
Specific Entrainment of Mitral Cells during Gamma
Oscillation in the Rat Olfactory Bulb
François O. David1.¤*, Etienne Hugues2., Tristan Cenier1,3, Nicolas Fourcaud-Trocmé1,3, Nathalie
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Abstract

Local field potential (LFP) oscillations are often accompanied by synchronization of activity within a widespread cerebral
area. Thus, the LFP and neuronal coherence appear to be the result of a common mechanism that underlies neuronal
assembly formation. We used the olfactory bulb as a model to investigate: (1) the extent to which unitary dynamics and LFP
oscillations can be correlated and (2) the precision with which a model of the hypothesized underlying mechanisms can
accurately explain the experimental data. For this purpose, we analyzed simultaneous recordings of mitral cell (MC) activity
and LFPs in anesthetized and freely breathing rats in response to odorant stimulation. Spike trains were found to be phase-
locked to the gamma oscillation at specific firing rates and to form odor-specific temporal patterns. The use of a
conductance-based MC model driven by an approximately balanced excitatory-inhibitory input conductance and a
relatively small inhibitory conductance that oscillated at the gamma frequency allowed us to provide one explanation of the
experimental data via a mode-locking mechanism. This work sheds light on the way network and intrinsic MC properties
participate in the locking of MCs to the gamma oscillation in a realistic physiological context and may result in a particular
time-locked assembly. Finally, we discuss how a self-synchronization process with such entrainment properties can explain,
under experimental conditions: (1) why the gamma bursts emerge transiently with a maximal amplitude position relative to
the stimulus time course; (2) why the oscillations are prominent at a specific gamma frequency; and (3) why the oscillation
amplitude depends on specific stimulus properties. We also discuss information processing and functional consequences
derived from this mechanism.
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Introduction

Recent experiments under awake conditions indicate that there is

little effective spatial contrast in the firing rate of neurons in

olfactory structures [1] and even in auditory primary sensory

structures [2], which suggests a limited role for the mean firing rate

in sensory function. In addition, it has recently been shown in the

retina that the sole firing rate is not sufficient to code for behavioral

performance [3]. Furthermore, the role of spike timing for plasticity

[4] and coding [5] suggests that the temporal structure of neuronal

activity may be crucial for perception. In particular, various

functional studies have reported that fast local field potential (LFP)

oscillations, particularly those in the gamma band (40–80 Hz) that

correlate with perception [6] and attention [7], simultaneously

induce a greater synchrony in the firing of cells, thereby having a

greater impact on downstream structures [7].

In the mammalian olfactory bulb (OB), odorant stimulation

induces LFP oscillations both in the gamma (40–80 Hz) and beta

(15–35 Hz) ranges. There is, however, significant disparity in the

reports regarding the conditions in which these oscillations are

expressed. In anesthetized animals, gamma and beta LFP

oscillations are odor-induced and appear alternately along the

respiratory cycle, with gamma bursts specifically occurring during

the inspiration/expiration (I/E) transition [8,9]. In the awake rat,

gamma and beta LFP oscillations exist spontaneously, and odors

evoke increases [10] or decreases [11] of amplitude in the gamma

frequency range. In insects [5,12] and to a lesser extent in fish

[13], spiking activity has been shown to be strongly linked to the

oscillation which plays therefore a crucial role in coding. In

rodents the role of these oscillation has been primarily described to

reflect the experience of the animal [14,15]. Despite the findings of

phase/time relationships between mitral (MC) spiking activity and

the oscillation or between MC pairs [16–18], a better description

of these relationships across the MC population is needed before

demonstrating that such temporal activity can support an odor

code.

Our approach focused on gamma oscillations in anesthetized

rats, which are not very different from oscillations recorded under

behaving conditions [19]. The aim of the current study was two-

fold: (1) to analyze the fine temporal relationships between the
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spiking of an MC population and gamma oscillations in

anesthetized, freely-breathing rats in response to odorant stimu-

lation and (2) to build a biophysical model of MC activity under

the same in vivo conditions to explain the data. Our data showed

that during the transient periods of gamma oscillation, a specific

subset of MCs exhibited specific periodic firing phase patterns that

could be grouped in a small number of types. Furthermore, the

pattern types exhibited by a particular MC are qualitatively

related to the nature of the odorant stimulus. These different types

of patterns constitute the signature of an entrainment of these cells

by an input oscillation [20,21], whose origin can be attributed to

the inhibitory granular input [17]. In the model, we verify that this

scenario of entrainment effectively reproduces the experimental

observations. We further explored the model’s dependence on MC

input activity and intrinsic properties, showing that our model

robustly exhibited an optimum of entrainment when the

oscillation frequency was within the gamma range. Overall, these

results provide a detailed quantitative description of the complex

MC firing activity at the population level and, at the same time, a

theoretical explanation of the links between MC spike trains and

gamma LFP oscillations evoked under freely breathing conditions

in the OB. Furthermore, these results constitute an important

underlying mechanism if future research shows that such a firing

activity can support odor coding in behaving conditions.

Results

Part I: experimental data analysis
Gamma LFP oscillations are recurrent and stable, and

the firing rate is highly variable. Under our anesthetized

conditions, odorant stimulation elicited LFP oscillations in the

whole OB and spiking activity in the MC layer. Respiratory

modulation appeared as a slow, large-amplitude oscillation

(,2 Hz) that was visible on the raw trace (Fig. 1A). Although

slower than under waking conditions, this respiratory modulation

could be associated with theta range frequencies (4–10 Hz). The

time-frequency representation (TFR) (Fig. 1B) led to the

observation of two other oscillatory frequencies, namely beta

oscillations in the 15–35 Hz range and gamma oscillations in the

40–80 Hz range. Gamma bursts recurred at each respiratory cycle

around the inspiration/expiration (I/E) transition [8] (Fig. 1B) and

were nearly independent of the odorant stimulus. In contrast, the

characteristics of the beta bursts depended on the molecular

features of the odor [9]. The gamma oscillation positions during

the respiratory cycles were remarkably stable between odors,

always starting at the I/E transition. The distribution of gamma

Author Summary

Olfactory function relies on a chain of neural relays that
extends from the periphery to the central nervous system
and implies neural activity with various timescales. A
central question in neuroscience is how information is
encoded by the neural activity. In the mammalian olfactory
bulb, local neural activity oscillations in the 40–80 Hz
range (gamma) may influence the timing of individual
neuron activities such that olfactory information may be
encoded in this way. In this study, we first characterize in
vivo the detailed activity of individual neurons relative to
the oscillation and find that, depending on their state,
neurons can exhibit periodic activity patterns. We also find,
at least qualitatively, a relation between this activity and a
particular odor. This is reminiscent of general physical
phenomena—the entrainment by an oscillation—and to
verify this hypothesis, in a second phase, we build a
biologically realistic model mimicking these in vivo
conditions. Our model confirms quantitatively this hypoth-
esis and reveals that entrainment is maximal in the gamma
range. Taken together, our results suggest that the
neuronal activity may be specifically formatted in time
during the gamma oscillation in such a way that it could, at
this stage, encode the odor.

Figure 1. Unit activities and LFP gamma oscillation frequencies
had the same mean but very different variability. A) Raw signal
recorded in the MC layer during odorant stimulation. Vertical
continuous lines: I/E transitions; vertical dashed lines: E/I transitions.
B) Time frequency representation extracted from the raw signal and
based upon a wavelet transformation. The signal energy at each time-
frequency point is in a colorscale. C) Top) Distribution of LFP gamma-
burst mean frequencies with a normal function fit, which is shown as a
black trace. Bottom) Distribution of LFP cycle instantaneous frequency,
which is defined as the inverse of the period between two max of the
oscillation, and which is normalized to the average frequency of the
gamma burst to which the cycle belongs. D) Instantaneous frequencies
along one respiratory cycle (six colors for six cells). + are spike positions
for which gamma LFP oscillations are present. E) Interspike interval
distribution (ISI) for spike trains occurring during gamma oscillations
(bin 0.05 cycle, black line, gamma function distribution with the same
mean ISI as the experimentally found (see methods)). Contour
histogram is the distribution of the mean ISIs that was calculated for
each spike train. All units are given in ‘‘cycle’’.
doi:10.1371/journal.pcbi.1000551.g001

Mitral Cell Entrainment during Gamma Bursts

PLoS Computational Biology | www.ploscompbiol.org 2 October 2009 | Volume 5 | Issue 10 | e1000551



burst mean frequencies was fitted with a narrow Gaussian

distribution with a mean of 60.7 Hz (standard deviation: 8.8 Hz,

see Fig. 1C, top). Inside each gamma burst, the cycle to cycle

frequency was even more stable. Indeed when the frequency of

each cycle (the inverse of its length) was normalized relative to the

mean frequency of its gamma bursts, the resulting distribution

could be fitted with a Gaussian distribution with a standard

deviation that was lower than 0.1, which indicated low variability

(Fig. 1C, bottom).

In contrast, the MC instantaneous frequencies were highly

variable (i) within the same cell, between different epochs of the

respiratory cycle, (ii) within the same cell, between odors, and (iii)

between simultaneously recorded units. An example is given in

Fig. 1D, which shows the course of instantaneous frequencies over

the period of a respiratory cycle for six cells that responded to the

same odor. These examples show that the MC activities are highly

modulated and variable during the respiratory cycles, as previously

described [22–24].

Due to the bulbar-specific origins of gamma oscillations and to

the regular occurrence of these oscillations across the bulbar

surface, we focused our measurements on neuron discharges

during LFP gamma bursts. To simplify the comparison between

bursts of different frequencies, the interspike intervals (ISI) will

always be expressed in fractions of their gamma burst average

period (the Cycle unit), and similarly, the MC spike rates will be

expressed in spikes per cycle (SpC). The ISI distribution that was

observed during these gamma bursts was plotted in Fig. 1E (grey

bars). We compared these distributions with a gamma distribution

(black line) that reflected the usual random discharge of a neuron

with a similar refractory period (0.18 cycles ( = 3 ms)) and the same

mean ISI (1.18 cycles) as the experimental distribution. We

observed two major deviations of the experimental ISI distribution

from the gamma distribution. One appears around 0.1–0.2 cycles

and corresponds to the numerous spike doublets (or high

frequency bursts) that can be observed in MC discharges [23].

The second deviation is an excess of the experimental ISI around

0.9–1 cycles. About 25% of the ISIs are between 0.8 and 1.2

cycles, compared to 18% for the gamma distribution. The latter

result suggests that during gamma bursts, a large fraction of the

MCs tend to fire at a rate close to the oscillation frequency.

The contrast between the regularity of oscillation frequency and

the variability of spike discharge led us to the idea that the

coupling between both activities could be dependent on neuronal

frequency. This hypothesis was investigated further in the

following analyses.

Spike phase distribution during LFP gamma oscillations

depends on the MC firing rate. When an LFP gamma

oscillation was evoked in OB slices, the distribution of GABAA

(Gamma Amino Butyric Acid) event times relative to the

oscillation phase was phased [17] (see Fig. 4G in ref. 21).

According to these observations, the MCs should receive, on

average, an oscillating conductance locked to the LFP gamma

oscillation. Therefore, we expected the MC firing activity to

correlate with the phase of the LFP gamma oscillation. For the

whole population of MCs, the spike phase distribution was peaked

(Fig. 2A), with a maximum around phase 0.5 (circular deviation of

sigma = 1.67 and a significantly phased distribution, P%0.001,

Rayleigh non-uniformity test). However, when the cells are

segregated by their average firing rates, we observe that cells

with firing rates below 1.2 SpC were better phased (Fig. 2B). We

thus wondered what the difference was in the relationship between

LFP fast oscillations and cells spiking at low and high firing rates.

Looking at individual spike trains on the raw signal (Fig. 2C), we

noticed some particular configurations of spike-LFP phase

coupling. Spike trains with #1 SpC (Fig. 2C, upper panel) were

often stable in phase and occurred preferentially during the trough

of the oscillation. On the other hand, we observed that some spike

trains with .1 SpC exhibited multiple but similar phases across

several oscillation cycles (Fig. 2C, lower panel). This relationship

between spike phase-locking and MC firing rate raised the

possibility that MC populations might be segregated according

to their firing rate. We thus decided to examine systematically the

relationship between phase trains and LFP oscillations while taking

this observation into account.

Specific phase-locking and spike rate control by gamma

LFP oscillation. An inspection of the spike phases (represented

by grey sticks in Fig. 3A and 3B) revealed that a large number of

spike trains contained spikes that had phases that were

reproducible across cycles. Therefore, we automatically detected

and classified the phase-locked patterns according to six q:p types,

Figure 2. Rate dependence of spike phase distribution during
gamma oscillation. A) Spike phase distribution (phase bin = 0.02
cycle) for all spikes during gamma oscillation (black line). The coupling
strength was weak and statistically significant [mean = 0.472, average
length, r = 0.25, circular deviation = 1.67; p,0.01, Rayleigh test)]. B)
Spike phase distribution according to the mean spike rate (measured in
Spike per Cycle (SpC)), (see y-label). (* indicate p,0.01 for a non-
homogeneous distribution). The phase means were 0.480, 0.471, 0.486,
0.409, phase average lengths were 0.29, 0.31, 0.28, 0.11 for the
respective phase distributions. C) Examples of spike trains showing
regularity of spike phases at a low (upper panel) or high (lower panel)
firing rate; Black trace, raw signal; black circles, spikes during gamma LFP
oscillation; grey sinusoid, extracted LFP oscillation; grey lines, LFP phases
from 0 to 1; black ticks, spike time and phase positions.
doi:10.1371/journal.pcbi.1000551.g002

Mitral Cell Entrainment during Gamma Bursts
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which were 3:1, 2:1, 1:1, 2:3, 1:2, and 1:3, where q:p indicates p

spikes during q cycles (see Methods for details of the classification).

For example in the case of the 2:3 pattern there is a regular

repetition of the number of spike at each cycle : 1,2,1,2,1,2 …, in

the case of the 2:1 pattern the repetition is 1,0,1,0,1,0… and so on

for other patterns. Some examples of these phase-locked patterns

are represented in Fig. 3B, which shows the periodicity of phases

over a few cycles. Opposing residual trains (see methods for

supplementary examples) showed a drift or at least high variability

of phases across cycles. Among the 898 spike trains that spread

over at least three oscillation cycles, 278 (31%) had one of the q:p

patterns. The patterns 1:1 and 2:1 were most frequently observed,

and they accounted for 67% and 19% of the observations,

respectively (Fig. 3C, grey bars).

In order to test the significance of these results, we compared

our experimentally recorded patterns to patterns that were

expected by chance when the phase-locked pattern detection

was applied to a randomly generated spike train family with the

same firing rate distribution (see Methods for details and other

alternatives for random spike train generation when the ISI

distribution or the phase reference are imposed). We observed that

the proportion of phase-locked spike trains among all spike trains

was reduced (15% in the random distribution) compared to the

experimental results (31%). As detailed in the Methods section, the

classification of a spike train as a pattern is a two step process. The

first step of this classification relies on a ‘‘relative distance’’

measure. The ‘‘relative distance’’ between each experimental (or

random) spike train and theoretical patterns was computed, which

indicates how close they were in terms of spike count. The

‘‘relative distance’’ distribution (Fig. 3D) was similar between the

experimental and randomly generated spike trains, which attests to

the similarity of the spike counts of the random and experimental

spike train distributions. Thus, the differences between experi-

mental and random data must be due to the second step of the

classification process, which estimates a ‘‘jitter’’ that measures the

reproducibility of spike phases across cycles. Indeed when

comparing the distribution of jitter for experimental and random

spike trains, the jitter values that fell below the jitter threshold (i.e.,

0.5 dashed lines in Fig. 3E) were more numerous for the

experimental spike trains than those expected by chance.

Additionally, experimental and random phase distributions

showed significant differences for the 3:1, 2:1, 1:1, and 1:2

patterns (Kolmogorov-Smirnov test, p,0.05) (Fig. 3E). Signifi-

cance was not reached for the 2:3 and 1:3 patterns due to the small

number of experimental observations of these patterns (N = 21 and

N = 8). In addition, the relative proportions of the different type of

phase-locked patterns were similar (45% and 36% for the 1:1 and

2:1 patterns) under the experimental and random conditions. It

was noticeable, however, that the proportion of the 1:1 pattern in

comparison to other patterns was significantly higher under the

experimental conditions than under random conditions (Chi-

square test, 70, p,0.01). Overall, these results showed that a

significant population of MCs can be locked to the oscillation for

various individual MC firing rates, which suggested that multiple

patterns can co-exist across different cells. This finding raises the

question, which we will address later, of the nature of the

Figure 3. Types of phase-locking. A) Classification principles. Spike
phases (x-axis) are represented by grey ticks along the successive
gamma cycles (y-axis) of a LFP burst. If the spike train has a regular
number of spike at each cycle (here, 1 spike at each cycle, see Methods
for details), and if the phase jitter is small enough (,0.5) (left panel) in
comparison to the mean phase (black boxes), it is classified as a phase-
locked pattern (here, a 1:1 pattern). Otherwise (right panel), the spike
train is classified as residual. B) Six examples of phase-locked spike
trains. Along the top of each plot is indicated the type of pattern (q:p
types–3:1, 2:1, 1:1, 2:3, 1:2, 1:3–where q:p indicates p spikes during q
cycles) and its phase jitter. Phase-locked patterns account for 31% of all
spike trains that last during the time of at least three LFP gamma cycles.
C) Distributions of experimentally found (grey) and randomly generated
(black contours) phase-locked pattern types. The majority of the
patterns were 1:1 in both distributions. D) Distribution of relative
distances (see Methods) from spike train phases to the closest pattern
for the experimentally found (grey) and randomly generated (black
contours) spike trains. Dashed line is the strict distance limit (0.33) under
which the spike train can be considered for phase locking. Note the
good agreement between experimentally found and randomly
generated distance distributions. E) Distribution of phase jitter for
experimentally found (grey) and randomly generated (black contours)

spike trains for the respective phase-locked pattern type. The dashed
line is the limit (0.5) under which the spike train is considered phase
locked. Note that the area of experimentally found distributions under
the limit was often larger than those of the randomly generated
distributions, especially for the 1:1 patterns (* indicate significant global
statistical differences between both distributions, Kolmogorov Smirnov
test, p,0.05).
doi:10.1371/journal.pcbi.1000551.g003

Mitral Cell Entrainment during Gamma Bursts
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underlying mechanism that controls train structure in relation to

the LFP.

To further characterize the relationship between cell discharge

and LFP oscillation, we observed how the discharge of cells that

exhibited a phase-locked pattern during a gamma oscillation

evolved before, during, and after the oscillation. First, for all cells

exhibiting the same type of pattern, the cell instantaneous

frequency was plotted at each spike time (see Fig. 4 Ai to 4Avi

for the different types of patterns, where time 0, in all cases,

denotes the onset of gamma oscillations). The instantaneous

frequency was measured at each spike time and was defined as the

inverse of the ISI preceding the spike. The ISI unit was a cycle of

LFP gamma oscillation. When the ISI fell out of the LFP gamma

burst, the time reference was the mean cycle of the LFP gamma

burst. This representation showed that the 3:1, 2:1, and 1:1

experimental patterns (Fig. 4Ai–Aiii) were characterized by stable

instantaneous frequencies during gamma episodes, whereas highly

variable discharges could be observed before and after the gamma

episodes. Hence, the regular discharges observed for these patterns

seemed to be due to a specific process that occurred during gamma

oscillations and not due to previous stability. On the other hand,

the instantaneous frequency of the 2:3, 1:2, and 1:3 experimental

patterns (Fig. 4Aiv–Avi) exhibited a smaller decrease in variability

between the ‘‘before’’ and ‘‘during’’ gamma oscillations, which

suggested that the regularity detected there was more intrinsic to

MC discharge and less due to the oscillation. Finally, these results

were compared across the different q:p patterns the mean

(Fig. 4Bi), and the standard deviation (Fig. 4Bii) of the firing rate

was estimated using a 50-ms time bin. Interestingly, phase-locked

cells adopted a pattern with an average firing rate that was close to

their own average firing rate before the oscillation (except for a

small mismatch between the 2:3 and 1:2 patterns). For all types of

patterns, the standard deviation of the instantaneous frequency

decreased immediately after the onset of the gamma oscillation.

Overall, this suggests that gamma oscillations could regularize the

discharge of MCs while segregating them according to their

intrinsic firing rates (i.e., cell firing rates if oscillatory input is

absent). However this result does not unequivocally imply the

dominance of the network oscillation on the mitral discharge, since

both appeared to be intricately connected.

Figure 4. Firing rate control during gamma episodes. A) Instantaneous frequencies (1/ISI) were plotted from 200 ms before the gamma burst
to 300 ms after. t = 0 at the beginning of the gamma burst, which is shown as a grey zone and by the symbolic oscillation atop of each graph. For
each pattern type (Ai-vi), black dots are instantaneous frequencies (y-axes) as a function of their time position (x-axes) relative to the beginning of the
LFP gamma burst. The mean instantaneous frequency (bold line) 6 its standard deviation (thin lines) is estimated by averaging instantaneous
frequencies over time bins of 50 ms. B) Mean firing rate averaged over 50-ms time bins (Bi) and its standard deviation (Bii) for spike trains expressing
one type of phase-locked pattern (see legend for symbol-pattern correspondence). Compared to A, cells that do not fire during a bin are also taken
into account in the average. Bi shows that the firing rate before and after the gamma burst was correlated with the firing rate during the gamma
burst for each pattern. Bii clearly shows that the firing rate standard deviation decreases for all patterns immediately after the gamma oscillation
begins.
doi:10.1371/journal.pcbi.1000551.g004

Mitral Cell Entrainment during Gamma Bursts
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Relation between pattern types and odors. Given that

pattern formation is observed during gamma bursts, we aimed to

evaluate the correlation of pattern presence with odor specificity

and physiological relevance. We compared the reproducibility of

the pattern formation of the neuronal response during stimulation

with the same odor and a different odor.

The probability of finding the same pattern in an MC response

was significantly higher for responses to the same odor than for

responses to different odors (probability of finding the same

pattern in response to the same odor: 0.049, to different odors:

0.015, p-value,0.05, paired t-test, n = 98, see the distribution of

these probability differences computed for each cell in methods).

This test was performed on 98 cells among 143 cells. We selected

the cells for which there were at least two recorded responses for at

least two different odors. If only phase-locked patterns were

considered (that is we did not take into account non-pattern spike

train in opposition to the preceding analysis), then probabilities of

finding the same pattern were enhanced to 0.60 and 0.49 for

responses to the same odor and to different odors respectively

(Kolmogorov-Smirnov test, p-value = 0.07, n = 48). Further inves-

tigations of our data at this point do not fully determine the role of

locking. Nonetheless, this result reinforces the possible significance

of patterns for encoding information about the nature of the odor

and could help with the decoding of other structures. Although

further analysis with additional data would be necessary to obtain

a more quantitative understanding of the patterns’ physiological

function, these patterns were found to be qualitatively related to

odors. The reliability (60%) of getting one pattern in response to

one odor remains relative.

Part II: modeling study
The relationships between unit activity and gamma LFP

oscillations during phase-locking raise the question of whether

reciprocal entrainment mechanisms exist between MC and LFP

oscillations. We addressed one part of this question using a

biophysical model 1) to investigate the modalities of entrainment

of MC activities by granule cell activities and 2) to explain the

spike train structures measured experimentally. The use of a

model allowed us to perform studies that are not currently feasible

with animal studies.

Model MCs can be differentially phase locked by an

oscillation of their inhibitory input. Before presenting our

results, we must characterize the physiological conditions of

locking. The existence of a correlation between LFP oscillations

and spiking patterns presupposes neither the cause-effect

relationship between the two activities nor the biophysical

mechanisms of interactions in the bulbar network to explain the

phase-locked patterns. In vitro experimental results by Lagier et al.

(2004) [17] (see their Fig. 4G) showed that, during LFP gamma

oscillation, MCs can receive an average level of inhibition due to

tonic activation of GABAA receptors, along with a superimposed

phasic inhibition that occurs at gamma frequency. From the

synaptic connectivity and the individual synaptic strength, we were

able to estimate the average level of tonic inhibitory conductance

(called gI) to be on the order of 20 S/m2 and the amplitude of the

oscillation (i.e., the phasic inhibitory conductance, called gIo) to be

up to 30% of the average level (see Methods for details about the

MC model and all of the parameter estimations). We tested how

the response to sensory inputs, which was mimicked by a constant

and tonic excitatory conductance (called gE), and was influenced

by the inhibitory sinusoidal conductance (gI+gIo) oscillating at a

frequency (fosc) in the gamma range (Fig. 5A). This inhibitory

conductance oscillating at 60 Hz was set to 0%, 10%, or 30% of

the average inhibitory conductance gI (i.e., gIo = 0, 2, or 6 S/m2,

respectively). As shown by the different plateaus on the curves of

the cell response (Fig. 5Ai), the occurrence of such an inhibitory

conductance stabilized the firing rate. The frequencies at which the

firing rate was stabilized corresponded to the q:p patterns that

occurred around frequencies given by p/q multiplied by the

frequency of the imposed oscillation (60 Hz). Throughout this

analysis, q and p are distinct integers chosen among {1,2,3}. These

frequencies corresponded to frequencies in the experimental phase-

locked patterns. The larger the oscillation amplitude, the wider the

stabilized plateau (see the curves from blue to green in Fig. 5Ai).

Interestingly, the inhibitory oscillation was able to increase the firing

rate (the plateau for 1:1 lies above the curve with gIo = 0) and could

evoke firing in a silent cell (Fig. 5Ai). Under noisy conditions

(Fig. 5Aii), the conductance-frequency response was partially

preserved, but the smallest plateaus (for 2:1, 2:3, and 1:3)

disappeared. Figure 5Bi shows, in the noiseless case, phase

diagrams of trains that were extracted from each of the plateaus

mentioned in Fig. 5Ai (referred as ‘‘a’’–‘‘e’’). The relatively good

agreement with experimental observations [e.g., compare the

experimental spike trains in Fig. 3B with the simulated trains in

Fig. 5B] suggests that MCs can be driven effectively by an oscillatory

input during gamma oscillations. Additional spike trains that were

extracted from the non-plateau portions of the firing rate response

curve (referred as ‘‘f’’–‘‘j’’ in Fig. 5Ai) are shown in f through j of

Fig. 5B. These results indicate that MCs are entrained by an

oscillatory inhibitory conductance mainly when the neuron fires at

the same frequency as the imposed 60 Hz oscillation, and that this

entrainment can also explain the patterns that are observed in our

experiments. This result is partly specific to the model, since other

intrinsic properties for other neurons would not lead to a 1:1

entrainment. Indeed, all cochlear neurons have dissimilar entrainment

properties with regard to the frequency of entrainment [25].

We next analyzed the influence of the oscillation amplitude on

spike phase-locking. For this purpose, a color map was used to plot

the phase jitter, which was defined in the same way as it is used to

classify spike trains as a phase-locked pattern or not, as a function

of the amplitude of the oscillating inhibitory conductance, from 0

to 30% of the average of the inhibitory conductance (y-axis) and

the amplitude of the MC excitatory input conductance (Fig. 5Ci).

The so-called ‘‘Arnold tongue’’ for 1:1 [20] (zero jitter, which

would occur in perfectly locked spikes, in black and noted directly

on graph) was the widest, while the tongue for 1:2 was the second

widest. The higher the oscillation amplitude, the wider the tongues

for 1:1 and 1:2. These tongues were partly preserved under noisy

conditions (Fig. 5Cii), but tended to shrink and disappear at low

levels of oscillatory inhibition. As a consequence, as the oscillation

amplitude tends to increase, a higher proportion of cells may be

entrained by the oscillation, even if the cells’ intrinsic firing rate is

far from the frequency that is imposed by the entrainment (see the

doubled x-axis, below). Therefore, a larger MC population can be

recruited when the oscillation amplitude increases.

The next step was to understand the origins of the inter- and

intra-pattern phase variability. For this purpose, we represented

the spike phase variations according to the driving excitatory

conductance gE for two levels of inhibitory conductance, namely

10% (Fig. 6Ai) and 30% (Fig. 6Aii). Under these noiseless

conditions, the 1:1 tongue (arrows) had phases that varied

continuously from 0.5 to 0.2, as the excitatory conductance

increased. We noticed that the range of possible phases for each

tongue was not greatly affected by the oscillation amplitude,

whereas the conductance range (the gE band indicated) over which

the MC was entrained increased with the oscillation amplitude

(compare Fig. 6Aii to 6Ai). Phase-locking was robust to noise, and

the phase distribution persisted, although less sharply, for high

Mitral Cell Entrainment during Gamma Bursts
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levels of noise (Fig. 6Aiii). The model supported the experimental

observation that MCs can be phase-locked at various frequencies

and under noisy conditions. Finally, comparing the model

prediction to our experimental results at the population level is

impossible because of the lack of data on the distribution of the

input excitatory conductance gE in the MC population. Thus, in

Fig. 6B we present only side-by-side comparisons of those spike

phases that can be predicted by the model (left column) for each

Figure 5. Oscillatory inhibition at 60 Hz controls MC model firing rate and phase jitter. Ai) The firing rate (y-axis) of the MC model is
plotted (red) in spikes per cycle (SpC) for a 60 Hz oscillation as a function of the excitatory conductance gE (x-axis), while the cell is submitted to a
constant inhibitory conductance gI = 20 S/m2. The firing rate was measured for two inhibitory oscillatory conductances (gIo): 10% (blue) and 30%
(green). Plateaus appear around 0.5 SpC (a), 1 SpC (b), 1.5 SpC (c), 2 SpC (d) and 3 SpC (e) (see arrows). Aii): Same as in Ai, but under noisy conditions.
The main plateaus remained after the addition of noise. B) Examples of spike patterns along four oscillation cycles plotted using the same
conventions as in Fig. 3. They correspond to different gE positions along the curves drawn in Ai, i.e., without noise (see small capital letters for
correspondence). C) Phase jitter map according to gE (x-axis) and gIo (y-axis). Like in A) gI = 20 S/m2. Ci) Without noise, null-jitter zones (black zones)
correspond to tongues 2:1, 1:1, 2:3, 1:2, and 1:3 (indicated on the map). Colored zones represent the regime of non-locked spike trains with jitter
.0.05 (see colored bar). Tongue width increases with gIo. Tongues start at gIo = 0 when the unforced neuron firing rate is 1, 1.5, 2, and 3 SpC (see the
firing rate-x-axis below, which corresponds to the unforced frequency at a given excitatory input). Cii) Noisy conditions. Noise tended to degrade the
phase-locking, but the tongue structures persisted.
doi:10.1371/journal.pcbi.1000551.g005
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type of pattern and their experimental counterparts (right column).

The phases of the spikes of the model come from the patterns that

are detected under quiet conditions (contour) (corresponding to

Fig. 5Ci) and noisy conditions (grey) (corresponding to Fig. 5Cii).

For a better fit, we used only the patterns evoked when gIo,4 S/

m2). We observed agreement between theoretical and experimen-

tal data especially under noisy conditions. Indeed, whereas without

noise in the model, some differences are observed between the

mean phase predicted by the model for the 3:1, 2:1 and 1:1

patterns and those observed in the data, introducing some noise

tends to decrease these differences in the mean phase between the

model and the experiments. The spike phases of patterns with high

Figure 6. Model phase distribution and comparison with experimental phases in phase locked patterns. Ai) Model spike phase (y-axis)
distribution is plotted like a phase map (see grey scale bar) as a function of gE (x-axis). For a 10% oscillatory inhibition (gIo = 2 S/m2, gI = 20 S/m2), the
MC model exhibited clear preferential phases (dark spots; arrows indicate tongue q:p). Aii) Increasing the inhibitory amplitude to 30% (gIo = 6 S/m2)
value for gIo led to an increased gE band (see the horizontal double arrow), for which the phases were locked. Aiii) Noisy conditions, which were the
same levels of inhibition as in (Aii), caused the phases to scatter around the tongue phases. B) Comparison of model (left panels) and experimental
(right panels) phase distribution for spike trains classified as phase locked patterns (one row for each type of pattern). The pattern spike phases are
extracted from Fig. 5Ci for the noise free conditions (black contour) and from Fig. 5Cii for the noisy conditions (grey bars) under the synaptic
conditions gIo,4 S/m2, gE,15 S/m2 and gI = 20 S/m2.
doi:10.1371/journal.pcbi.1000551.g006
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firing rates, that is, 2:3, 1:2 and 1:3, seem less sensitive to noise. In

addition, the difference of the phase distribution width between

the model and experiments could be explained by the measure

variability of the gamma phase that was recorded from different

depths and that will be further discussed later.

Synaptic input parameters governing the entrainment.

Having shown that our model can reproduce our experimental

results well, we further used it to explore how MC entrainment

should depend on network parameters or MC intrinsic

parameters.

First, we studied the influence of the excitatory-inhibitory

balance. The level of inhibition received by an MC is not known,

and it is difficult to infer using standard experimental approaches

(see estimation in Methods). It may vary within a range depending

on the level of recurrent, lateral, and centrifugal inhibition that are

present in the OB network, and these networks are highly variable

and modulated in their nature and function. To explore the

consequences of the average inhibition for the entrainment, under

noiseless conditions, we set the level of background inhibition to

different values (gI = 6, 20, 100 S/m2). This range of values

corresponds to the range of influence, ranging from a small effect

to a complete shunting effect on the spiking activity. We then

measured the entrainment for the 1:1 tongue by representing the

entrainment diagrams as a function of MC excitatory input and

the inhibitory oscillation amplitude (see Fig. 7A). The 1:1 tongue

grew wider as the average level of inhibition increased. The tongue

width was measured by the gE band (Fig. 7A), and computed with

an oscillation amplitude of 2 S/m2 that increased with the average

inhibition level (Fig. 7B, full black line, left y-axis). Alternatively, a

given set of conductances (gE,gI) corresponds to a given MC firing

rate, and thus the gE band can be converted into a f-band that

describes the range of firing rates (in the absence of oscillation) at

which the MC are entrained by the inhibitory oscillation in a 1:1

pattern. Again, the width of this f-band increases with the average

inhibition level (Fig. 7B, full grey line, right y-axis). These results

were robust under noisy conditions (see dashed lines in Fig. 7B).

Taken together, these findings reveal that a higher level of

background inhibition of MCs makes them more capable of being

entrained.

Second, we showed that an oscillation frequency in the gamma

range is optimal for entrainment. Experimental data showed

frequency stability in the LFP oscillation around 60.7 Hz (Fig. 1D).

Since the frequency of gamma oscillations varied little under our

experimental conditions, as well as under other conditions [10,18],

we wondered why the frequencies had these particular values. We

tested how the model reacted to other imposed frequencies (fosc) of

the inhibitory conductance ranging from 5 to 120 Hz and then

analyzed the zones for which the MC model was entrained,

according to both its intrinsic firing rate and the frequency of the

oscillation. Such zones are represented for the 2:1, 1:1, and 1:2

tongues in Fig. 7C. These results demonstrate that the MC models

can be entrained by any frequency oscillation in a 1:1 pattern, as

long as the oscillation frequency is close to the intrinsic firing rate

of the MC. This relationship is reflected by the fact that the 1:1

tongue covers the diagonal fosc = fintrinsic in the graph in Fig. 7C.

More noticeably in the case of the 1:1 tongue, the bandwidth (f-

band) was largest when fosc was in the 40–60 Hz range. In

contrast, for the 2:1 and 1:2 tongues, the maximal entrainment

was observed for oscillation frequencies around 120 Hz and

30 Hz, respectively, which correspond to an MC intrinsic firing

rate of about 60 Hz in both cases.

We further explored the broader range of entrainment that was

observed when the MC intrinsic activity was close to 60 Hz. Due

to the importance of the 1:1 pattern in both the experimental and

simulated results, we focused on the frequency band (f-band) of the

1:1 tongue. The bandwidth is represented as a function of the

oscillation frequency in Fig. 7 (D, black thin line). When the

amplitude of the oscillation was varied from 5% to 10% of the

global inhibition level, the peak at around 60 Hz persisted.

Varying the average inhibition level (gI) or adding some noise to

the system did not change the position of the peak around 60 Hz.

These results indicate that MCs may be preferentially entrained by

oscillations at 60 Hz, and that they are robust to variations in the

parameters for synaptic stimulation of MCs.

The last step was to explore how the intrinsic properties of the

MC model were potentially responsible for the 60 Hz preference.

For that purpose, we varied the time constant of the slow

potassium channel, which was responsible of the MC model

Figure 7. Influence of synaptic input parameters on MC model
locking. A) Tongue 1:1 limits. The edges of tongue 1:1 are shown for
various levels of global inhibition gI (6, 20, 100 S/m2) in the absence of
noise. Values of gE corresponding to tongue edges are shown relative
to gE,threshold 1:1, which corresponds to the level of excitatory
conductance gE necessary to induce a neuronal intrinsic firing rate
equal to the oscillation frequency (that is when gIo = 0). This level varies
with gI that is why the reference is needed to study the effect of various
levels of gI. B) Tonic inhibition effect. Representation of tongue 1:1
width for gIo = 2 S/m2. The gE-band (full black line in conductance units,
left y-axis) and the f-band (full grey line in frequency units, right y-axis)
are shown as a function of the global inhibition level gI. The f-band is
the range of unforced frequency that can be locked by the oscillation.
Dashed lines correspond to noisy conditions and gIo = 1 S/m2. C)
Tongue map. Phase-locked zones are shown for the tongues 2:1 (dark
grey), 1:1 (black), and 1:2 (light grey) in the plane that is represented by
the intrinsic MC frequency, which is determined when gIo = 0 (x-axis)
and the frequency of the oscillation (fosc) (y-axis). For these results,
gI = 20 S/m2, and gIo = 1 S/m2. The dashed line is y = x. D) Oscillation
frequency preference for locking. The 1:1 tongue f-band width
[indicated by arrows in (C)] is plotted as a function of fosc using a
bold black-line with the parameters in (C). Various conditions are tested,
such as the amplitude of gIo, gI and gIs (see details in the figure). MC
entrainment was always maximal between 50 and 70 Hz for any value
of gI, gIo, and noise.
doi:10.1371/journal.pcbi.1000551.g007
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subthreshold resonant properties, from 7 ms to 13 ms. We

observed that the peak of maximal entrainment could drift from

lower to higher frequencies when this time constant was decreased

from 13 to 7 ms (Fig. 8). As a comparison, there is not such a peak

of maximal entrainment with an integrate and fire model; the

profile of the curve there is only decreasing. We concluded that the

intrinsic properties of the MC model may be responsible for the

gamma-range frequency preference for entrainment. Although it is

not currently possible to alter the intrinsic properties of the neuron

experimentally, the model that we used in this study demonstrates

that the intrinsic properties of the MCs can interact with network

properties, thereby leading to specific entrainment of MCs, the

consequences of which will be discussed in the Discussion section.

Discussion

We found that specific MCs produced spike trains that were

locked to the gamma LFP oscillations in specific pattern types.

Such phase-locked cells exhibited particular firing rates that were

stabilized by the occurrence of gamma oscillation. In most cases,

the firing rate was one spike per cycle (SpC).

Using a MC model with in vivo-like conditions that receives a

small inhibitory 60 Hz sinusoidal conductance, we showed that

these observations were characteristic of an entrainment process.

The model exhibited similar phase-locked patterns of entrainment,

with maximal entrainment for one SpC patterns. The spike phase

distributions were similar in the model and the experimental data,

and corresponded to the minimum inhibitory conductance

associated with the LFP oscillation. This model suggests that

there is an efficient process of entrainment in the OB that can

make MC activity coherent across various OB areas during

gamma oscillations. The relevance of such a mechanism is in the

possibility of using it to ensure an underlying basis for neuronal

assembly formation that can be used more generally by the

nervous system [26].

The use of a robust biophysical model allowed us to predict the

optimal conditions for an entrainment occurrence if

(i) the chemical features of the odor belong to the chemore-

ceptive field of an MC, such that its excitatory response will

be strong enough to elicit spiking;

(ii) strong tonic network inhibitory interactions that are intrinsic

to the bulb and/or generated by the cortex feedback are

generated, such that they will balance this excitation and

will, therefore, provide what is called a level of background

inhibition; and

(iii) the distribution of the IPSCs that are received by the MC is

sufficiently well phased, which leads to a sufficiently large

oscillating conductance, then a single MC has a good

probability to be entrained and locked into the oscillation.

As a result, its spike phases become tightly controlled by the

oscillation.

Contribution of our work to existing experimental data
Our work provides converging arguments in favor of a MC

entrainment, suggesting that they receive an oscillatory input in

vivo. Although several groups have focused on the temporal

relationship between spikes and LFP, the exploration of this

entrainment phenomenon has only been partly addressed. The

analysis of Eeckman and Freeman [16] differed due to the multi-

unit nature of their signal. Kashiwadani et al. [18] focused more

on a coding hypothesis rather than a dynamic hypothesis and used

an artificial sniff, which likely affected the bulbar dynamics. One in

vitro study has explored the spike/LFP relationship [17]. The

network connectivity and dynamic conditions, however, could be

very different from those in vivo, and it is difficult to compare in

vitro oscillations to those under in vivo conditions.

One potential criticism of our work is the usefulness of such a

mechanism under some behavioral conditions, such as where odor

presentation induces a decrease in gamma oscillations [14]. The

fact that the amplitude of gamma oscillations decreases under

particular conditions does not indicate that gamma oscillations are

unnecessary for the system. Indeed, the amplitude decreases under

particular conditions; however, beta oscillations are simultaneously

enhanced, which suggests that the olfactory bulb and cortex

together work in a different manner [27,28]. There are other

behavioral conditions in which gamma oscillations do not decrease

but rather increase with odor presentation [10]. Experimental

conditions vary widely depending on the employed paradigm,

which can induce different sniffing strategies [29] or different

neuromodulatory control of the MC/GC loop [30]. These

different conditions are certainly responsible for the variation in

the expression of gamma and beta oscillations. The aim of our

study was to explore how spikes and oscillation can be phase-

locked in the more general situations in which gamma oscillations

are present. It would be an interesting second step to perform the

same study for beta oscillations and to look for another mechanism

that could be responsible for the observed spike/beta oscillation

synchronization [31].

Basis of the model and neuronal mechanisms
Our MC model was fitted to reproduce the quantitative and

dynamic properties of MCs, based upon recent findings on MC

membrane activity. It is consistent with experimental data

[17,32–34] and includes essential features of existing models

[35–37]. In our model, entrainment was produced by a relatively

weak oscillatory inhibitory conductance. When the cell has an

input well above the threshold, it fires regularly and even

periodically in response to a constant input. Under these

conditions, and when the oscillatory input is sufficiently weak,

the neuronal response can be predicted from the phase response

Figure 8. MC-intrinsic properties control the range of maximal
entrainment. The width of the intrinsic firing rate range for which the
MC model is locked (i.e., the f-band width) is plotted as a function of fosc

(as in Fig. 7D) for different values of the slow K channel activation time
constant. tmKs = 10 ms was the default in previous figures, tmKs = 7 ms
(thin line) indicates a peak drift to faster frequencies, and tmKs = 13 ms
(bold line) shows peak drift toward lower frequencies.
doi:10.1371/journal.pcbi.1000551.g008
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curve (PRC) [38,39], which can also predict some characteristics

of the tongues [40]. Since the PRC of our MC model agrees with

the experimental one [41], it is likely that our model can

accurately predict the MC response to such synaptic inputs. The

synaptic mechanisms hypothesized in our model are based on

observations made by Lagier et al. (2004) [17], who reported that a

fraction of the IPSPs received by the MCs were phase-locked

relative to gamma oscillations. Other possible mechanisms that

could affect the MC membrane potential during gamma

oscillations have been proposed: (1) a synchronous inhibition

resulting from GABA release from astrocytes [42], (2) a

synchronous excitation of the MCs by glutamate spillover onto

lateral dendrites [43,44], and (3) a direct influence of the LFP on

membrane voltage [45,46]. Of these possible explanations, the

functional and dynamic relevance of the interactions between

MCs and GCs [47] are the most likely processes to occur during

gamma oscillations.

Aside from this observation, an important characteristic of our

model is that the time constant of the single inhibitory inputs does

not play a role because it is the frequency of the oscillatory

modulation of the whole inhibitory input that imposes the locking

frequency.

It is important to insert this mechanism into a more realistic

model in order to take into consideration the spatial distribution of

the physiological mechanism in dendrites. The presence of high

frequency bursts of spikes in MCs is probably not due solely to the

excitatory drive from the sensory input, but also to additional

conductance levels beyond those present in the model. For

example, the activation of an intrinsic conductance, such as T

channels, would facilitate the emergence of high frequency bursts

like those in our recordings.

Explanation of model predictions and experimental
recordings

Neuronal phase-locking and pattern formation have already

been described both theoretically [20,21,48] and experimentally

[26,49]. Our study, performed in the context of the OB with a

resonant neuron, however, sheds light on important aspects that

are specific to this system.

First, the simulation results provide some precise explanations

regarding electrophysiological properties that are not directly

accessible by experimentation. The phase of the MC spikes

relative to LFP oscillations is precisely distributed in the J to K
part of the LFP cycle due to their level of synaptic drive. The phase

distributions extracted from simulated data (Fig. 6A) are more

precise and go beyond the data that was obtained in the OB

[14,17,18], as well as our own experimental results. We wish to

point out, however, that our experimental measurement of gamma

phase was not totally reliable from one particular depth to another,

and could have up to J of a cycle of phase shift. Indeed, gamma

oscillations are generated by membrane currents flowing on either

side of the MC layer, and the simultaneous recording of a gamma

oscillation constantly shows a J cycle phase shift when it is

recorded up to 100 mm from the MC layer (Fourcaud-Trocmé and

Buonviso, personal communication). In our recordings, we could

not control the exact position of each electrode relative to the MC

layer. As a consequence, these recording constraints, as well as the

noise level, are likely to be the source of the larger spread of phases

during the phase-locked experimental pattern when compared to

the model prediction (see Fig. 6B). This can also explain the small

discrepancies with recordings from other studies in which the LFP

recording position relative to the mitral cell layer was different or

more precisely controlled [16–18]. In all cases, however, our

results are still qualitatively comparable.

Second, lower levels of excitatory conductance in the model

were predicted to induce a slight phase lag (corresponding to

,5 ms) between the neurons, as shown in Fig. 6A. This phase

difference is observed in the cross-correlograms that were

presented by Kashiwadani et al. (1999) [18] (their Fig. 5A), and

it may be achieved by differential activation of the glomerulus

[18,50,51]. Our predictions are able to explain the result of this

previous study.

The model predicts that phase-locked or residual spike trains

may depend on the degree of detuning (i.e., the difference between

the neuronal intrinsic firing rate and the external network

frequency), the strength of coupling, and the level of noise. The

continuity between the locked and residual spike trains suggests

that entrainment of MCs may be fine-tuned during the gamma

oscillation, and may corroborate the locking that was observed in

the fish OB [13]. However, only simple phase-locking has been

found in these species.

Finally, in our model, increasing the global level of excitatory-

inhibitory conductance favors entrainment (see Fig. 7A–B). Under

anesthetized conditions, the maximal conductance should be

directly related to the maximal activity of the peripheral excitation

[51,52] and to the maximum of synaptic inhibition [53], which

corresponds to the inspiration/expiration transition. Taken

together, these data imply that entrainment should be the

strongest at this transition, which is what was observed with the

gamma wave appearing around this point (Fig. 1). Interestingly,

odors that elicit low theta activity (respiratory modulation), which

potentially reflects weak OB activation (e.g., low-concentration

odors), generally failed to elicit gamma oscillation [9], suggesting

that the theta oscillation could gate gamma activity.

Implications on the origin of the gamma oscillation
In the OB, MCs are directly interconnected only within

glomerulus [54–57] and not across bulbar areas. Instead, MC

spikes induce a depolarization of some GC spines, which

propagates through parts of the cell to other spines and triggers

both synchronous [58–62] and asynchronous [36,55,63–65]

GABA release from granule dendrodendritic synapses onto other

MCs. This peak of GABA release is about L of the gamma cycle

(, = 12 ms) after the peak of spiking (according to the spike

(Fig. 4E) and IPSP (Fig. 4G) phase distributions in [17]). The slow

component of inhibition [55,64–66] may contribute to the global

tonic inhibition level that is present in the OB. This synaptic

activity suggests that the effective interaction between MCs is

inhibition, and that the OB could be approximately modeled as a

network of inhibitory coupled MCs.

Our results raise the question of the origin of gamma oscillatory

activity in the OB. Do entrained MCs participate in the creation of

this rhythm? If so, how? Two models have been recently proposed

[35,36]. In [35], a network of inhibitory coupled MCs is applied to

in vitro recordings, in which the gamma oscillation is continuous

and evoked by single stimulation. In [36], the particular tendency

of MCs to synchronize their firing when their stochastic inputs

become correlated was studied. Neither of these models, however,

has been shown to induce the spiking activity that we report here.

This is also the case for the general mechanisms that have been

proposed for oscillation generation in inhibitory [67–69] and

excitatory-inhibitory networks [69–71]. It has to be noted that, in

these studies, a large heterogeneity in the population intrinsic

firing rates usually prevents the formation of an oscillation, and

that the case of a resonant neuron is not considered.

Our results, however, suggest the following two hypotheses.

First, if MCs behave like oscillators, a possible mechanism for the

emergence of the oscillation may be provided by the transition
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towards synchrony, a phenomenon that is generally observed in a

network of coupled heterogeneous oscillators [20,72]. Second, the

model predicts that intrinsic MC properties (according to Fig. 7D

and 8) lead to a maximal entrainment in the gamma frequency

range. Indeed, a non resonant neuron (i.e. an integrate-and-fire

model) does not exhibit this behavior (data not shown). From this

property, it can be seen that among the MC population that

exhibits quite heterogeneous frequencies (see Fig. 4), MCs firing

with intrinsic firing rate in the range of 40–70 Hz are better

entrained than MCs firing at lower or higher frequencies. The

rhythm could be created when this entrained MC population

becomes sufficiently large.

Coding implications
Other studies in anesthetized rats have shown that MCs can be

segregated into two populations according to whether they phase-

lock to gamma oscillations or to beta oscillations, which is likely

due to their position relative to the receptive field of the odor [31].

Here, we show that, among MCs that lock to the gamma

oscillation, locking is finely tuned depending on the various

conditions that control MC entrainment, one of them being the

nature of the odor. A subset of the MC population can therefore

be entrained and phase-locked at gamma frequencies with patterns

depending on the intrinsic firing rate of the MC, which is similar to

the previously described rate-specific synchrony [26]. The

resulting phase-locked activity map may overlap with the

glomerular activity map. This is suggested by our results, which

show that pattern types are partially reproducible for the same cell

and the same odor. The glomerular map is likely forwarded to

MCs as a ‘‘rate code’’ map that is readable by downstream

structures. The phase-locked activity map, however, appears to be

more elaborate than the simple glomerular map. In particular, the

main characteristic of the phased-locked activity map is that it can

be modulated by various parameters: such as the conductance

level (Fig. 7), the MC intrinsic firing rate (Figs. 4 and 5), and/or

the degree of GC-MC coupling (Fig. 5C). It is therefore likely that

this phase-locked activity map is modifiable by plasticity

mechanisms and central control [10]. Based on the adjustment

of the spike phases, the mechanisms described here would result in

population activity that is readable by decoding structures which

function as coincidence detectors. Pyramidal cells of the piriform

cortex have such detection properties [73]. In addition, synaptic

integration by pyramidal dendrites is more sensitive to pattern-like

inputs, as shown in other sensory systems [74,75]. Thus, our model

of a phase-locked map of MC activity across the OB supports the

idea developed by Zou and Buck [76] that pyramidal cells could

integrate odorant features using a combination of coincident MC

inputs (as argued also in [77]) in a way similar to the mushroom

bodies of insects [78,79].

Methods

Ethics Statement
All experiments were performed in accordance with the

guidelines of the European Communities Council.

Preparation and recording
Male Wistar rats (150–350 g) obtained from Charles River Labs

(L’Arbresle) were anesthetized with urethane (i.p. 1.5 mg/kg, with

additional supplements as needed) and placed in a stereotaxic

apparatus. The dorsal region of the OB was exposed. Bulbar

activity was recorded as a broadband signal (0.1–5 kHz) using 16-

channel silicon probes (NeuroNexus Technologies, Ann Arbor,

MI) with a homemade, 16-channel DC amplifier. The data were

digitally sampled at 10 kHz and acquired on a PC using the

IOtech acquisition system (Wavebook, IOtech, Cleveland, OH).

Probes were placed in the lateral or medial part of the OB at a

depth that maximized the number of channels located in the

mitral cell layer (MCL). The respiration signal was recorded using

a homemade flowmeter based on a fast response time thermodi-

lution airflow sensor. Odors were delivered through a dilution

olfactometer (440 ml/min). The recording protocol was as follows:

5 s of spontaneous activity, 5 s of odor-evoked activity, and 5 s of

post-stimulus activity. Each sampling included stimulation by

simple linear aliphatic compounds. The varying features of

odorants were either the number of carbons in the main chain

(chain length: 5, 6, 7 and 10 C) or the functional group associated

with the chain (alcohol, ester, aldehyde or ketone). Additional

odors have been used, including isoamyl acetate, p-cymene, and

eugenol. All odors were delivered in front of the animal’s nose at a

fraction of 18.1022 of the saturated vapor pressure. The time delay

between each odor presentation was at least one minute.

Data processing
Respiratory signal. The signal was processed as previously

described [80]. Briefly, respiratory cycles were extracted, and, for

each one, the time was converted into a phase that had a value

that varied as [2p, 0] for inspiration and as [0, p] for expiration.

The transition point between inspiration and expiration (I/E)

corresponded to the 0 phase, which was detected as the point

where the signal crossed the 0 value and which corresponded to

the point where there was no variation in pressure.

LFPs. LFPs were obtained by band-passing the recorded

signal at 5–200 Hz. To preserve both time and frequency

information, we used a time-frequency representation (TFR) that

was based upon continuous wavelet transformations, as previously

described [81]. Briefly, the LFP signal was convoluted by complex

Morlet’s wavelets [82] with a time resolution of 5 ms and a

frequency resolution of 1 Hz. Using a wavelet ridge extraction

method coupled with a high time-resolution TFR, each gamma

oscillatory epoch of the LFP was extracted using an energy

threshold to detect its beginning and end. This procedure allowed

a reasonable estimation of the phasic, temporal, and frequency

features of these oscillations. The TFRs were normalized to the

energy measured during the spontaneous activity in the 5 s before

odor presentation.

Spikes. Signals from individual electrodes were amplified

(gain 1,0006) and filtered from 300 to 5000 Hz. Multiunit activity

consisted of a few neurons on each electrode. Spikes were clustered

off-line using a semi-manual routine. We chose to use only the

units that showed a signal/noise ratio $5 and to sort cells

according to their spike amplitude. Consequently, the number of

units that were retained for analysis was restricted to 1–3 per

electrode. This conservative procedure resulted in the analysis of a

relatively limited number of units but provided high quality data.

Additional details of the method are given in Cenier et al. [31].

Moreover, autocorrelograms of spike trains that belonged to

presumed single units confirmed that a refractory period exists and

precluded the possibility to have multiunit recordings included in

our single unit ones. The ISI histogram in Fig. 1E shows this

refractory period at the population level.

Spike phases. To study relationships between spike and LFP,

(these were always recorded from the same electrode), we

converted spike times into phases that were computed in cycle

units (i.e., the phase increased by one at each cycle) during each

LFP gamma oscillation epoch. This change in the time axis

allowed the interspike interval (ISI) (respective firing rate) to be

measured in cycle units (respective spike per cycle (SpC)). Using

Mitral Cell Entrainment during Gamma Bursts
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phases instead of time allowed us to discard temporal or frequency

irregularities across oscillatory epochs.

Statistics
Phases. For a given ensemble of spikes (N) with relative

phases fQnf ggn~1,:::,N , the phase distribution was represented as a

histogram (bin size: 0.02 cycle). To analyze this distribution, we

used circular statistics [83]. The mean phase Q is defined by:

rei2pQ~
1

N

XN

n~1

ei2pwn : ð1Þ

The circular standard deviation uses the modulus (r) of this sum

and is given by s~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{2logr

p
. The value of r increases from 0 to 1

as the phase distribution changes from being uniform to sharply

peaked.

A Rayleigh uniformity test was used to calculate the probability

that the data were uniformly distributed (null hypothesis).

Using, p~e{Z 1z( 2Z{Z2)=4N{( 24Z{132Z2z76Z3{9Z4)
�

=288N2�, with Z~N3r2, the level of significance for non-uniformity

was set at a p-value,0.001 [83].

Interspike Intervals. The interspike interval (ISI) distribu-

tion was compared to the density function of a random variable

process following a gamma distribution that was reconstructed in

order to have the same mean and a random refractory period

(with a Gaussian distribution that had a mean of 3 ms and the

standard deviation at 1 ms), such that the refractory period is

sorted each time the sorted ISI falls below the refractory period

[84].

In addition, we considered both the instantaneous frequency,

which was defined for each spike time as the inverse of the

preceding ISI, and the mean firing rate, which was given by the

average number of spikes that fell within a time bin of 50 ms. The

ISI unit was a cycle of LFP gamma oscillation. When the ISI fell

out of the LFP gamma burst, the time reference was the mean

cycle of the LFP gamma burst.

Detection and classification of phase patterns
Summary of pattern definition. In this study, our aim was

to quantify the different proportions of ‘‘phase-locked spike trains’’

in our experimental data. Therefore, we quantified each category

of q:p patterns, where q = number of oscillation cycles and

p = number of spikes. For this purpose, we used an automatic

detection method to determine the limits that defined a q:p

pattern. A scheme of this method is presented in Fig. 9. Briefly, the

method consisted of measuring the closeness between

experimental spike trains and perfectly phase-locked theoretical

q:p patterns. In measuring this closeness, the method took into

account two parameters:

(1) the relative distance, which was based only on the

difference in the number of spikes between the experimental

and theoretical spike trains during each oscillation cycle;

(2) the phase jitter, which measured how well the experimental

spikes were phase-locked (based on their position in the q:p

pattern).

An experimental spike train had to fall within strict limits for

these two parameters to qualify it as a ‘‘q:p phase-locked’’ pattern

(see the next section for additional details about those measures).

This method of detection was also used for trains produced by

the simulations in Fig. 5. In this case, to optimize pattern detection

and minimize random noise in the jitter, we used phase trains

lasting 50 cycles (cases without noise) or 100 cycles (cases with

noise) in Figs. 7 A–B, while 10-second spike trains were used in

Fig. 7C–D and in Fig. 8A simplified and stricter constraint on the

distance was set by measuring the firing rate, if this did not exceed

2% of the firing rate of the pattern, and a simplified constraint for

jitters was set if the standard deviation of phases of all first spikes of

each cycle did not exceed 0.05 cycle, which allowed us to more

rapidly detect the edges between locked and unlocked zones.

Details of the method for pattern detection. Each spike

train [observed both in the experimental results and model

(described later)] was represented as a sequence of spike phases

(step1, Fig. 9). From experimental observations, six types of

patterns were described for the q:p categories, which were the p

spikes per q cycles (q and p are prime numbers between each other

and are chosen among [1 2 3]): 3:1, 2:1, 1:1, 2:3, 1:2, and 1:3. In

these patterns, the phases were stable from one period to the next.

Each spike train was compared with all the different types of q:p

patterns to find the closest one. This comparison occurred in two

steps:

First, the distance between the spike train and a theoretical

pattern was measured (step 2 Fig. 9). The absolute distance is

the number of cycles that differ in the number of spikes. For

theoretical patterns with multiple spikes per cycle, the first and last

cycles could be cut to best match the experimental spike train.

This absolute distance was then normalized by the number of

cycles over which the spike train spread to obtain the relative
distance, which was comparable across spike trains. Mathemat-

ically, this relative distance can be written as:

d~

PPPC
c~1

(1{dnPAexp(c),nPApat(c))

C
ð3Þ

where C is the total number of oscillation cycles, nPAexp(c) and

nPApat(c) are the number of spikes during the cycle c in the

experimental and theoretical patterns respectively, and d is the

dirac function that equals 1 when both indices are equal.

The relative distance was computed for all types of theoretical

patterns, and only the patterns that had a distance dvdmax were

further considered in the classification process. For all patterns,

dmax was set to 0.33, which corresponded to an allowance of up to

less than one-third of the cycles where there could be excess or

missing spikes relative to the theoretical pattern.

The selected set of patterns was then submitted to a second

round of selection (step 3 and 4 Fig. 9) based on a criterion of

phase jitter between the experimental train and each pattern. The

estimator of the jitter s is given in Eqn (4):

ŝsjitter~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

( N{K ) pow

XXXN

i~1

(
Qi{HJ

sK

) 2

vuut

J ~1, 2 or 3 is the index of phase position for apattern

, ð4Þ

where N is the total number of spikes in the train, Qi is the phase of

each spike, HJ is the mean phase of the spikes that correspond to

position J in the theoretical pattern cycle (thus it is different for

spikes that corresponds to different positions), and sK is a

normalization factor to compensate for patterns with multiple

spikes in a single cycle, with sK equal to the standard deviation of a

uniform distribution of a single spike in a 1/K cycle fraction,

where K is the maximal number of spikes in the pattern cycle. The

formula is slightly adapted for 2:3 patterns: the denominator N-K
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Figure 9. Method for detection of phase-locked patterns. Step by step description using an example: (1) A spike train taken from
experimental recordings is represented with its phases (x-axis, top left) along the successive gamma cycles (y-axis). This train was characterized by the
number of spikes in each cycle (left matrix), and we allocated different indexes for spikes in the same cycle in the order in which they appeared in the
cycle (right matrix). (2) Independently, a pattern sequence generator created all phase trains that have the same cycle length as the experimental one.
In this case, the length was four. Three examples of all these generated pattern sequences are shown as column vectors (theoretical pattern column),
each of which is affiliated with a particular pattern (e.g. 1:1, 1:2, 1:3). The absolute distance between experimental spike train and theoretical
pattern was measured by summing the result of the equality test over all of the cycles of the train. In terms of spike number, if the spike numbers are
identical, then the test result is 0, otherwise it is 1. The relative distance was obtained by dividing the absolute distance by the number of cycles
that were covered by the train. At this step, we eliminated the pattern sequences with a relative distance . = 0.33 (e.g. the last line pattern 1:3
example). (3) All of the position possibilities were then considered for the spike (index) position of the experimental train in the selected patterns
(grid). Single or multiple correspondences are shown for each selected pattern. (4) Based on these positions in the hypothesized pattern, we
empirically estimated the mean phase of the pattern from spike positions. For example, in the first plot (top right), the black boxes are the mean
phase of spike index 1. A jitter was calculated based on the distance of each spike to the mean phase (distances to the mean phase are marked with
arrows in the second plot). This jitter is indicated in the last column. We kept only the pattern with the smallest jitter and considered the original spike
train as phase-locked only if this jitter fulfilled the stringent condition (s,0.5). In this example, the spike train is considered to be a phase-locked 1:1
pattern. (5) We show here some examples of spike trains that were not classified as phase-locked patterns because of their too large distance or too
large jitter.
doi:10.1371/journal.pcbi.1000551.g009
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takes the value N-3 in order to take into account the degree of

liberty that is when phase can vary on 3 different positions and sK

changes according to the number of spike in each cycle. The

parameter pow is equal to 1.5 and serves to adjust the formula so

that it favors the detection of long trains. The theoretical pattern to

be associated with the experimental train was the one with the

smallest jitter among those that satisfied the distance constraints

given in Eqn (1). If two theoretical patterns showed the same jitter,

the one with the smallest distance was selected. The jitter limit was

set to 0.5 for the phase-locked patterns. In the presented data, the

spike trains that spread over at least three gamma cycles are

shown, and the results were similar when spike trains spreading

over at least two cycles were also examined. Some examples of

residual spike trains are given in the bottom of Fig. 9.

In short, our database consists of 2189 simultaneous recordings

of LFP-gamma bursts that are associated with spike trains of

various lengths. Other recordings where there were neither spikes

nor gamma oscillations were discarded. Among the spike trains,

1210 had strictly more than 1 spike, and 898 spread over at least 3

LFP gamma oscillation cycles. These spike trains were recorded in

143 different mitral cells. Spike train distribution per cell and per

odor is provided in Fig. 10A and B, respectively. The pattern study

is performed on spike trains that cover at least 3 LFP gamma

cycles. Detected pattern distribution over the recorded cell

population and tested odor is given in Fig. 10C and D,

respectively. Finally, the individual cell contribution to the

detected patterns is given in Fig. 10E. The probability of finding

the same pattern in an MC response was higher for responses to

the same odor than for responses to different odors (see the

distribution of these probability differences computed for each cell

in Fig. 10F).

Random spike trains. To assess the significance of the

phase-locked patterns, we compared our experimentally recorded

spike trains to a set of computationally controlled random spike

trains. Various methods can be used to draw random spike trains

comparable to experimental spike trains. Since we wanted to

check the influence of the oscillation on relative spike timings, it

was important not to constrain neither the interspike intervals nor

the spike phase relative to the oscillation, which are some measures

that can be influenced by the oscillation. Therefore, we first

decided to constrain our model by what appeared to be the

measure that was the least contaminated by the oscillation, that is,

the mean firing rate of the spike train. For each experimentally

observed spike train, we drew and sorted a family of 100 spike

trains using a Poisson process with the same mean firing rate but

with an imposed minimal interspike interval of 1/4 of an

oscillation gamma period, which corresponded to a refractory

period of about 4 ms (similar to what is observed experimentally).

This refractory period was reset to 0 in the few cases where firing

rate of the observed spike train could not allow a refractory period

as large as 4 ms. We verified that experimental and random ISI

distributions were in good agreement. Each random spike train

had the same number of spikes as the experimental one. Finally,

the sorting of random spike trains used the same procedure as

described for the experimental pattern detection. The number of

spike trains generated (100 times the number of experimentally

observed spike trains) was sufficient to obtain smooth distributions

when compared to experimental ones.

Second, in order to see how the ISI distributions could account

for the pattern proportions, instead of sorting random spike trains

by the mean firing rate of their equivalent experimental spike

trains, we sorted them by their global ISI distribution (see Fig. 1E).

This resulted in a pattern proportion of 19%. This suggests that

the ISI distribution is part of the formation of patterns. Lastly, we

wanted to know whether the phase reference that is imposed by

the oscillation could account for the pattern detection. We

rephased each random spike train in order to make the mean

phase of the spike fall in the trough of the oscillation, as this would

happen under experimental conditions. When using the set of

spike trains with the same ISI distribution as the experimental

spike trains, we detected 25% of patterns instead of the 19%

obtained without rephasing. In all cases, the proportion of phase-

locked random pattern is below the proportion of experimental

ones (31%), which shows that oscillations impose strong constraints

on the cell discharges: the ISI distribution, phase preference in the

cycle and the order of ISI occurrence.

MC model
The MC model was derived from a previous study [35], which

was derived in turn from [85]. The model uses parameters from

[86,87]. Its essential features are (1) spiking activity through

sodium spikes, (2) bursting activity (Fig. 11A), (3) its current-

frequency response (Fig. 11B), (4) resonant properties as revealed

Figure 10. Data set information relative to cell and odors. A)
Distribution of the number of spike trains per cell. B) Distribution of the
number of spike trains per odor. C) Distribution of the number of
detected patterns per cell. D) Distribution of the number of detected
patterns per odor. In panels A–D, all of the indexes are based on a
decreasing number of trains or patterns per cell or odor. E) Cell
contribution to pattern variety. The majority of cells does not fire
patterns, and a minority is able to evoke more than one type of pattern.
F) Correlation between odor and pattern formation. The distribution of
a difference of probability is plotted. The difference is estimated for
each cell as (1) the probability of finding the same pattern evoked by
the same odor, minus, (2) the probability of finding the same pattern
evoked by different odors.
doi:10.1371/journal.pcbi.1000551.g010
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through sub-threshold oscillations (Fig. 11C), and (5) phase

response curve (Fig. 11D). The method to compute the resonance

frequency is to linearize the system of dynamical equations around

its equilibrium for a given membrane potential and to extract this

frequency from the imaginary part of complex eigenvalue l
(Imag(l)/2p). The method to compute the phase response curve

[39] was to impose a small instantaneous voltage deviation along

the period of spiking (here equal to 25 ms).

We reduced the number of variables in the model from nine to

four by removing each of the variables individually and checking that

the simpler model retained the essential features listed above; at the

same time, some of the parameters were adjusted as necessary. The

main characteristics were preserved as depicted in Fig. 11. The

remaining variables were the membrane potential (V), the activation

gating variable of the fast rectifying potassium current (mKf), the

activation (mKs) and the inactivation (hKs) gating variable of the slow

potassium current. The dynamics is described in Eqs. 5–8:

C
dV

dt
~{gL ( V{EL){gNam3

Na,?( V{ENa)

{gNaPmNaP,? ( V{ENa) {gKf mKf ( V{EK )

{gKA
{mKA

�hhKA( V{EK ){gKsmKshKs( V{EK )zIsyn

ð5Þ

dmKf

dt
~{

mKf

tm
Kf

ð6Þ

dmKs

dt
~

mKs,?{mKs

tm
Ks

ð7Þ

dhKs

dt
~

hKs,?{hKs

th
Ks

ð8Þ

Isyn is the synaptic current and is detailed later. The gating variable

parameters are given by:

m?,Na~
am

Na

am
Nazbm

Na

; am
Na~0:32:

Vz50

exp(
Vz50

4
){1

;

bm
Na~0:32:

Vz23

exp(
Vz23

5
){1

;

m?,Nap~
1

exp({
Vz51

5
)z1

m?,Ks~
1

1zexp({
Vz34

6:5
)

; h?,Ks~
1

1zexp({
Vz65

6:6
)

;

tm
Ks~200z

220

exp({
Vz71:6

6:85
)z1

;

tm
Kf ~2:6 ms; th

Ks~10 ms:

The maximal conductance of the ionic channels was gNa = 500 S/

m2; gNaP = 1.1 S/m2; gKs = 310e S/m2; gKA = 100 S/m2; gKf =

100 S/m2. The leak conductance is gL = 0.1 S/m2. The product
{mKA

:�hhKA is approximated to 0.004. The reverse ionic potentials are

EK = 270 mV and ENa = 45 mV, and the membrane reverse

potential is EL = 266.5 mV. The membrane capacitance is

0.01 F/cm2.

Synaptic Inputs
In terms of amplitude, to assess the synaptic inputs that the MCs

receive under in vivo conditions, the MC model input resistance

was verified to be consistent with the order of magnitude of

Figure 11. Methods for comparison of original and reduced MC
model. A) Voltage traces of the original 9-variable MC model (left) and
the reduced 4-variable MC model (right) are similar in terms of spike
timing and subthreshold regime for similar ranges of injected current
(in A/m2). B) Subthreshold oscillation frequency (dashed line) and
spiking frequency (continuous line) are plotted as a function of the
injected current for both 9-variable (grey) and 4-variable (black) models.
C) Subthreshold resonance. Resonance frequency extracted from
eigenvalues of the system at its resting potential for both 9-variable
(grey) and 4-variable (black) models. D) Phase response curve estimated
at 40 Hz spiking frequency show that integration properties are similar
while both model are spiking (See method for construction). E)
Response to oscillatory input. The spike times (vertical ticks), the
oscillatory conductance, and the voltage trace are plotted for the 4-
variable without noise (left) and with noise (right)).
doi:10.1371/journal.pcbi.1000551.g011
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synaptic inputs that an MC actually receives. Experimentally, the

input resistance of an MC was found to be 115 MV [88]. We

assumed that a limited part of the total membrane area was

responsible for the input resistance and that axial resistance (or

intracellular resistivity) was negligible for this neuronal small

portion. This portion included the soma and proximal dendrites

and corresponded to 10% of the total area or ,15.103 mm2

[89,90] given that, beyond a distance of about 100 mm from the

soma on either the primary or secondary dendrite, synaptic inputs

are not conveyed to the soma [91]. This experimental ‘‘effective’’

input resistance becomes 1.72 V.m2 when related to the

membrane unit area. Our model is consistent with experiments

since its input resistance measured at hyperpolarized membrane

potential is 1.5 V.m2.

Previous studies have examined the kinetics of signaling to MCs

and have found that MCs receive slow [64], fast, and

asynchronous or simply fast inhibition from GCs [60]. In [17], it

was reported that MCs receive weakly phased inhibition during

gamma oscillation. From Fig. 4G of their report, we visually

estimated that the amplitude of this phasic inhibition was up to

30%. The preferential phase of this oscillatory inhibition was

estimated to be 35969u of the LFP oscillation, and it showed

strong statistical significance (p,1028 by the Rayleigh test).

Therefore, based on these experimental observations, our model

assumes that on average, MCs receive an input current of the form

(Eq.9):

Isyn~( gEzgEs( t) :g( t) ) :( V{EE )z( gIzgIs( t) :g( t)

{gIo
:cos( 2pft) ) :( V{EI )

ð9Þ

which is composed of a baseline conductance, including constant

excitatory (gE) and inhibitory (gI) conductances, as well as a

sinusoidal part, i.e., the oscillating conductance whose amplitude is

gIo and whose frequency is fosc. A white noise component was

added to each excitatory and inhibitory component with

amplitudes gEs and gIs, respectively, that were chosen to induce

noise comparable to what is observed with in vivo intracellular

voltage recording [88]. No other source of noise was added. gEs

and gIs vary proportionally with gE and gI in Figs. 5 and 6. gEs is

set to zero in Figs. 7 and 8. gIs is set to 0.282 S.m22.ms1/2 in

Fig. 7B and 0.141 S.m22.ms1/2 in Fig. 7D.

The reversal potentials of the excitatory and inhibitory synapses

are EE = 0 mV and EI = 270 mV, corresponding to the reversal

potentials of AMPA/NMDA receptors and GABAA receptors,

respectively.

Inhibitory synaptic inputs can completely stop MC firing

activity [50] and reshape the temporal organization of spike trains

[60]. It was therefore appropriate for our model to take into

account the levels of inhibitory conductance that could have such

effects on MC activity. The maximum conductance of a single

synaptic input has been estimated to be on the order of 1 nS

[92,93]. A single MC has around 10,000 connections with GCs.

As mentioned above, only about 10% of these inputs are conveyed

to the soma [91], which corresponds to ,1,000 synapses. Such a

limited integration of the total synaptic input is consistent with

other studies [94,95]. Assuming that an MC receives inhibitory

inputs from 1,000 synapses during every gamma cycle (period of

,16 ms) and assuming an exponential time decay of 5 ms for

GABAa [53,60], it can be shown that, during the gamma

oscillation, the MC average inhibitory input conductance is given

by 1000*1nS*5 ms/16 ms = 312 nS. For the membrane area

mentioned above, this represents gI = 20 S/m2. gE was adapted

to reach a frequency up to 200 Hz, as observed in vivo. For

example, Fig. 11E shows a voltage trace of the MC model that is

forced by the oscillation and that receives tonic excitatory and

inhibitory conductances. The amplitude of the oscillatory

component gIo is discussed in the Results.

Simulations
For a given input, MC activities were measured after at least one

second of simulation to avoid transient effects. Euler integration was

used with a time step of 0.02 ms. Simulations were performed using

Matlab 7.0 (The Mathworks, www.mathworks.com).
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