning
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Figure 1. Behavior is goal directed

(A) Photo of the maze interior showing transparent barriers, reward wells, and painted wall cues.

(B) Top: Behavioral trajectory (gray) from session 77, rat 1. Bottom: Barrier configurations for sessions 1 through 4.

(C) Behavioral trajectories across several trials from session 78, color-coded according to time within the trial. Trial phase and number are at bottom right. The

rewarded well for each trial is outlined in red.

(D) Probability of the rat visiting the Home well (H) versus a Random well (R) within the first 5 s of the Home trial, as a function of trial number (left) or averaged

across trials (right). Horizontal black line: p < 0.05. Hshuff is calculated the same as H except that the Home well ID was selected randomly. Colored lines indicate

means for individual rats.

(E) Duration of anticipatory licking at the Home well for Home (H) versus Random (R) trials as a function of trial number (left) or averaged across trials (right).

Horizontal black line, p < 0.05.

(D and E) n = 47 sessions (total number of recorded sessions from all rats); Wilcoxon sign-rank tests, ***p < 0.001; error bars are SEM.
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(Jadhav et al., 2012; Pfeiffer and Foster, 2013) and memory

consolidation (Dupret et al., 2010; Ego-Stengel and Wilson,

2010; Girardeau et al., 2009). Replay is increasingly seen as a

generative process that reflects the behavioral contingencies

of the environment rather than the specific experiences of the an-

imal (Gupta et al., 2010; Foster, 2017) and is thus well suited to

subserve behavioral flexibility. In addition, replay offers a unique

window on hippocampal contextual coding without the con-

founding effects of behavior. However, nothing is known about

how replays adapt to spatial contingency changes, especially

when those changes are expected to elicit minimal changes to

the hippocampal place code. We tested this by recording place

cells and replay in a goal-directed task subject to repeated bar-

rier manipulations that would dramatically and unpredictably

alter the navigational requirements of the animal while minimally

affecting the sensory perception of the environment (through the

use of transparent barriers in a highly familiar environment). We

used wireless ultra-high-density hyperdrives to record from hun-

dreds of place cells simultaneously and across sessions,

enabling us to measure replay during the learning of the task

as well as ascertain changes in place fields across barrier config-

urations. This approach of tracking both place fields and replay

allowed us to assess hippocampal adaptation to changing

spatial contingencies at multiple resolutions to determine how

place encoding and replay-based path encoding contribute to

flexible learning.
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RESULTS

Behavior is goal directed
Rats were trained on a spatial memory task in a square arena to

search for liquid chocolate available in one of nine food wells,

which alternated on consecutive trials between a learnable fixed

location (Home well) and unpredictable other locations (Random

wells), designated as Home and Random trials, respectively. In

each trial, a variable time delay (5–15 s) passed before: (a) reward

was provided at the bait location, and (b) for all Random trials, a

light came on next to the rewarded well, cueing the approach.

Before each session, transparent ‘‘jail-bar’’ barriers (Ólafsdóttir

et al., 2015), permeable to visual and olfactory information,

were placed in 6 out of 12 possible locations, in a novel, random

selection from 924 possible configurations (Figures 1A and 1B).

Two to three consecutive behavioral sessions were performed

per day for a total of up to 94 sessions per rat with sessions sepa-

rated by �3–4 h, each with a novel barrier configuration (or in

some cases, no barriers) as well as a novel, pseudo-randomly

chosen Home location (Figure S1A) (47 sessions total; 12 ses-

sions for rat 1, 17 sessions for rat 2, 8 sessions for rat 3, and

10 sessions for rat 4). Rats exhibited trial-selective spatial mem-

ory, as evidenced by greater Home-well visit probability during

the unrewarded delay (Figures 1C and 1D) and greater anticipa-

tory-licking duration at the Home well for Home versus Random

trials (Figure 1E; Figure S1B).
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Figure 2. Replay is goal directed and predictive of future behavior

(A–F) Replay examples from different sessions from rat 1, targeting (A) the Home well, (B) Random wells, or (C) the upper right corner of the maze (a preferred

grooming location), as well as (D) stopping at or (E) passing through a barrier. The colored blob in each panel is the posterior probability of replay, defined as the

summed posterior across time bins of the replay (time bin duration of 80 ms). The posterior has been binarized (by discarding bins where the posterior is less

than 0.01) and color-coded according to elapsed time within the replay. Solid black line: replay center-of-mass. Gray segments indicate excluded time bins (see

STAR Methods). Time within session is shown at the upper left (min:s). Replay duration (s) at upper right. (F) shows a long-duration example replay from rat 2.

(G) Probability of Away-event replays terminating at Home (H) versus Random (R) wells. Hshuff is calculated the same as H except that the Home well ID was

selected randomly. Colored lines indicate means for individual rats.

(H) The occurrence of an Away-event replay terminating at the Home well versus probability of the rat visiting the Home well within the first 5 s of the subsequent

Home trial.

(I) Absolute angular displacement between replay and the rat’s future and past path.

(G–I) n = 37 sessions (total number of recorded sessions from rats 1–3); Wilcoxon sign-rank tests, ***p < 0.001; error bars are SEM.
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Replay is goal directed and predictive of future behavior
In order to measure replay, we implanted four trained rats with

headstages holding 64 independently-adjustable tetrodes (Fig-

ure S1C), which were lowered over the course of 2–4 weeks into

the pyramidal cell layer of the CA1 subregion of dorsal hippo-

campus in both hemispheres. The headstages digitized and

stored neural signals, enabling wireless recording during

behavior, because wires would have constrained the rats’

behavior around the barriers. We recorded the activity of up to

295 hippocampal place cells simultaneously (Figure S1D)

(mean per session = 156 cells; Rats 1–3 had >100 cells in every

session and were included in replay analyses; Rat 4 had <100

cells in every session and was used for place field analysis

only). In order to better understand the effect of barriers on

replay, we recorded the same cells across multiple barrier con-

figurations. Place fields were determined for each active cell,

and memory-less Bayesian position estimation was used to

decode the posterior probability of position from the spiking
of all simultaneously recorded cells. During stopping periods

in the task, candidate events were identified as continuous

epochs lasting at least 100 ms where the decoded position

changed smoothly (Figures S2A–S2G). Those candidate events

that satisfied spatial coverage criteria were classified as replays

(number of candidate events per session across 37 sessions:

2,652 ± 224; percentage of candidate events that were classi-

fied as replays: 5.7% ± 0.4%). As in previous studies with

large-scale recordings, the posterior probability from each

time bin during replay was so sharply defined that we could

sum across time bins to produce a clear representation of the

depicted two-dimensional trajectory through the environment

(Figures 2A–2G; Figure S3). Replays initiated at Random wells

when the rat was consuming chocolate there (Away-event re-

plays) were more likely to terminate at the Home well than at

other wells (Figure 2G; Figure S2H). Moreover, the probability

of the rat visiting the Home well was higher if preceded by a

Home-well-terminating replay (Figure 2H; Figure S2I). Further,
Neuron 110, 1547–1558, May 4, 2022 1549



Figure 3. Replays rapidly adapt to conform to the barriers

(A) All replays from sessions 75, 76, and 77 recorded on the same day from rat 2, color-coded according to elapsed time within session.

(B) Local averaging of replay orientation as a function of position within the environment. For each bin, the mean vector orientation and length are plotted for the

distribution of replay orientations (modulo 180) found within a circle of radius 2 bins. Color transparency indicates the number of data points (orientations) used to

compute each mean vector.

(C) Replays from (A) have been decomposed into their constituent vectors (with 80 ms time bins) and color-coded according to barrier conformity score. Vectors

starting near the 12 barrier positions have been removed. The background image is the barrier potential. The session-averaged barrier conformity score and

significance are at the upper left of each panel.

(D) The session-averaged barrier conformity score for session 75 (red vertical line) and the distribution of scores with respect to all other possible barrier con-

figurations (gray histogram, ‘‘shuffle’’). The barrier conformity p value for the session is the fraction of scores greater than the red line.

(E) Barrier conformity as a function of time within the session, computed within a 6 min sliding window, with respect to the current (red), previous (green), and

shuffled (blue) barrier configurations. Horizontal lines (p < 0.05), comparison of current barrier configuration scores with previous (gray) and shuffle (black) scores.

Current condition: n = 31 sessions, which is the total number of recorded sessions with barriers from rats 1–3. Previous condition: n = 16, which is the total number

of recorded sessions with barriers that had a corresponding previous session on the same day.

(F) Barrier conformity as a function of distance to the nearest barrier, with respect to the current (red) and shuffled (blue) barrier configurations. Horizontal black

line, p < 0.05. The large peak near 30 cm (approximately the mean wall-to-barrier distance) is the effect of local alignment to the walls. Wilcoxon sign-rank tests;

error bars are SEM.
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the angular displacement between the decoded position within

each replay time step and the immediate future or past trajec-

tory of the animal revealed closer alignment to the future trajec-

tory than to the past (Figure 2I; Figures S2J–S2M and S3E).

Thus, in the barrier maze, as previously in the open field, replays

exhibited memory for the goal location and predicted the imme-

diate future behavior of the animal.
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Replay rapidly and repeatedly adapts to conform to the
barriers
While individual replay examplesmoved around barriers (Figures

2A–2C; Figures S3A, S3B, and S3F), the full extent of barrier con-

formity was evident from all the replays recorded during

each session (Figures 3A and 3B; Figure S4). This was particu-

larly striking because large numbers of conflicting barrier
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configurations had been experienced in the same environment

prior to each session (76 by the third session in Figure 3A). In or-

der to quantify conformity, we first partitioned each replay into

constituent instantaneous velocity vectors. Each constituent

vector was then scored based on its proximity and alignment

to the local barrier structure in the environment (Figure 3C; Fig-

ure S5A): constituent vectors were scored high for moving paral-

lel to nearby barriers and scored low for moving perpendicular to

them, with constituent vectors close to barriers counting more

heavily than those further away (Figure S5B).We defined the ses-

sion-averaged barrier conformity score as the mean of all scores

across all constituent replay vectors within the session. We then

compared this score to a control distribution of session-aver-

aged barrier conformity scores obtained when computed

against the other 923 possible barrier configurations (Figure 3D).

To address sampling differences between configurations

conservatively, we removed from consideration constituent vec-

tors very close to the barriers (Figure 3C). For 87% of sessions

(27 out of 31 sessions with barriers), the session-averaged bar-

rier conformity score for the actual barrier configuration ex-

ceeded the 95th percentile of the control distribution (binomial

test, p < 0.001) (Figure S5C). Further, barrier conformity arose

rapidly within each session (Figure 3E; Figure S3F) and showed

no dependence on rat heading (Figure S5D). In order to assess

how far barrier conformity persisted from the barriers, we

removed the proximity-to-barrier weighting (Figure S5B) and re-

calculated the scores as a function of distance to the nearest

barrier. Barrier conformity was found to extend nearly 18 cm

from the barriers (Figure 3F), nearly the minimum inter-well dis-

tance Together, these results show that replays adapted to

conform to the barriers in each new configuration, that the adap-

tation was rapid, and that barrier conformity was spatially

extended and unlikely to depend on visual guidance.

The barriers are impermeable to most activity during
immobility periods
An alternative hypothesis for the observed barrier conformity

was that our criterion for detecting replay was biased because

of a lack of place field coverage near barriers, either because

of behavioral sampling or altered place fields. Therefore, we

developed a second measure of activity that did not require se-

lection of replays but instead analyzed the spiking activity in all

candidate events. Moreover, the measure assessed the relation-

ship between the representation of pairs of locations irrespective

of the representation of locations between them, where data

might be missing. For each position, we calculated the posterior

probability as a time series (Figure 4A, top). We then used the

cross-correlogram between pairs of time series to define a

‘‘time lag’’ between the two associated positions (Figure 4A, bot-

tom; Figure S6A): this represented the latency at which, on

average, representation of the first position was followed by rep-

resentation of the second. Finally, time lag maps were con-

structed from the time lags of one reference location to all other

locations (Figure 4B; Figure S6B). We hypothesized that barrier

conformity would be reflected in greater time lags between posi-

tions straddling a barrier than not. Moreover, such a finding

would indicate a much more prevalent effect than for replay

because candidate events accounted for ten times as many
spikes as replay events during immobility periods (Figure 4C;

Figure S6C). Indeed, examination of time lag maps for a set of

different reference locations (Figure 4B, columns) across

different barrier configurations (Figure 4B, rows) revealed a strik-

ing effect of the barriers, squashing low time lag regions (shown

in dark blue) up against the barriers, and elongating them in un-

obstructed regions. To quantify this effect, slices of themaps ex-

tending from the reference location toward the nearest barrier

were extracted (Figure 4D; Figure S6A). As expected, we found

that the rise in time lags occurred sooner the closer the reference

bin was to a barrier (Figure 4E, solid line). As a control, we

repeated the analysis with respect to barriers located at the six

complementary positions in the maze, in which case we found

no such dependence (Figure 4D, inset; Figure 4E, dashed line).

Lastly, we used multi-dimensional scaling (Gustafson and Daw,

2011; Buja et al., 2008) to translate temporal lags into spatial off-

sets, reducing the full set of time lag maps (L2 numbers, where L

is the number of spatial bins per dimension) into a distorted lat-

tice in the Euclidean plane (2L numbers) (Figure 4F; Figures S6D–

S6F). Deformations around barriers were clearly visible, indica-

tive of the relative inaccessibility of states on opposite sides of

the barrier. Together, these results indicate that not just replay

but most population activity during stopping periods exhibited

learned avoidance of the current session’s configuration of

barriers.

The majority of place cells are stable across sessions
In order to gain a more mechanistic understanding of replay

adaptation, we next sought to understand to what extent this

adaptation wasmirrored at the level of changes to the underlying

hippocampal map. We tracked single units across multiple bar-

rier configurations and compared the rate maps and population

vectors (PVs) (the set of firing rates at a spatial bin across all

active cells) across pairs of neighboring sessions (Figure 5A; Fig-

ures S7 and S8A–S8C). Surprisingly, we found that a majority of

pairwise session correlation measurements across cells and

across spatial locations were stable (rate maps: 1,686 of 2,887

comparisons [58%] were stable across 27 session pairs with

an average of 107 cell comparisons per session pair; a binomial

test indicated that the proportion of stable cell comparisons

was higher than expected by chance [p < 0.001, two-sided,

n = 2,887], assuming a chance level of stability for each cell

was 0.5; mean fraction of stable cells per session: 0.58 ± 0.02,

n = 27 session pairs; PVs: 28,788 of 33,245 comparisons

[87%] were stable across 27 session pairs with an average of

1,231 bin comparisons per session pair, where bins are 2 cm

per dimension; a binomial test using coarse-grained rate maps

to compute the PV correlations [see STAR Methods] indicated

that the proportion of stable bin comparisons was higher than

expected by chance [p < 0.001, two-sided, n = 10,748],

assuming a chance level of stability for each bin was 0.5; mean

fraction of stable bins per session: 0.87 ± 0.02, n = 27 session

pairs; Figures 5B and 5C). Stability was not restricted to any

part of the environment (Figures 5D and 5K; Figures S8G–S8I)

and was sufficiently distributed such that both replay content

and the accuracy of behavioral decoding was largely preserved

when decoded using the full set of place fields from neighboring

sessions (Figures 5E and 5F). We next examined whether the
Neuron 110, 1547–1558, May 4, 2022 1551
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Figure 4. The barriers are impermeable to most activity during immobility periods

(A) Schematic showing how time lags are computed. Top: Each frame is the decoded posterior probability across spatial bins within a 20 ms window. Two

candidate sequences are shown. White frames indicate dataset to zero. Bottom: Example cross-correlogram (gray: raw curve; black: smoothed with Gaussian

kernel, 60 ms SD) computed from the posterior probability time series from a pair of spatial bins (long horizontal red dashed lines in the top plot), with the vertical

red line indicating the latency at the peak. The time lag is defined as the absolute value of this latency.

(B) Representative time lag maps taken from sessions 76, 77, and 78, rat 1. The red square is the map’s reference bin.

(C) The fraction of spikes during immobility is defined as the total number of spikes within all candidate sequences and replays divided by the total number of

spikes within all immobility periods (rat speed < 5 cm/s) within the session (n = 37 sessions, which is the total number of recorded sessions from rats 1–3).

(D) Time lagmap slices grouped according to the distance from the reference bin to the nearest barrier (cool-to-hot colors represent near-to-far distances) (n = 31

sessions, which is the total number of sessions with barriers from rats 1–3). Inset: Same as main figure, except slices are taken with respect to the barriers in the

remaining six positions in the maze (‘‘complementary barrier configuration’’).

(E) Integrated areas under the slices for the data in (D) for the actual (solid line: Pearson’s r = �0.6, p < 0.001) and the complementary (dashed line: Pearson’s

r = �0.11, n.s.) barrier configurations.

(F) Left: Multi-dimensional scaling applied to session 79 time lag maps. Right: The same grid prior to deformation.

Wilcoxon sign-rank tests, **p < 0.01, ***p < 0.001; error bars are SEM.
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relationships between stable cells carried information about the

new barrier configuration. When time-lag maps were con-

structed from stable cells alone, we found that the barrier imper-

meability remained intact (Figure S8D), suggesting that the

stable cells were capable of supporting the flexible expression

of replay around the reconfigured barriers. At the same time,

we wondered whether faded memories of previous barrier con-
1552 Neuron 110, 1547–1558, May 4, 2022
figurations stored in the connections between stable cells might

support the occasional barrier-crossing replay that we did find

(Figure 2E; Figure S3D). To test this, we simulated replays using

a continuous attractor network with synaptic weights reflecting a

tunable combination of previously learned and newly acquired

information about the connectedness of the environment prior

to and following barrier insertion, respectively (Figure S9). At
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Figure 5. The majority of place cells are stable across sessions

(A) Subset of rate maps for the same cells from sessions 79, 80, and 81 recorded on the same day from rat 1, ordered in descending order according to mean

spatial information across sessions. Peak spatial firing rate (Hz/cm) at lower left of each panel. Stability of rate maps between neighboring sessions is indicated

above each panel (S = stable cell, U = unstable cell).

(B) CDFs of the rate map correlations (left) and PV correlations (right). Rate map correlations were measured between the same cells across adjacent sessions

recorded on the same day (n = 2,887, which is the total number of pairwise session measurements across all cells from rats 1–4; two-sample KS test, p < 0.001).

(legend continued on next page)
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modest mixing levels, we found that, while a majority of replays

conformed to the newly positioned barrier, a small but significant

fraction went through it. This suggests that remnants of past

experience encoded as connections between stable cells might

act as bridges or leaks for replay to cross between directly inac-

cessible regions.

We next examined the properties of the unstable cells in our

task. Compared to stable cells, unstable cells tended to have

higher firing rates and more diffuse fields (Figure 5G), as well

as higher instability in mean firing rate across sessions (Fig-

ure 5H). Moreover, field stabilization of the unstable cells

occurred slowly over the course of the trial (Figure 5I) and was

neither explained by any behavioral sampling bias (Figure S8E)

nor mirrored by any obvious behavioral correlate (Figure S8F).

To understand how field stability was impacted by the changes

in the positions of the barriers, we created a measure of the sim-

ilarity of the local environment across sessions (Figure 5J, left)

and compared it to the PV correlations across different spatial lo-

cations (Figure 5J, right). PV correlations were highest at spatial

bins near stable portions of the environment (Figure 5K). This

was also true of the rate maps when calculated on a cell-by-

cell basis (Figures S8G–S8I). We hypothesized that the observed

instability was not random, but rather encoded the presence of

barriers in the local environment. Thus, we predicted that cells

that remap when the environment was locally changed (e.g., a

barrier is removed in going from session 1 to session 2) should

reinstate their original fields when the environment is locally

restored (the barrier is returned to its original position in going

from session 2 to session 3). For this analysis, we utilized the

subset of recording days with 3 sessions. Indeed, we found

that both the unstable-cell PV and rate map correlations ex-

hibited a striking enhancement in stability around locations

where the local environment was restored (Figure 5L; Figures

S8J and S8K), suggesting that the unstable cells actually fire

reliably to the presence (or absence) of local cues in the environ-

ment. Taken together, these results demonstrate the co-exis-
PV correlations were measured between the same locations across adjacent sess

measurements across all spatial bins from rats 1–4; two-sample KS test, p < 0.00

lines: chance level from cell ID shuffle (two-sample KS tests, p < 0.001).

(C) Fractions of stable cells and stable bins across sessions are shown (n = 27, w

(D) Field peak locations and bin locations for all stable cells and stable bins, resp

overlapping) barriers between the two sessions.

(E) Decoding error during run using the current (black), previous (magenta), or ne

(two-sample KS tests, p < 0.001).

(F) Two example replays decoded with the place fields from different sessions rec

occurred. Thus, in the first example at left, the replay occurred in session 1. Th

neighboring box.

(G) Mean firing rate, spatial information, and number of fields for stable (S; n = 1

(H) Rate overlap for stable versus unstable cells.

(I) Evolution of within-session rate map correlation in 6-min windows measured ag

line, p < 0.05.

(J) Left: Local barrier similarity (LBS) between sessions 79 and 80, rat 1. Solid (dash

(K) Left: PV correlation versus LBS across all spatial bins of all session pairs (n = 3

unstable bins, respectively. Right: Mean local barrier similarity for stable (S; n = 2

(L) Left: Mean PV correlation for ‘‘restored’’ bins (bins with low LBS scores across

‘‘unrestored’’ bins (bins with low LBS scores across both sessions 1 and 2 and 1–3

between the first and second session of each day). Right: Same as left, except fo

with low cell barrier similarity (CBS; see STAR Methods) scores across sessions 1

areas (cells with low CBS scores across both sessions 1 and 2 and 1–3; n = 133). W
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tence of two maps: a rigid place cell map in which the majority

of cells participate, spatially invariant, rapidly instantiated and

adapted, albeit imperfectly, to the new barrier configuration,

and a slower-to-develop barrier-specific map that codes for

local features of the environment (Figure S10A).

DISCUSSION

There has recently been increased interest in hippocampal

replay as a general mechanism for learning and control, inspired

by the rodent spatial literature (Wimmer et al., 2020; Schuck and

Niv, 2019; Momennejad et al., 2018; Eldar et al., 2020; Liu et al.,

2019; Mattar and Daw, 2018; Mnih et al., 2015; van de Ven and

Tolias, 2018). A common theme is that replay reflects learned re-

lationships between task states, be they locations or non-spatial

states. However, most studies of replay in rodents have been

restricted to very simple environments composed of tracks or

open areas, so that the ability of replay to reflect arbitrary contin-

gencies between states has barely been tested. Here we utilized

a much more complex environment, which furthermore incorpo-

rated changes to goals and barrier structure between sessions,

to reveal that replays did indeed depict traversable routes

through the space reflecting the current contingencies between

locations. Moreover, these depicted trajectories were predictive

of future behavior, and were directed toward goals during

phases of the task when such routes were needed.

Our results reveal a remarkable level of plasticity in replay se-

quences. Even after 90+ different barrier configurations, replay

exhibited adaptation to each new configuration. By contrast,

the underlying hippocampal representation was largely stable

across different barrier configurations. The flexibility of the

former, in contrast to the overall rigidity of the latter, is surprising

given previous reports suggesting that place cells remap readily

between different environments (Alme et al., 2014) and are

sensitive to not just location but also events that happen in a loca-

tion (Leutgeb et al., 2005), the origin and destination of routes
ions on the same day (n = 33,245, which is the total number of pairwise session

1). Only bins that were visited by the rat in both sessions are colored. Dashed

hich is the total number of recorded adjacent session pairs from rats 1–4).

ectively, from session 80, rat 1. Solid (dashed) lines indicate overlapping (non-

xt (green) session place fields. Dashed lines, chance level from cell ID shuffle

orded on the same day. The red box indicates during which session the replay

e same replay decoded with the place fields from session 2 is shown in the

,686) versus unstable (U; n = 1,201) cells.

ainst the full session rate map for stable versus unstable cells. Horizontal black

ed) lines same as in (D). Right: PV correlationmap between sessions 79 and 80.

3,245; Pearson’s r = 0.57, p < 0.001). Blue and red circles represent stable and

8,788) versus unstable (U; n = 4,457) bins.

sessions 1 and 2 and high LBS scores across sessions 1–3; n = 1,374) versus

; n = 3,435) across all three-session days, using only the unstable cells (unstable

r rate map correlations between cells with rate maps in ‘‘restored’’ areas (cells

and 2 and high CBS scores across sessions 1–3; n = 47) versus ‘‘unrestored’’

ilcoxon rank-sum tests; *p < 0.05, **p < 0.01, ***p < 0.001; error bars are SEM.
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through a location (Wood et al., 2000; Frank et al., 2000; Ferbin-

teanu andShapiro, 2003),motivation (Moita et al., 2004; Kennedy

and Shapiro, 2009), attention (Kentros et al., 2004; Muzzio et al.,

2009; Monaco et al., 2014; Kelemen and Fenton, 2010), and mi-

nor changes in context (Muller and Kubie, 1987; Bostock et al.,

1991). This propensity for remapping has led to the speculation

that place cells are the readouts ofmemories stored in the hippo-

campus (Moser et al., 2015). However, remapping to encode

context is not always observed (Berke et al., 2009; Ainge et al.,

2012;Griffin andHallock, 2013), and it has been noted that a gen-

eral strategy of remapping to encodememory does not only pro-

vide a poor basis for generalization (Quian Quiroga, 2020) but

leads to an unsustainable explosion in numbers of neurons

needed in order to avoid catastrophic interference.

In line with this more critical view and consistent with our re-

sults, several studies have shown that place cells remain largely

or entirely stable in tasks in which animals must make use of

alternative routes when barriers are introduced to ormanipulated

within a familiar environment (Muller and Kubie, 1987; Rivard

et al., 2004; Alvernhe et al., 2008, 2011; Duvelle et al., 2021).

Such stability may reflect a place cell’s predisposition, possibly

via its anatomical location (Danielson et al., 2016; Geiller et al.,

2017), to ignore non-stationary or unpredictable cues in favor

of idiothetic ones (Knierim et al., 1995; Sharp et al., 1995; Jeffery,

1998), though we did observe a substantial number of cells that,

like object (Manns and Eichenbaum, 2009; Burke et al., 2011) or

landmark vector (Deshmukh and Knierim, 2013; Sarel et al.,

2017) cells, seemed to code for the barriers more explicitly (Ri-

vard et al., 2004). Puzzlingly, accumulating evidence suggests

that such tasks are dependent on the hippocampus (Thompson

et al., 1984; Winocur et al., 2010; Rosenbaum et al., 2015), indi-

cating that perhaps a more covert hippocampal mechanism is at

play. Our results now point to replay and potentially other

sequenced reactivations such as theta sequences (Foster and

Wilson, 2007; Johnson and Redish, 2007; Wikenheiser and Re-

dish, 2015) as the principal hippocampal mechanism by which

the memory of the maze is read out to support flexible behavior.

Furthermore, to the extent that our own experiences, like those

of rats, vastly outnumber the places in which they occur, these

results suggest a novel mechanism for the flexible creation and

expression of memories in the brain.

How might the memory of the maze be encoded? One attrac-

tive possibility consistent with our data is that it is encodedwithin

the hippocampus as synaptic changes to an otherwise rigid map

or graph (Muller et al., 1996; Burgess and O’Keefe, 1996; Blum

and Abbott, 1996; Gillner and Mallot, 1998; Redish and Tour-

etzky, 1998; Whittington et al., 2020). This, in turn, could

constrain the range and behavior of replays produced by the

network (Figure S10). The rapid stabilization of the stable cells

(Figure 5I) and the preservation of barrier avoidance with the sta-

ble cell time lag maps (Figure S8D), in conjunction with the rapid

adaptation of replay (Figure 3E), supports this mechanism, at

least early within the session. Specialized cell types like bar-

rier-specific cells (Rivard et al., 2004), object or landmark vector

cells (Manns and Eichenbaum, 2009; Burke et al., 2011; Desh-

mukh and Knierim, 2013; Sarel et al., 2017), interneurons (Stark

et al., 2014), and boundary-encoding cells (Solstad et al.,

2008; Lever et al., 2009) could then reinforce, refine, or even sup-
plement the graph for the purposes of more accurate and more

efficient navigation (Muller et al., 1996; Stachenfeld et al., 2017).

Along these lines, the leaking of replays through barriers could

be interpreted as a consequence of imperfectly adapted net-

works (Figure S9). On the other hand, Hopfield networks with

‘‘palimpsest’’ properties (Parisi, 1986; Chaudhuri and Fiete,

2016) solve the catastrophic interference problem by fading

out older memories while at the same time flexibly encoding

new ones, suggesting that replays that leak through the barriers

may reflect more a feature of hippocampal processing than a

bug. Alternatively, though not mutually exclusively, the maze

may be encoded upstream in areas known to be involved in

replay and sharp-wave ripples, including the ventral striatum

(Lansink et al., 2009), ventral tegmental area (Gomperts et al.,

2015; Valdés et al., 2015), or cortex (Ji andWilson, 2007; Jadhav

et al., 2016; Berners-Lee et al., 2021). Untangling the roles of

intra- versus extra-hippocampal mechanisms in the control

and adaptation of replay is a question for future study.
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Software and algorithms

Mountainsort Chung et al., 2017 https://github.com/flatironinstitute/

mountainsort

Trodes Spike Gadgets https://spikegadgets.com/

Custom data processing and analysis code This paper Zenodo: https://doi.org/10.5281/zenodo.

5880582
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, David

Foster (davidfoster@berkeley.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d All data reported in this paper will be shared by the lead contact upon request.

d All original code has been deposited at Zenodo and is publicly available as of the date of publication. The DOI is listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon

request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experimental procedures were in accordance with the University of California Berkeley Animal Care and Use Committee and US

National Institutes of Health guidelines. Neural activity was recorded from dorsal hippocampus (region CA1) of 4 Long-Evans rats

(Rattus norvegicus; 3-4 months old) performing a goal-directed task in an open field maze with movable barriers (task described

below). Rats were housed in a humidity and temperature controlled facility with a 12 h light-dark cycle. Before the start of the exper-

iments, rats from the same breeding cohort were housed in pairs. At the start of the experiments, rats were single-housed.

METHOD DETAILS

Pre-training
Adult male Long-Evans wildtype rats (3-4 months old) were handled daily and put on a free-feeding diet for approximately 1 month.

Pellets soaked in chocolatemilk (Nesquik) were occasionally placed inside the rat’s cage to facilitate familiarity with the taste of choc-

olate. Rats were then food restricted to approximately 85%–90% of their free-feeding weight and then trained for 1 week on a linear

track to drink chocolate milk from reward wells at both ends of the track.

Apparatus
The barrier maze was positioned at the center of a 10 by 10 ft room. The dimensions of themaze exterior were 90 by 90 cm. Themaze

floor was raised to a height of 52 cm off the floor. The perimeter of the maze consisted of plexiglass walls 60 cm high. The lower

portion of each wall (up to 30 cm high) was painted with white geometrical designs (e.g., circles, cross-hatches, vertical parallel lines,

etc) against a black background (Figure 1A). In addition, distinct geometrical cues hung from the distal walls of the room. The floor of

themaze wasmade of a semi-absorbent material (cardboard spray-painted lightly with black latex paint) so as to preserve odor cues

left by the rat. Between sessions, feces were removed from the floor and pools of urine were soaked up, but the floor was not wiped
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with ethanol. Rats were assigned separate floors (starting approximately 1-2 weeks after the start of training - before this, a cohort

shared the same floor) in order to facilitate the familiarity with the environment. The floor contained 9 transparent conical reward wells

1.5 cm in diameter and evenly-spaced on a 3 by 3 grid, with an inter-well spacing of 23 cm along each dimension. Chocolate milk

could be delivered in 0.1 mL amounts to each of the wells via a tubing system under the maze that was gated by solenoid valves

controlled by the experimenter. The filling of wells elicited no obvious visual or auditory cues and lasted approximately 1 s. Green

LEDs were placed under each well and programmed to flicker at 13 Hz when the well was filled (only on Random trials - see below).

6 jail bar-like barriers were constructed that could fit into any of 12 slots in themaze floor, yielding a total of

�
12
6

�
= 924 unique barrier

configurations (up to rotations). Each barrier was 19.5 cm (width) by 23 cm (height) andmade of thin plexiglass rods (0.5 cm diameter)

with an inter-rod spacing of 3.5 cm. Barriers were cleaned with ethanol between sessions. Rats were trained to avoid climbing over

barriers.

Task design and training
The task consisted of alternate trials of goal-directed navigation to a fixed, unmarked Home well (Home trial) and cued navigation to

one of the other 8 randomly baited Random wells (Random trial). Home wells were chosen pseudorandomly each session. The

Random-well baiting sequence was controlled by the random number generator from an Arduino. On Random trials, the green

LED beneath the baited random well flickered once the well was filled. Between trials, a 5-15 s random delay (controlled by an Ar-

duino) was imposed between the end of drinking at the last well and the filling of the next well, in order to encourage better spatial

coverage of the environment. Recording sessions typically lasted between 30 and 70min, depending on the rat’s activity level. Room

lights were kept dim for the duration of the session. During the session, the experimenter sat out of sight at a computer in the corner of

the room. For each session, the positions of the 6 barriers were chosen pseudorandomly. The sequence of barrier configurations was

approximately repeated across rats. During early training on the task, rats experienced one session per day. After a few days of

training, the number of sessions per day was increased to 2, with an inter-session spacing of about 2-4 h. For two of the rats, the

number of sessions per day was increased to 3, beginning a few weeks after surgery (Figure S1A). Between sessions, rats were re-

turned to a sleep stand (an elevated glass dish inside a tall, well-lit cardboard box next to the recording computer) and neural activity

was recorded for 1 h. Sometimes, rats were recorded for an additional hour before the next run. For longer intervals (greater than 2 h),

the rats were returned to their home cage between recordings on the sleep stand. Rats did not experience a completely open maze

(no barriers) until very late in the session sequence, if at all (Figure S1A).

Drive design and surgery
Four rats were implanted with microdrive arrays weighing 40-50 g and consisting of 64 independent-adjustable tetrodes made of

twisted platinum iridiumwires (Neuralynx) gold plated to an impedance of 150-300MOhms. Drive cannulae were implanted bilaterally

to target hippocampal dorsal CA1 (�4.13 AP, 2.68 ML relative to bregma) using a surgery protocol described elsewhere (Pfeiffer and

Foster, 2013). Tetrodes were slowly lowered to the cell layer over the course of 2-4 weeks, which was identified by the presence (and

shape) of strong-amplitude sharp-wave ripples. The rats were allowed 3-4 days recovery, after which behavioral training on the bar-

rier maze task was resumed but without food restriction in their home cages. Food restriction was resumed a week after surgery.

Behavioral analysis
Rat position was tracked using automated software from Spike Gadgets and sampled at 30 Hz. Position and velocity were smoothed

using a Butterworth filter (second order with a cutoff frequency of 0.1 samples/s using the butter function inMATLAB, selected to give

reasonable smoothing to the rat’s trajectory). The beginning of each trial was marked as the time at which the rat had moved a dis-

tance of 6 cm away from the rewarded well after consuming the chocolate there. Drinking periods were defined as times in which the

smoothed rat speed (a second order Butterworth filter with a cutoff frequency of 0.02 samples/s applied to the rat’s speed computed

above), dropped below 1 cm/s while the rat was at the rewarded well. During bouts of anticipatory licking, rats exhibited character-

istic speed and distance-to-well profiles (Figure S1B). Anticipatory licking periods were defined as times in which the rat was both

near a well (within 6 cm) and the smoothed velocity stayed within 1-6 cm/s. The parameters listed above for the selection of the drink-

ing and licking bouts as well as the need for secondary smoothing of the rat’s speed were determined so as to automate the process

of bout demarcation so as to best match what would be selected manually.

To compute the probability of a well visit, a well was counted as visited on each trial if the rat came within 6 cm of it at least once.

Well visit probability was then calculated in two ways, as a function of trial and collapsed across trials. For the former, well visit prob-

ability as a function of trial number was defined as the total number of times a particular well (Home versus Random) was visited on

the ith trial divided by the total number of sessions. For the latter, well visit probability was defined as the total number of times a

particular well was visited across trials divided by the total number of trials, then averaged across sessions. Only well visits that

occurred within 5 s of the start of the trial and at least 1 s before the start of the drinking period were considered. The latter constraint

was imposed so as to ensure that the behavior analyzed was unaffected by possible reward cues (i.e., the blinking light on Random

trials, which could come on as early as 5 seconds after the beginning of the trial—see Task design and training). Only trials with dura-

tion less than 60 swere considered. For both the Random-well visit probabilities andRandom-well anticipatory licking durations, data
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was averaged across all 8 Random wells of the session. For the Home well shuffle, the Home well was selected at random 10 times

and the well visit probabilities were recomputed and averaged.

Cluster analysis
Spikes were extracted from channel LFP’s (sampled at 30 kHz) using Spike Gadgets Trodes software and clustered automatically

using Mountainsort (Chung et al., 2017) and merged across sessions using themsdrift package. Additional cluster mergings across

sessions was performed manually based on similarity of waveform. Clusters were accepted if noise overlap < 0.03, isolation > 0.95,

peak SNR > 1.5 (Chung et al., 2017) and had passed a visual inspection.

Rate maps
For each spike time, the rat position and speed was found through linear interpolation (interp1 in MATLAB). Positions were binned

with 2 cm square bins. The rate map for the ith cell was defined as

fiðxjÞ=# of spikes fired within the jth spatial bin centered at xj
time spent within the jth spatial bin centered at xj

:

A speed cutoff of 5 cm/s was used in the construction of the rate maps to filter out spikes in which the rat was stationary or moving

slowly. Smoothed rate maps were computed by first setting unvisited bins to zero and convolving the rate maps with a 2D isotropic

Gaussian kernel (8 cm standard deviation (SD)). Spatial information (bits/spike) for the ith cell was defined as

SIi =
XL
j =1

PratðxjÞ
�
fiðxjÞ
ri

�
log2

�
fiðxjÞ
ri

�

where L is the number of spatial bins, PratðxjÞ is the probability of the rat being at the jth spatial bin, and ri =
PL

j =1PratðxjÞfiðxjÞ is the

cell’s mean firing rate. Place cells were identified as having r > 0.01 Hz and SI > 0.5 bits/sec. Field peak locations were measured as

the spatial bin location with the highest firing rate. The number of fields for each rate map was calculated using a density-based clus-

tering approach. First, rate maps were treated as discrete probability distributions and resampled 2,500 times (using the pinky func-

tion inMATLAB). Then, the sample points were clustered using dbscan inMATLAB, with a neighborhood search radius of 2.5 bins and

a minimum number of neighbors of 50. The number of fields was set as the number of clusters found.

Rate map correlation
Rate map correlation was defined as the Pearson’s correlation between any pair of rate maps. For the ith cell, with rate maps f Ii and fJi
for the Ith and Jth sessions respectively, the rate map correlation was

rRMi =

PL
j =1

�
f Ii ðxjÞ � Cf Ii D

��
fJi ðxjÞ � CfJi D

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPL

j = 1

�
f IiðxjÞ � Cf IiD

�
2
PL

j = 1

�
f IiðxjÞ � CfJi D

�
2

q
where fi =

1
N

PL
j = 1fi

�
xj
�
is the mean spatial firing rate. Rate map correlations were evaluated only at visited spatial bins common to

both sessions and were only measured for cells identified as place cells for both sessions. A rate map correlation shuffle distribution

was computed for each place cell by randomly permuting place cell ID’s 100 times in the second session and recomputing the cor-

relations. A place cell was called stable across a pair of sessions if its rate map correlation exceeded the 95th percentile of its shuffle

distribution; otherwise it was called unstable. A 2-tailed binomial test was performed to determine if the proportion of pairwise ses-

sion correlation measurements across cells designated as stable was above chance level, assuming a chance level of stability of

50%. We note that the fraction of unstable cells measured in our task is probably an overestimate, given that some cells are likely

to develop directional tuning in response to the linearization of the environment by the barriers. This, coupled with mismatched

behavioral sampling across sessions, could lead to false rejections of stability. Rate overlap (Leutgeb et al., 2005) for the same place

cell across a pair of sessions was computed by dividing the lower mean firing rate of the two sessions by the higher mean firing rate.

Within-session stability
Ratemap correlation as a function of timewithin sessionwas computed by first calculating ratemapswithin 6min windows (shifted in

3-min increments) across the session (windowed rate maps). Rate map correlation was then computed between the windowed rate

maps and the whole session rate map. Windowed rate maps for which there was insufficient behavioral sampling (i.e., less than 40%

of all ‘‘active’’ spatial bins–binswith > 1Hz firing rate–from thewhole session ratemapwere visited by the rat during the 6minwindow)

were not analyzed. Field coverage fraction as a function of time within session was computed by calculating for each cell the fraction

of the field covered by the rat within each 6min window. Specifically, the fraction of the field covered wasmeasured as the number of

active bins within the place field visited by the rat divided by the total number of active bins. Position density correlation as a function

of time within session was computed by correlating (Pearson’s) the rat position occupancy grid within each 6min window against the

full session position occupancy.
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Population vector correlation
Population vectors (PVs) were constructed by concatenating the value of each place cell’s rate map at a given spatial bin into a vec-

tor. Let Fj =
�
f1
�
xj
�
;.; fN

�
xj
� �

be the PV for the jth spatial bin, whereN is the number of place cells. The PV correlation at the jth spatial

bin across sessions I and J was computed as

rPVj =

PN
i = 1

�
f Ii ðxjÞ � CFI

i D
��
fJi ðxjÞ � CFJ

i D
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
j = 1

�
f IiðxjÞ � CFI

iD
�
2
PN

j = 1

�
f IiðxjÞ � CFJ

i D
�
2

q
where CFjD= 1

N

PN
i =1fi

�
xj
�
is the mean spatial firing rate at the jth bin across all place cells. PV correlations, like rate map correlations,

were evaluated only at visited spatial bins common to both sessions and were only measured for cells identified as place cells and

having minimal overlap with the barriers in both sessions (see section on Rate map correlations). A PV correlation shuffle distribution

was computed for each PV by randomly permuting place cell IDs 100 times in the second session and recomputing the PV correla-

tions. A PV was called stable across a pair of sessions if the correlation exceeded the 95th percentile of its shuffle distribution. A

2-tailed binomial test was performed to determine if the proportion of pairwise session correlations across bins designated as stable

was above chance level, assuming a chance level of stability of 50%. The binomial test was performed on PV correlations measured

from coarse-grained rate maps (bin size = 4 cm) so as to reduce the otherwise inflated n-value used in the test.

Local barrier similarity
The barrier potential was computed for each barrier configuration by convolving the barriers with a 2D isotropic Gaussian kernel

(24 cm SD) (Figure S5B). Let
	
xbk


be the set of bins overlapping with the barriers in session I, where k indexes the overlapping

bins, and l%k%K, where K is the number of overlapping bins. The barrier potential at the ith spatial bin for session I was computed

as

bIðxiÞ=
XL
j = 1

XK
k = 1

d
�
xi � xj � xbk

�
hðxjÞ

where h is the Gaussian kernel. The local barrier similarity (LBS) for the ith spatial bin across sessions I and J was defined as

LBSIJ
i = 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP4
t =1

�
bIðxlÞ � bJðxlÞ

�
2

q
k2hk

where the summation is over the 6 closest spatial bins fxlg (indexed by l) to the ith bin xi and k ,k is the L2 norm. The cell barrier sim-

ilarity (CBS) was the average local barrier similarity within the cell’s fields for sessions I and J. For the ith cell, this was defined as

CBSIJ
i =

1

2

 
1

NI

XNI

j = 1

LBSIJ
j +

1

NJ

XNI

j = 1

LBSIJ
j

!
;

where the summations are over the set of ‘‘active bins’’ in the cells field (bins with > 1Hz firing rate) on sessions I and J (total number of

active bins in sessions I and J is NI and NJ, respectively).

Local barrier restoration and the reinstatement of rate maps and population vectors
For each 3-session day, ‘‘restored’’ spatial bins were selected that had low LBS on sessions 1-2 (i.e., the environment was changed

locally) and high LBSon sessions 1-3 (i.e., the environment was restored locally). Specifically, the ith spatial binwas selected if LBS12
i <

LBS and LBS13
i >LBS, where LBSIJ

i is the local barrier similarity of the ith spatial bin across sessions I and J and LBS is the average LBS

across all bins of all three sessions. In addition, the bin was required to have been visited by the rat in all three sessions. Likewise,

‘‘unrestored’’ spatial bins were those bins that had both low LBS on sessions 1-2 and 1-3 (specifically, LBS12
i <LBS and LBS13

i < LBS

for the ith bin). The population vector correlation across sessions 1-3 was then computed at the restored bins and unrestored bins

using only cells designated as unstable between sessions 1-2 and active in all three sessions. Similarly, changes in rate map corre-

lation as a function of local barrier restoration were computed by selecting cells with rate maps in ‘‘restored’’ areas (i.e.,CBS12
i < CBS

andCBS13
i >CBS, whereCBSIJ

i is the cell barrier similarity of the ith cell across sessions I and J andCBS is the average CBS across all

cells of all three sessions) versus ‘‘unrestored’’ areas (i.e., CBS12
i <CBS and CBS13

i <CBS). Again, only cells designated as unstable

between sessions 1-2 and active in all three sessions were included in this analysis.

Spike density and sharp wave-ripple amplitude
Population spike density was computed by first summing the total number of spikes from all clusters in 1 ms non-overlapping time

bins. Sharp wave-ripple amplitude was computed by band-pass filtering the LFP in the 120 to 170 Hz range and then extracting the

amplitude envelope via a Hilbert transform. Both the spike density and ripple amplitude were smoothed through convolution with a

Gaussian kernel (80 ms SD) and z-scored.
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Bayesian decoding
Let ki be the number of spikes emitted by the ith place cell in a given time bin of duration t. The posterior probability at bin xj condi-

tioned on the activity vector k
!

(with the ith element as ki) is given by Bayes rule (assuming Poisson spiking noise statistics, indepen-

dence between neurons, and a uniform spatial prior (Davidson et al., 2009)):

P
�
xj
�� k!
= YN

i =1

Pðxj
��kiÞfYN

i = 1

fiðxjÞki e�tfiðxjÞ:

A uniform prior was used for the purposes of making minimal assumptions about the location of the decoded positions. The

posterior probability was computed for all bin locations xj where 1%j%L and L is the total number of spatial bins. Define

Pj =P
�
xj
�� k!
 and let xj =

�
xj; yj

�
be the coordinates of the jth spatial bin. The coordinates of the posterior center-of-mass

(COM) were given by

xcm = ½xcm; ycm�=
"XL

j = 1

xjPj;
XL
j = 1

yjPj

#
:

The posterior spread was defined as the square root of the second moment of the posterior:

m2 =
XL
j =1

ðxj � xcmÞ2
�
yj � ycm

�2
Pj:

The posterior COM jump size was defined as the L2 norm of the difference vector between consecutive posterior center-of-mass

estimates: d = kxtcm � xt + 1
cm k:

Replay detection and analysis
Classical approaches to extracting replay start with identifying population burst or sharp-wave ripple events and then evaluating the

sequence content contained therein (Pfeiffer and Foster, 2013). In practice, we have found that many replay-like events during immo-

bility periods were unaccompanied by large ripples or population bursts (Figure S2B). Thus, we developed a ‘‘bottom-up’’ procedure

for replay extraction that wasn’t predicated on the existence of such events. Moreover, this technique allowed us tomore flexibly and

meaningfully demarcate replay boundaries. First, the Bayesian decoder was applied to spikes within a sliding window of 80 ms dura-

tion (shifted in 5ms increments) over the entire session. We found that using a relatively large decoding window had little effect on the

overall spatial structure of the replay (Figure S2F). Time bins were kept for further analysis based on three criteria: rat speed (vrat <

5 cm/s; rat speed was computed at the center of each time bin via linear interpolation), posterior spread (m<10 cm), and posterior

COM jumps size (d < 20 cm) (Figures S2A and S2B; see Bayesian decoding).We defined a subsequence as a set of temporally contig-

uous bins satisfying the above criteria. Subsequences captured epochs in which the posterior was well defined (small posterior

spread) and moved smoothly (small COM jump size across time steps). Note that the jump size threshold was set to be relatively

large to allow for barrier-crossing subsequences. The choice of the posterior spread threshold was set to be close to the ‘‘elbow’’

of the distribution (see Figures S2A and S2B). We next considered the possibility that long subsequences might get fragmented,

for example when passing near a barrier. Thus, neighboring subsequences were merged if the spatial and temporal gap between

them was 20 cm and 50 ms, respectively. This essentially imposed a velocity prior on the subsequence movement speed. A subse-

quence (merged or not) was denoted a candidate sequence if its duration was greater than 100 ms. We chose this duration threshold

as it was roughly half of the mode of the replay duration distibution (�200 ms), Figures S2C and S2D. Replays were then selected as

candidate events that were sufficiently spatially dispersed (so as to filter out any "stationary" replays—Denovellis et al., 2021). To this

end, we defined a spatial dispersion metric:

D2 =
1

M

XM
t = 1

kxtcm � CxcmDk

whereM is the number of time bins in the sequence and CxcmD =
PM

t =1x
t
cm. A candidate sequence was defined as a replay if its disper-

sion was greater than 12 cm (Figure S2E). The dispersion threshold was set relatively low so as to be more permissive (see examples

in Figure S3F) for the purposes of capturing possible shorter barrier-crossing replays.

Away-events were defined as replays that occurred during the drinking period at the Random well within the Random trial. Like-

wise,Home-eventswere defined as replays that occurred during the drinking period at the Homewell within the Home trial. The prob-

ability of replay terminating at a well was computed as the number of trials in which a replay ended within 6 cm of the well divided by

the total number of trials. For the Random well termination probability, data was averaged across all 8 Random wells of the session.

For the Home well shuffle, the Home well was selected at random 10 times and the well termination probabilities were recomputed

and averaged.

The angular displacement of replay relative to rat’s behavior was computed similar to previous work (Pfeiffer and Foster, 2013). Let

xrat be the location of the rat for a given replay (found via linear interpolation at the center of the event). For each time bin, a circle
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centered at xrat was drawn that passes through the posterior center-of-mass estimate for that time bin, xtcm (Figure S2L). Angular

displacements between xtcm and the intersections of the circle with the rat’s past and future trajectories were computed. If multiple

intersections of the circle with the rat’s past or future trajectories, the intersection that occurred closest in time to the replay was used.

We also computed the angular displacement between the intersection of the circle with the rat’s heading direction vector and the rat’s

future trajectory. Absolute angular displacements within each class were averaged across the session. Only angular displacements

for which kxtcm � xratk> 15 cm were considered (Pfeiffer and Foster, 2013).

Decoding error during run
For the decoding error analysis in Figure 5E, posterior probabilities were calculated for non-overlapping time bins of 250 ms duration

during running periods (nrat >10 cm/s). Error was defined as the distance between the posterior center-of-mass estimate and the

actual rat position in each time bin. For each session, a shuffle distribution for the error analysis was computed by shuffling place

cell IDs 10 times and recomputing the error during run.

Replay vector field
For each spatial bin, the mean vector length and orientation (modulo 180 degrees) of the distribution of constituent replay vectors

found within a radius of 2 spatial bins was computed. The modulo operation was used to collapse across orientations that differ

by 180 degrees.

Barrier conformity analysis
Let Dxtcm be a constituent replay vector with unit length

Dxtcm =
xt +1
cm � xtcm

kxt +1
cm � xtcmk

;

where t takes values 1%t%M andM is the total number of time bins in the replay. The barrier conformity (BC) score for the constituent

replay vector was defined as

BC
�
Dxtcm

�
= kVb�xtcm�3Dxtcmk �

��Vb�xtcm�,Dxtcm��;
where Vb

�
xtcm
�
is the gradient of the barrier potential (see section Local Barrier Similarity) evaluated at the tail of each constituent

replay vector (Figure S5B). The first (second) term scores as high (low) constituent replay vectors perpendicular (parallel) to the local

barrier potential gradient. We defined the session-averaged barrier conformity scoreBC as the average of all theBC scores across all

replays in the session. In order to minimize bias in this calculation due to the uneven distribution of replays within the current

environment, constituent replay vectors initiated within 4 cm of any of the twelve possible barrier positions were removed from

the analysis before. Statistical significance of the BC score was determined by recomputing BC scores for the same dataset against

all other 923 barrier configurations (‘‘shuffle’’ distribution) and comparing with the test statistic. The p value was calculated as

p =
1+X

1+ 924
;

where X is the number of shuffles greater than test statistic. The BC score was determined to be statistically significant if it exceeded

the 95th percentile of its shuffle distribution (p < 0.05). A 2-tailed binomial test was performed to determine if the proportion of ses-

sions with statistically significant BC scores was above chance level, assuming a chance level of significance of 50%.

The barrier conformity as a function of time within session was computed by averaging BC scores for all constituent replay vectors

occurring within 6min windows shifted in 3-min increments (Figure 3E). Time bins containing less than 200 constituent replay vectors

were discarded. Scores were also computed against the previous barrier configuration (‘‘previous’’) or against all other possible bar-

rier configurations ("shuffle"). Barrier conformity versus rat heading direction was computed by averaging all allBC scores for all con-

stituent replay vectors occurring in front of (within an angle ± 90 degrees from the rat’s heading) versus behind the rat (within an

angle ± 90 degrees opposite the rat’s heading) and at least 15 cm away (Figure S5D). For computing barrier conformity as a function

of the distance to the nearest barrier, we defined a normalized barrier conformity score (Figure S5B) which normalizes the barrier po-

tential gradient evaluated at each constituent replay vector to unit length (i.e., replace
VbðxtcmÞ
kVbðxtcmÞk)Vb

�
xtcm
�
) so as to remove the dis-

tance-to-barrier dependent discounting. Normalized barrier conformity scores were averaged across all constituent replay vectors

occurring at a certain distance from the nearest barrier for each session. Distance bins containing less than 20 constituent replay

vectors were discarded. For the shuffle, session scores were computed for each barrier configuration (except the current one)

and then averaged.

Time-lag maps
To deal with the possibility that our inability to track replays in the vicinity of the barriers (because of the lack of place field coverage

there) might lead us to erroneously conclude that replays avoid barriers, we devised an alternative method that did not require replay

selection but instead using spikes from all candidate sequences. Let Pt
j denote the posterior probability associated with the jth spatial
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bin at the tth time bin. The cross-correlogram of the posterior probability time series associated with the ith and jth spatial bins was

computed by measuring cross-covariances at different lags, b:

CijðbÞ = 1

T � b

XT�b

t = 1

�
Pt
i � CPiD

��
Pt + b
j � CPiD



;

where T is the total number of time bins, b is the lag, and C ,D is the temporal average over all time bins belonging to candidate events.

Cross-covariances were computed for all temporal lags within the range of �1 to 1 s and smoothed through convolution with a

Gaussian kernel (60 ms SD). Posterior probabilities were computed using a smaller decoding window of 20 ms in order to more reli-

ably characterize the dynamics around the barriers. In computing the cross-covariances, posterior probabilities associated with time

bins outside of candidate sequences or with above-threshold posterior spreads and COM jump sizes within candidate sequences

(see Replay detection and analysis) were set to zero (note: candidate sequences were temporally demarcated using the original

approach—with 80 ms decoding windows—as described above in Replay detection and analysis). For computational tractability,

rate maps with larger spatial bins (4 cm square bins) were used. The time lag associated with a pair of bins was defined as

Mij = argmaxb
��CijðbÞ

��
which extracts the absolute latency associated with the global peak in the cross-correlogram and then takes the absolute value. Time

lags associated with unvisited spatial bins were removed.

Time-lag maps were constructed by arranging the time lags associated with a given spatial reference bin into a square grid. Thus,

the jth column of the time lag matrix,Mð :; jÞ, was defined as the time lag map for the jth spatial bin, when expanded into a 2D array. A

time lagmap slicewas part of a row or column taken froma time lagmap that starts at the reference bin andmoves toward the nearest

barrier along a path that intersects the barrier perpendicularly (Figure S6A). Time lag slices were averaged with the two nearest adja-

cent rows/columns, so as to avoid introducing potential artifacts by smoothing across the barrier. The distance between the refer-

ence bin and the nearest barrier location along the slice path was called the reference-bin-to-barrier distance. Each time lag map

contributed at most one slice. For reference bins equidistant from two barriers, a slice was chosen randomly between the two direc-

tions. Slices for references bins close to the maze perimeter walls (less than 4 cm away) were excluded. Session-averaged slices

were computed by averaging across all slices belonging to the same reference-bin-to-barrier distance class. The area under the slice

was measured by numerically integrating each session-averaged slice (trapz in MATLAB) out to 8 bins (32 cm). As a control, slices

were also taken from the same set of time lag maps assuming a barrier configuration complementary to the actual barrier configu-

ration (i.e., the barriers occupy the other 6 positions within the environment). Time lag map slice analysis for the stable cells was per-

formed by computing time lag maps using stable cells only. Since stability was defined with respect to the previous session, time lag

maps were computed for all sessions except the first session of each day.

Multidimensional scaling (MDS) was applied to the time lag matrix in order to transform the temporal delays between pairs of

spatial bins into spatial deformations between points on the Euclidean plane. First, the full time lagmatrix was converted to a distance

matrix by smoothing each time lag map with an 2D isotropic Gaussian kernel (1 bin SD), symmetrizing the matrix (by averaging the

ði; jÞth and ðj; iÞth elements), taking the log-transform (in order to discount longer time lags), and setting the diagonal to zero. A weight

matrix was constructed of the same size and used to additionally weight elements of the distance matrix in the MDS algorithm:

Wijf exp
�
� D2

ij=s


, where Dij is the Euclidean distance between the ith and jth spatial bins, and s = 6 bins. Multidimensional scaling

was performed using mdscale in MATLAB, using the metricstress option, which uses the actual values of the dissimilarities (metric)

that are then fitted by distances (stress) in the Euclidean plane. Lastly, Procrustes algorithm was applied (procrustes in MATLAB) to

translate, rotate, and uniformly scale the set of bin positions in the Euclidean plane to best match the original positions of the bins

before deformation (compare the left and right columns of Figure S6D). To demonstrate that the MDS algorithm was largely insen-

sitive to missing data, MDSwas applied to two sets of dissimilarity matrices corresponding to cityblock distances applied to an envi-

ronment with and without barriers using the shortestpath function in MATLAB (Figures S6E and S6F).

Replay simulations
Replays were simulated using a bump attractor network where themovement of the bumpwas driven by spike-frequency adaptation

(Hopfield, 2010; Itskov et al., 2011). Given a summed input current IiðtÞ to the ith cell, the instantaneous firing rate of the cell was fðIiðtÞÞ,
with the neural transfer function f given by

fðxÞ =
�
0 x%0
x x>0

Based on this time-varying input, neurons fired spikes according to a Poisson point process with a coefficient of variance of 1. The

activation siðtÞ of synapses from the ith cell was given by

dsiðtÞ
dt

+
siðtÞ
ts

= s
spk
i ðtÞ;
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where ts is the synaptic time constant and

siðtÞ =
X
b

dðt� ti;bÞ;

where ti,b specifies the time of the bth spike of the cell and the sum is over all spikes of the cell. We also implemented spike frequency

adaptation. The adaptation dynamics for the ith cell was given by

daiðtÞ
dt

+
aiðtÞ
ta

= s
spk
i ðtÞ;

where ta is the timescale of adaptation.

The total synaptic current IiðtÞ into the ith cell was given by

IiðtÞ=Ai

�
Ireci ðtÞ+ Iadapti ðtÞ+ I0

�
;

where Ireci ðtÞ is the recurrent input (see below), Iadapti ðtÞ= �wadaptaiðtÞ is the adaptive inhibitory input (wadapt is the strength of adap-

tation), I0 is a small positive constant bias common to all cells, and Ai is suppressive envelope function that tapers activity near the

boundaries of the network (see below). The recurrent input was

Ireci ðtÞ=
XN2

j = 1

ðWij �winhÞsjðtÞ;

whereWij are the excitatory recurrent weights,winh is the strength of recurrent inhibitory feedback, andN2 is the number of neurons in

the network. To specify the recurrent weights, we first organized cells into a 2D array on the neural sheet (N neurons per dimension).

LetW0
ij be a set of translation-invariant weights with Gaussian shape that depend on the distance between cells in the neural sheet:

W0
ij =wrec exp

��kxi � xjk2
2s2

w

�

where xi is the ith cell’s location in the sheet and sw controls the spatial extent of the connectivity.W0 mimics, for example, the resul-

tant synaptic weights after Hebbian learning for a rat exploring a barrier-free environment assuming a one-to-one correspondence

between the cell’s location in the neural sheet and the cell’s preferred firing location in the environment. To mimic synaptic weights

learned in an environment with a barrier (Figures S9A and S9B), we drew an imaginary barrier line in the neural sheet corresponding to

the barrier in the environment, then used the shortestpath function in MATLAB to compute the shortest paths between cells. We then

used this distance metric, ~Dij, to modulate the original translation-invariant weights W0:

Wbarrier
ij = exp

�
� ~D

2

ij



W0

ij :

The final recurrent weights were then a mixture of the original translation invariant weights and the barrier-respecting weights (Fig-

ure S9B), parameterized by the mixing ratio l :

Wij = lW0
ij + ð1� lÞWbarrier

ij :

Lastly, the suppressive envelope function that tapers activity near the network edges (Burak and Fiete, 2009) was given by

Ai =

8><
>:

1 di<hN

exp

�
� a0

�
di � hN

ð1� hÞN
�2�

otherwise

whereN is the size, per dimension, of the network, di =

����kxik�N
2

���� is the distance between the cell’s location in the neural sheet and the

network edge, h determines the range over which tapering occurs, and a0 controls the steepness of the tapering.

For the simulations: the number of neurons per dimension wasN = 32; timesteps were 0.5ms; ts = 30ms; g0 = 100;wrec = 30;winh =

0.02; ta = 100 ms; wadapt = 140; h = 0.4; a0 = 50; the duration of each simuation was 500 ms.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical tests and corresponding p values are reported within the figure legends. All statistical analyses were performed in

MATLAB. Wilcoxon sign-rank tests were used for paired comparisons and Wilcoxon rank-sum tests for nonpaired comparisons.

Binomial tests were performed assuming 50% chance occurrences. Two-sample Kolmogorov-Smirnov tests were used to compare

cumulative distributions of the data to chance. A minimum number of simultaneously recorded single units was a prerequisite for

some analyses (analysis of replay). 3/4 rats were deemed to have sufficient cell yield in all recorded sessions for analysis (> 100 cells

in all its sessions) and 1/4 rats was deemed not to (< 100 cells in all its sessions). This rat was used for place field analysis only.
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