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Chapter 1
Smooth Manifolds

This book is about smooth manifolds. In the simplest terms, these are spaces that
locally look like some Euclidean space Rn, and on which one can do calculus. The
most familiar examples, aside from Euclidean spaces themselves, are smooth plane
curves such as circles and parabolas, and smooth surfaces such as spheres, tori,
paraboloids, ellipsoids, and hyperboloids. Higher-dimensional examples include the
set of points in RnC1 at a constant distance from the origin (an n-sphere) and graphs
of smooth maps between Euclidean spaces.

The simplest manifolds are the topological manifolds, which are topological
spaces with certain properties that encode what we mean when we say that they
“locally look like” Rn. Such spaces are studied intensively by topologists.

However, many (perhaps most) important applications of manifolds involve cal-
culus. For example, applications of manifold theory to geometry involve such prop-
erties as volume and curvature. Typically, volumes are computed by integration,
and curvatures are computed by differentiation, so to extend these ideas to mani-
folds would require some means of making sense of integration and differentiation
on a manifold. Applications to classical mechanics involve solving systems of or-
dinary differential equations on manifolds, and the applications to general relativity
(the theory of gravitation) involve solving a system of partial differential equations.

The first requirement for transferring the ideas of calculus to manifolds is some
notion of “smoothness.” For the simple examples of manifolds we described above,
all of which are subsets of Euclidean spaces, it is fairly easy to describe the mean-
ing of smoothness on an intuitive level. For example, we might want to call a curve
“smooth” if it has a tangent line that varies continuously from point to point, and
similarly a “smooth surface” should be one that has a tangent plane that varies con-
tinuously. But for more sophisticated applications it is an undue restriction to require
smooth manifolds to be subsets of some ambient Euclidean space. The ambient co-
ordinates and the vector space structure of Rn are superfluous data that often have
nothing to do with the problem at hand. It is a tremendous advantage to be able to
work with manifolds as abstract topological spaces, without the excess baggage of
such an ambient space. For example, in general relativity, spacetime is modeled as
a 4-dimensional smooth manifold that carries a certain geometric structure, called a
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2 1 Smooth Manifolds

Fig. 1.1 A homeomorphism from a circle to a square

Lorentz metric, whose curvature results in gravitational phenomena. In such a model
there is no physical meaning that can be assigned to any higher-dimensional ambient
space in which the manifold lives, and including such a space in the model would
complicate it needlessly. For such reasons, we need to think of smooth manifolds as
abstract topological spaces, not necessarily as subsets of larger spaces.

It is not hard to see that there is no way to define a purely topological property
that would serve as a criterion for “smoothness,” because it cannot be invariant under
homeomorphisms. For example, a circle and a square in the plane are homeomor-
phic topological spaces (Fig. 1.1), but we would probably all agree that the circle is
“smooth,” while the square is not. Thus, topological manifolds will not suffice for
our purposes. Instead, we will think of a smooth manifold as a set with two layers
of structure: first a topology, then a smooth structure.

In the first section of this chapter we describe the first of these structures. A topo-
logical manifold is a topological space with three special properties that express the
notion of being locally like Euclidean space. These properties are shared by Eu-
clidean spaces and by all of the familiar geometric objects that look locally like
Euclidean spaces, such as curves and surfaces. We then prove some important topo-
logical properties of manifolds that we use throughout the book.

In the next section we introduce an additional structure, called a smooth structure,
that can be added to a topological manifold to enable us to make sense of derivatives.

Following the basic definitions, we introduce a number of examples of manifolds,
so you can have something concrete in mind as you read the general theory. At the
end of the chapter we introduce the concept of a smooth manifold with boundary, an
important generalization of smooth manifolds that will have numerous applications
throughout the book, especially in our study of integration in Chapter 16.

Topological Manifolds

In this section we introduce topological manifolds, the most basic type of manifolds.
We assume that the reader is familiar with the definition and basic properties of
topological spaces, as summarized in Appendix A.

Suppose M is a topological space. We say that M is a topological manifold of
dimension n or a topological n-manifold if it has the following properties:
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� M is a Hausdorff space: for every pair of distinct points p;q 2M; there are
disjoint open subsets U;V �M such that p 2U and q 2 V .
� M is second-countable: there exists a countable basis for the topology of M .
� M is locally Euclidean of dimension n: each point of M has a neighborhood

that is homeomorphic to an open subset of Rn.

The third property means, more specifically, that for each p 2M we can find

� an open subset U �M containing p,
� an open subset yU �Rn, and
� a homeomorphism ' W U ! yU .

I Exercise 1.1. Show that equivalent definitions of manifolds are obtained if instead
of allowing U to be homeomorphic to any open subset of Rn, we require it to be
homeomorphic to an open ball in Rn, or to Rn itself.

If M is a topological manifold, we often abbreviate the dimension of M as
dimM . Informally, one sometimes writes “Let M n be a manifold” as shorthand
for “LetM be a manifold of dimension n.” The superscript n is not part of the name
of the manifold, and is usually not included in the notation after the first occurrence.

It is important to note that every topological manifold has, by definition, a spe-
cific, well-defined dimension. Thus, we do not consider spaces of mixed dimension,
such as the disjoint union of a plane and a line, to be manifolds at all. In Chapter 17,
we will use the theory of de Rham cohomology to prove the following theorem,
which shows that the dimension of a (nonempty) topological manifold is in fact a
topological invariant.

Theorem 1.2 (Topological Invariance of Dimension). A nonempty n-dimensional
topological manifold cannot be homeomorphic to an m-dimensional manifold un-
less mD n.

For the proof, see Theorem 17.26. In Chapter 2, we will also prove a related but
weaker theorem (diffeomorphism invariance of dimension, Theorem 2.17). See also
[LeeTM, Chap. 13] for a different proof of Theorem 1.2 using singular homology
theory.

The empty set satisfies the definition of a topological n-manifold for every n. For
the most part, we will ignore this special case (sometimes without remembering to
say so). But because it is useful in certain contexts to allow the empty manifold, we
choose not to exclude it from the definition.

The basic example of a topological n-manifold is Rn itself. It is Hausdorff be-
cause it is a metric space, and it is second-countable because the set of all open balls
with rational centers and rational radii is a countable basis for its topology.

Requiring that manifolds share these properties helps to ensure that manifolds
behave in the ways we expect from our experience with Euclidean spaces. For ex-
ample, it is easy to verify that in a Hausdorff space, finite subsets are closed and
limits of convergent sequences are unique (see Exercise A.11 in Appendix A). The
motivation for second-countability is a bit less evident, but it will have important
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Fig. 1.2 A coordinate chart

consequences throughout the book, mostly based on the existence of partitions of
unity (see Chapter 2).

In practice, both the Hausdorff and second-countability properties are usually
easy to check, especially for spaces that are built out of other manifolds, because
both properties are inherited by subspaces and finite products (Propositions A.17
and A.23). In particular, it follows that every open subset of a topological n-
manifold is itself a topological n-manifold (with the subspace topology, of course).

We should note that some authors choose to omit the Hausdorff property or
second-countability or both from the definition of manifolds. However, most of the
interesting results about manifolds do in fact require these properties, and it is ex-
ceedingly rare to encounter a space “in nature” that would be a manifold except for
the failure of one or the other of these hypotheses. For a couple of simple examples,
see Problems 1-1 and 1-2; for a more involved example (a connected, locally Eu-
clidean, Hausdorff space that is not second-countable), see [LeeTM, Problem 4-6].

Coordinate Charts

Let M be a topological n-manifold. A coordinate chart (or just a chart) on M is a
pair .U;'/, where U is an open subset of M and ' W U ! yU is a homeomorphism
from U to an open subset yU D '.U /�Rn (Fig. 1.2). By definition of a topological
manifold, each point p 2M is contained in the domain of some chart .U;'/. If
'.p/D 0, we say that the chart is centered at p. If .U;'/ is any chart whose domain
contains p, it is easy to obtain a new chart centered at p by subtracting the constant
vector '.p/.

Given a chart .U;'/, we call the set U a coordinate domain, or a coordinate
neighborhood of each of its points. If, in addition, '.U / is an open ball in Rn, then
U is called a coordinate ball; if '.U / is an open cube, U is a coordinate cube. The
map ' is called a (local) coordinate map, and the component functions

�
x1; : : : ; xn

�

of ', defined by '.p/ D
�
x1.p/; : : : ; xn.p/

�
, are called local coordinates on U .

We sometimes write things such as “.U;'/ is a chart containing p” as shorthand
for “.U;'/ is a chart whose domain U contains p.” If we wish to emphasize the
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coordinate functions
�
x1; : : : ; xn

�
instead of the coordinate map ', we sometimes

denote the chart by
�
U;
�
x1; : : : ; xn

� �
or
�
U;
�
xi
� �

.

Examples of Topological Manifolds

Here are some simple examples.

Example 1.3 (Graphs of Continuous Functions). Let U �Rn be an open subset,
and let f W U ! Rk be a continuous function. The graph of f is the subset of
Rn �Rk defined by

�.f /D
˚
.x; y/ 2Rn �Rk W x 2U and y D f .x/

�
;

with the subspace topology. Let �1 W Rn �Rk!Rn denote the projection onto the
first factor, and let ' W �.f /!U be the restriction of �1 to �.f /:

'.x;y/D x; .x;y/ 2 �.f /:

Because ' is the restriction of a continuous map, it is continuous; and it is a home-
omorphism because it has a continuous inverse given by '�1.x/D .x; f .x//. Thus
�.f / is a topological manifold of dimension n. In fact, �.f / is homeomorphic
to U itself, and .�.f /; '/ is a global coordinate chart, called graph coordinates.
The same observation applies to any subset of RnCk defined by setting any k of
the coordinates (not necessarily the last k) equal to some continuous function of the
other n, which are restricted to lie in an open subset of Rn. //

Example 1.4 (Spheres). For each integer n� 0, the unit n-sphere Sn is Hausdorff
and second-countable because it is a topological subspace of RnC1. To show that
it is locally Euclidean, for each index i D 1; : : : ; nC 1 let UCi denote the subset
of RnC1 where the i th coordinate is positive:

UCi D
˚�
x1; : : : ; xnC1

�
2RnC1 W xi > 0

�
:

(See Fig. 1.3.) Similarly, U�i is the set where xi < 0.
Let f W Bn!R be the continuous function

f .u/D
p
1� juj2:

Then for each i D 1; : : : ; nC 1, it is easy to check that UCi \ Sn is the graph of the
function

xi D f
�
x1; : : : ; bxi ; : : : ; xnC1

�
;

where the hat indicates that xi is omitted. Similarly, U�i \ Sn is the graph of

xi D�f
�
x1; : : : ; bxi ; : : : ; xnC1

�
:

Thus, each subset U˙i \ Sn is locally Euclidean of dimension n, and the maps
'˙i W U

˙
i \ Sn! Bn given by

'˙i
�
x1; : : : ; xnC1

�
D
�
x1; : : : ; bxi ; : : : ; xnC1

�
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Fig. 1.3 Charts for Sn

are graph coordinates for Sn. Since each point of Sn is in the domain of at least one
of these 2nC 2 charts, Sn is a topological n-manifold. //

Example 1.5 (Projective Spaces). The n-dimensional real projective space, de-
noted by RPn (or sometimes just Pn), is defined as the set of 1-dimensional lin-
ear subspaces of RnC1, with the quotient topology determined by the natural map
� W RnC1Xf0g!RPn sending each point x 2RnC1Xf0g to the subspace spanned
by x. The 2-dimensional projective space RP2 is called the projective plane. For
any point x 2RnC1 X f0g, let Œx�D �.x/ 2RPn denote the line spanned by x.

For each i D 1; : : : ; n C 1, let zUi � RnC1 X f0g be the set where xi ¤ 0,
and let Ui D �

�
zUi
�
� RPn. Since zUi is a saturated open subset, Ui is open and

�j zUi
W zUi ! Ui is a quotient map (see Theorem A.27). Define a map 'i W Ui !Rn

by

'i
�
x1; : : : ; xnC1

�
D

�
x1

xi
; : : : ;

xi�1

xi
;
xiC1

xi
; : : : ;

xnC1

xi

�
:

This map is well defined because its value is unchanged by multiplying x by a
nonzero constant. Because 'i ı � is continuous, 'i is continuous by the character-
istic property of quotient maps (Theorem A.27). In fact, 'i is a homeomorphism,
because it has a continuous inverse given by

'�1i
�
u1; : : : ; un

�
D
�
u1; : : : ; ui�1; 1; ui ; : : : ; un

�
;

as you can check. Geometrically, '.Œx�/ D u means .u; 1/ is the point in RnC1

where the line Œx� intersects the affine hyperplane where xi D 1 (Fig. 1.4). Be-
cause the sets U1; : : : ;UnC1 cover RPn, this shows that RPn is locally Eu-
clidean of dimension n. The Hausdorff and second-countability properties are left as
exercises. //
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Fig. 1.4 A chart for RPn

I Exercise 1.6. Show that RPn is Hausdorff and second-countable, and is therefore
a topological n-manifold.

I Exercise 1.7. Show that RPn is compact. [Hint: show that the restriction of � to
Sn is surjective.]

Example 1.8 (Product Manifolds). Suppose M1; : : : ;Mk are topological mani-
folds of dimensions n1; : : : ; nk , respectively. The product space M1 � � � � � Mk

is shown to be a topological manifold of dimension n1 C � � � C nk as follows. It
is Hausdorff and second-countable by Propositions A.17 and A.23, so only the
locally Euclidean property needs to be checked. Given any point .p1; : : : ; pk/ 2
M1� � � ��Mk , we can choose a coordinate chart .Ui ; 'i / for eachMi with pi 2Ui .
The product map

'1 � � � � � 'k W U1 � � � � �Uk!Rn1C���Cnk

is a homeomorphism onto its image, which is a product open subset of Rn1C���Cnk .
Thus, M1 � � � � �Mk is a topological manifold of dimension n1 C � � � C nk , with
charts of the form .U1 � � � � �Uk ; '1 � � � � � 'k/. //

Example 1.9 (Tori). For a positive integer n, the n-torus (plural: tori) is the product
space Tn D S1 � � � � � S1. By the discussion above, it is a topological n-manifold.
(The 2-torus is usually called simply the torus.) //

Topological Properties of Manifolds

As topological spaces go, manifolds are quite special, because they share so many
important properties with Euclidean spaces. Here we discuss a few such properties
that will be of use to us throughout the book.

Most of the properties we discuss in this section depend on the fact that every
manifold possesses a particularly well-behaved basis for its topology.

Lemma 1.10. Every topological manifold has a countable basis of precompact co-
ordinate balls.
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Proof. Let M be a topological n-manifold. First we consider the special case in
which M can be covered by a single chart. Suppose ' W M ! yU � Rn is a global
coordinate map, and let B be the collection of all open balls Br .x/�Rn such that
r is rational, x has rational coordinates, and Br 0.x/� yU for some r 0 > r . Each such
ball is precompact in yU , and it is easy to check that B is a countable basis for the
topology of yU . Because ' is a homeomorphism, it follows that the collection of sets
of the form '�1.B/ for B 2B is a countable basis for the topology ofM; consisting
of precompact coordinate balls, with the restrictions of ' as coordinate maps.

Now let M be an arbitrary n-manifold. By definition, each point of M is in
the domain of a chart. Because every open cover of a second-countable space has
a countable subcover (Proposition A.16), M is covered by countably many charts
f.Ui ; 'i /g. By the argument in the preceding paragraph, each coordinate domain Ui
has a countable basis of coordinate balls that are precompact in Ui , and the union of
all these countable bases is a countable basis for the topology ofM. If V � Ui is one
of these balls, then the closure of V in Ui is compact, and because M is Hausdorff,
it is closed in M . It follows that the closure of V in M is the same as its closure in
Ui , so V is precompact in M as well. �

Connectivity

The existence of a basis of coordinate balls has important consequences for the
connectivity properties of manifolds. Recall that a topological space X is

� connected if there do not exist two disjoint, nonempty, open subsets of X whose
union is X ;
� path-connected if every pair of points in X can be joined by a path in X ; and
� locally path-connected if X has a basis of path-connected open subsets.

(See Appendix A.) The following proposition shows that connectivity and path con-
nectivity coincide for manifolds.

Proposition 1.11. Let M be a topological manifold.

(a) M is locally path-connected.
(b) M is connected if and only if it is path-connected.
(c) The components of M are the same as its path components.
(d) M has countably many components, each of which is an open subset of M and

a connected topological manifold.

Proof. Since each coordinate ball is path-connected, (a) follows from the fact that
M has a basis of coordinate balls. Parts (b) and (c) are immediate consequences of
(a) and Proposition A.43. To prove (d), note that each component is open in M by
Proposition A.43, so the collection of components is an open cover of M . Because
M is second-countable, this cover must have a countable subcover. But since the
components are all disjoint, the cover must have been countable to begin with, which
is to say thatM has only countably many components. Because the components are
open, they are connected topological manifolds in the subspace topology. �
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Local Compactness and Paracompactness

The next topological property of manifolds that we need is local compactness (see
Appendix A for the definition).

Proposition 1.12 (Manifolds Are Locally Compact). Every topological manifold
is locally compact.

Proof. Lemma 1.10 showed that every manifold has a basis of precompact open
subsets. �

Another key topological property possessed by manifolds is called paracompact-
ness. It is a consequence of local compactness and second-countability, and in fact
is one of the main reasons why second-countability is included in the definition of
manifolds.

LetM be a topological space. A collection X of subsets ofM is said to be locally
finite if each point of M has a neighborhood that intersects at most finitely many
of the sets in X. Given a cover U of M; another cover V is called a refinement of
U if for each V 2 V there exists some U 2U such that V � U . We say that M is
paracompact if every open cover of M admits an open, locally finite refinement.

Lemma 1.13. Suppose X is a locally finite collection of subsets of a topological
space M .

(a) The collection
˚
xX WX 2X

�
is also locally finite.

(b)
S
X2X X D

S
X2X

xX .

I Exercise 1.14. Prove the preceding lemma.

Theorem 1.15 (Manifolds Are Paracompact). Every topological manifold is
paracompact. In fact, given a topological manifold M; an open cover X of M;
and any basis B for the topology of M; there exists a countable, locally finite open
refinement of X consisting of elements of B.

Proof. Given M; X, and B as in the hypothesis of the theorem, let .Kj /1jD1 be an
exhaustion of M by compact sets (Proposition A.60). For each j , let Vj DKjC1 X
IntKj and Wj D IntKjC2 X Kj�1 (where we interpret Kj as ¿ if j < 1). Then
Vj is a compact set contained in the open subset Wj . For each x 2 Vj , there is
some Xx 2X containing x, and because B is a basis, there exists Bx 2 B such
that x 2 Bx � Xx \ Wj . The collection of all such sets Bx as x ranges over Vj
is an open cover of Vj , and thus has a finite subcover. The union of all such finite
subcovers as j ranges over the positive integers is a countable open cover of M
that refines X. Because the finite subcover of Vj consists of sets contained in Wj ,
and Wj \Wj 0 D¿ except when j � 2 � j 0 � j C 2, the resulting cover is locally
finite. �

Problem 1-5 shows that, at least for connected spaces, paracompactness can be
used as a substitute for second-countability in the definition of manifolds.
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Fundamental Groups of Manifolds

The following result about fundamental groups of manifolds will be important in
our study of covering manifolds in Chapter 4. For a brief review of the fundamental
group, see Appendix A.

Proposition 1.16. The fundamental group of a topological manifold is countable.

Proof. Let M be a topological manifold. By Lemma 1.10, there is a countable
collection B of coordinate balls covering M . For any pair of coordinate balls
B;B 0 2B, the intersection B \B 0 has at most countably many components, each
of which is path-connected. Let X be a countable set containing a point from each
component of B \B 0 for each B;B 0 2B (including B DB 0). For each B 2B and
each x;x0 2X such that x;x0 2B , let hBx;x0 be some path from x to x0 in B .

Since the fundamental groups based at any two points in the same component
of M are isomorphic, and X contains at least one point in each component of M;
we may as well choose a point p 2X as base point. Define a special loop to be a
loop based at p that is equal to a finite product of paths of the form hBx;x0 . Clearly,
the set of special loops is countable, and each special loop determines an element
of �1.M;p/. To show that �1.M;p/ is countable, therefore, it suffices to show that
each element of �1.M;p/ is represented by a special loop.

Suppose f W Œ0; 1�!M is a loop based at p. The collection of components of
sets of the form f �1.B/ as B ranges over B is an open cover of Œ0; 1�, so by
compactness it has a finite subcover. Thus, there are finitely many numbers 0 D
a0 < a1 < � � � < ak D 1 such that Œai�1; ai � � f �1.B/ for some B �B. For each
i , let fi be the restriction of f to the interval Œai�1; ai �, reparametrized so that its
domain is Œ0; 1�, and let Bi 2 B be a coordinate ball containing the image of fi .
For each i , we have f .ai / 2 Bi \ BiC1, and there is some xi 2X that lies in the
same component of Bi \BiC1 as f .ai /. Let gi be a path in Bi \BiC1 from xi to
f .ai / (Fig. 1.5), with the understanding that x0 D xk D p, and g0 and gk are both
equal to the constant path cp based at p. Then, because xgi � gi is path-homotopic to
a constant path (where xgi .t/D gi .1� t/ is the reverse path of gi ),

f 	 f1 � � � � � fk

	 g0 � f1 � xg1 � g1 � f2 � xg2 � � � � � xgk�1 � gk�1 � fk � xgk

	 zf1 � zf2 � � � � � zfk ;

where zfi D gi�1 � fi � xgi . For each i , zfi is a path in Bi from xi�1 to xi . Since
Bi is simply connected, zfi is path-homotopic to hBixi�1;xi . It follows that f is path-
homotopic to a special loop, as claimed. �

Smooth Structures

The definition of manifolds that we gave in the preceding section is sufficient for
studying topological properties of manifolds, such as compactness, connectedness,
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Fig. 1.5 The fundamental group of a manifold is countable

simple connectivity, and the problem of classifying manifolds up to homeomor-
phism. However, in the entire theory of topological manifolds there is no men-
tion of calculus. There is a good reason for this: however we might try to make
sense of derivatives of functions on a manifold, such derivatives cannot be in-
variant under homeomorphisms. For example, the map ' W R2 ! R2 given by
'.u; v/ D

�
u1=3; v1=3

�
is a homeomorphism, and it is easy to construct differen-

tiable functions f W R2!R such that f ı ' is not differentiable at the origin. (The
function f .x;y/D x is one such.)

To make sense of derivatives of real-valued functions, curves, or maps between
manifolds, we need to introduce a new kind of manifold called a smooth manifold. It
will be a topological manifold with some extra structure in addition to its topology,
which will allow us to decide which functions to or from the manifold are smooth.

The definition will be based on the calculus of maps between Euclidean spaces,
so let us begin by reviewing some basic terminology about such maps. If U and
V are open subsets of Euclidean spaces Rn and Rm, respectively, a function
F W U ! V is said to be smooth (or C1, or infinitely differentiable) if each of
its component functions has continuous partial derivatives of all orders. If in addi-
tion F is bijective and has a smooth inverse map, it is called a diffeomorphism.
A diffeomorphism is, in particular, a homeomorphism.

A review of some important properties of smooth maps is given in Appendix C.
You should be aware that some authors define the word smooth differently—for
example, to mean continuously differentiable or merely differentiable. On the other
hand, some use the word differentiable to mean what we call smooth. Throughout
this book, smooth is synonymous with C1.

To see what additional structure on a topological manifold might be appropriate
for discerning which maps are smooth, consider an arbitrary topological n-mani-
fold M . Each point in M is in the domain of a coordinate map ' W U ! yU � Rn.
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Fig. 1.6 A transition map

A plausible definition of a smooth function onM would be to say that f W M !R is
smooth if and only if the composite function f ı'�1 W yU !R is smooth in the sense
of ordinary calculus. But this will make sense only if this property is independent of
the choice of coordinate chart. To guarantee this independence, we will restrict our
attention to “smooth charts.” Since smoothness is not a homeomorphism-invariant
property, the way to do this is to consider the collection of all smooth charts as a
new kind of structure on M .

With this motivation in mind, we now describe the details of the construction.
Let M be a topological n-manifold. If .U;'/, .V; / are two charts such that

U \ V ¤ ¿, the composite map  ı '�1 W '.U \ V /!  .U \ V / is called the
transition map from ' to  (Fig. 1.6). It is a composition of homeomorphisms, and
is therefore itself a homeomorphism. Two charts .U;'/ and .V; / are said to be
smoothly compatible if either U \ V D ¿ or the transition map  ı '�1 is a dif-
feomorphism. Since '.U \ V / and  .U \ V / are open subsets of Rn, smoothness
of this map is to be interpreted in the ordinary sense of having continuous partial
derivatives of all orders.

We define an atlas for M to be a collection of charts whose domains cover M .
An atlas A is called a smooth atlas if any two charts in A are smoothly compatible
with each other.

To show that an atlas is smooth, we need only verify that each transition map
 ı'�1 is smooth whenever .U;'/ and .V; / are charts in A; once we have proved
this, it follows that  ı '�1 is a diffeomorphism because its inverse

�
 ı '�1

��1
D

' ı �1 is one of the transition maps we have already shown to be smooth. Alterna-
tively, given two particular charts .U;'/ and .V; /, it is often easiest to show that
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they are smoothly compatible by verifying that  ı'�1 is smooth and injective with
nonsingular Jacobian at each point, and appealing to Corollary C.36.

Our plan is to define a “smooth structure” on M by giving a smooth atlas, and to
define a function f W M !R to be smooth if and only if f ı '�1 is smooth in the
sense of ordinary calculus for each coordinate chart .U;'/ in the atlas. There is one
minor technical problem with this approach: in general, there will be many possible
atlases that give the “same” smooth structure, in that they all determine the same
collection of smooth functions on M . For example, consider the following pair of
atlases on Rn:

A1 D
˚�
Rn; IdRn

��
;

A2 D
˚�
B1.x/; IdB1.x/

�
W x 2Rn

�
:

Although these are different smooth atlases, clearly a function f W Rn ! R is
smooth with respect to either atlas if and only if it is smooth in the sense of or-
dinary calculus.

We could choose to define a smooth structure as an equivalence class of smooth
atlases under an appropriate equivalence relation. However, it is more straightfor-
ward to make the following definition: a smooth atlas A on M is maximal if it is
not properly contained in any larger smooth atlas. This just means that any chart that
is smoothly compatible with every chart in A is already in A. (Such a smooth atlas
is also said to be complete.)

Now we can define the main concept of this chapter. If M is a topological mani-
fold, a smooth structure on M is a maximal smooth atlas. A smooth manifold is a
pair .M;A/, where M is a topological manifold and A is a smooth structure on M .
When the smooth structure is understood, we usually omit mention of it and just say
“M is a smooth manifold.” Smooth structures are also called differentiable struc-
tures or C1 structures by some authors. We also use the term smooth manifold
structure to mean a manifold topology together with a smooth structure.

We emphasize that a smooth structure is an additional piece of data that must
be added to a topological manifold before we are entitled to talk about a “smooth
manifold.” In fact, a given topological manifold may have many different smooth
structures (see Example 1.23 and Problem 1-6). On the other hand, it is not always
possible to find a smooth structure on a given topological manifold: there exist topo-
logical manifolds that admit no smooth structures at all. (The first example was a
compact 10-dimensional manifold found in 1960 by Michel Kervaire [Ker60].)

It is generally not very convenient to define a smooth structure by explicitly de-
scribing a maximal smooth atlas, because such an atlas contains very many charts.
Fortunately, we need only specify some smooth atlas, as the next proposition shows.

Proposition 1.17. Let M be a topological manifold.

(a) Every smooth atlas A for M is contained in a unique maximal smooth atlas,
called the smooth structure determined by A.

(b) Two smooth atlases for M determine the same smooth structure if and only if
their union is a smooth atlas.
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Fig. 1.7 Proof of Proposition 1.17(a)

Proof. Let A be a smooth atlas for M; and let SA denote the set of all charts that
are smoothly compatible with every chart in A. To show that SA is a smooth atlas,
we need to show that any two charts of SA are smoothly compatible with each other,
which is to say that for any .U;'/, .V; / 2 SA, the map  ı '�1 W '.U \ V /!
 .U \ V / is smooth.

Let x D '.p/ 2 '.U \ V / be arbitrary. Because the domains of the charts in A

cover M; there is some chart .W; �/ 2A such that p 2W (Fig. 1.7). Since every
chart in SA is smoothly compatible with .W; �/, both of the maps � ı'�1 and ı��1

are smooth where they are defined. Since p 2U \V \W , it follows that  ı'�1 D�
 ı��1

�
ı
�
� ı'�1

�
is smooth on a neighborhood of x. Thus,  ı'�1 is smooth in

a neighborhood of each point in '.U \V /. Therefore, SA is a smooth atlas. To check
that it is maximal, just note that any chart that is smoothly compatible with every
chart in SA must in particular be smoothly compatible with every chart in A, so it is
already in SA. This proves the existence of a maximal smooth atlas containing A. If
B is any other maximal smooth atlas containing A, each of its charts is smoothly
compatible with each chart in A, so B � SA. By maximality of B, B D SA.

The proof of (b) is left as an exercise. �

I Exercise 1.18. Prove Proposition 1.17(b).

For example, if a topological manifold M can be covered by a single chart, the
smooth compatibility condition is trivially satisfied, so any such chart automatically
determines a smooth structure on M .

It is worth mentioning that the notion of smooth structure can be generalized
in several different ways by changing the compatibility requirement for charts.
For example, if we replace the requirement that charts be smoothly compatible by
the weaker requirement that each transition map  ı '�1 (and its inverse) be of
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class C k , we obtain the definition of a C k structure. Similarly, if we require that
each transition map be real-analytic (i.e., expressible as a convergent power series in
a neighborhood of each point), we obtain the definition of a real-analytic structure,
also called a C! structure. If M has even dimension nD 2m, we can identify R2m

with Cm and require that the transition maps be complex-analytic; this determines
a complex-analytic structure. A manifold endowed with one of these structures is
called a C k manifold, real-analytic manifold, or complex manifold, respectively.
(Note that a C 0 manifold is just a topological manifold.) We do not treat any of these
other kinds of manifolds in this book, but they play important roles in analysis, so it
is useful to know the definitions.

Local Coordinate Representations

IfM is a smooth manifold, any chart .U;'/ contained in the given maximal smooth
atlas is called a smooth chart, and the corresponding coordinate map ' is called a
smooth coordinate map. It is useful also to introduce the terms smooth coordinate
domain or smooth coordinate neighborhood for the domain of a smooth coordinate
chart. A smooth coordinate ball means a smooth coordinate domain whose image
under a smooth coordinate map is a ball in Euclidean space. A smooth coordinate
cube is defined similarly.

It is often useful to restrict attention to coordinate balls whose closures sit nicely
inside larger coordinate balls. We say a set B �M is a regular coordinate ball if
there is a smooth coordinate ball B 0 
 xB and a smooth coordinate map ' W B 0!Rn

such that for some positive real numbers r < r 0,

'.B/DBr .0/; '
�
xB
�
D xBr .0/; and '

�
B 0
�
DBr 0.0/:

Because xB is homeomorphic to xBr .0/, it is compact, and thus every regular coordi-
nate ball is precompact in M . The next proposition gives a slight improvement on
Lemma 1.10 for smooth manifolds. Its proof is a straightforward adaptation of the
proof of that lemma.

Proposition 1.19. Every smooth manifold has a countable basis of regular coordi-
nate balls.

I Exercise 1.20. Prove Proposition 1.19.

Here is how one usually thinks about coordinate charts on a smooth manifold.
Once we choose a smooth chart .U;'/ on M; the coordinate map ' W U ! yU �Rn

can be thought of as giving a temporary identification between U and yU . Using this
identification, while we work in this chart, we can think of U simultaneously as an
open subset of M and as an open subset of Rn. You can visualize this identification
by thinking of a “grid” drawn on U representing the preimages of the coordinate
lines under ' (Fig. 1.8). Under this identification, we can represent a point p 2
U by its coordinates

�
x1; : : : ; xn

�
D '.p/, and think of this n-tuple as being the
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Fig. 1.8 A coordinate grid

point p. We typically express this by saying “
�
x1; : : : ; xn

�
is the (local) coordinate

representation for p” or “pD
�
x1; : : : ; xn

�
in local coordinates.”

Another way to look at it is that by means of our identification U $ yU , we can
think of ' as the identity map and suppress it from the notation. This takes a bit
of getting used to, but the payoff is a huge simplification of the notation in many
situations. You just need to remember that the identification is in general only local,
and depends heavily on the choice of coordinate chart.

You are probably already used to such identifications from your study of mul-
tivariable calculus. The most common example is polar coordinates .r; �/ in
the plane, defined implicitly by the relation .x; y/ D .r cos�; r sin�/ (see Exam-
ple C.37). On an appropriate open subset such as U D f.x; y/ W x > 0g �R2, .r; �/
can be expressed as smooth functions of .x; y/, and the map that sends .x; y/ to
the corresponding .r; �/ is a smooth coordinate map with respect to the standard
smooth structure on R2. Using this map, we can write a given point p 2 U either as
p D .x; y/ in standard coordinates or as p D .r; �/ in polar coordinates, where the
two coordinate representations are related by .r; �/D

�p
x2C y2; tan�1 y=x

�
and

.x; y/D .r cos�; r sin�/. Other polar coordinate charts can be obtained by restrict-
ing .r; �/ to other open subsets of R2 X f0g.

The fact that manifolds do not come with any predetermined choice of coordi-
nates is both a blessing and a curse. The flexibility to choose coordinates more or
less arbitrarily can be a big advantage in approaching problems in manifold the-
ory, because the coordinates can often be chosen to simplify some aspect of the
problem at hand. But we pay for this flexibility by being obliged to ensure that any
objects we wish to define globally on a manifold are not dependent on a particular
choice of coordinates. There are generally two ways of doing this: either by writing
down a coordinate-dependent definition and then proving that the definition gives
the same results in any coordinate chart, or by writing down a definition that is man-
ifestly coordinate-independent (often called an invariant definition). We will use the
coordinate-dependent approach in a few circumstances where it is notably simpler,
but for the most part we will give coordinate-free definitions whenever possible.
The need for such definitions accounts for much of the abstraction of modern man-
ifold theory. One of the most important skills you will need to acquire in order to
use manifold theory effectively is an ability to switch back and forth easily between
invariant descriptions and their coordinate counterparts.
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Examples of Smooth Manifolds

Before proceeding further with the general theory, let us survey some examples of
smooth manifolds.

Example 1.21 (0-Dimensional Manifolds). A topological manifold M of dimen-
sion 0 is just a countable discrete space. For each point p 2M; the only neighbor-
hood of p that is homeomorphic to an open subset of R0 is fpg itself, and there is
exactly one coordinate map ' W fpg!R0. Thus, the set of all charts on M trivially
satisfies the smooth compatibility condition, and each 0-dimensional manifold has
a unique smooth structure. //

Example 1.22 (Euclidean Spaces). For each nonnegative integer n, the Euclidean
space Rn is a smooth n-manifold with the smooth structure determined by the atlas
consisting of the single chart .Rn; IdRn/. We call this the standard smooth structure
on Rn and the resulting coordinate map standard coordinates. Unless we explic-
itly specify otherwise, we always use this smooth structure on Rn. With respect to
this smooth structure, the smooth coordinate charts for Rn are exactly those charts
.U;'/ such that ' is a diffeomorphism (in the sense of ordinary calculus) from U

to another open subset yU �Rn. //

Example 1.23 (Another Smooth Structure on R). Consider the homeomorphism
 W R!R given by

 .x/D x3: (1.1)

The atlas consisting of the single chart .R; / defines a smooth structure on R.
This chart is not smoothly compatible with the standard smooth structure, because
the transition map IdR ı �1.y/D y1=3 is not smooth at the origin. Therefore, the
smooth structure defined on R by  is not the same as the standard one. Using
similar ideas, it is not hard to construct many distinct smooth structures on any given
positive-dimensional topological manifold, as long as it has one smooth structure to
begin with (see Problem 1-6). //

Example 1.24 (Finite-Dimensional Vector Spaces). Let V be a finite-dimensional
real vector space. Any norm on V determines a topology, which is independent
of the choice of norm (Exercise B.49). With this topology, V is a topological n-
manifold, and has a natural smooth structure defined as follows. Each (ordered)
basis .E1; : : : ;En/ for V defines a basis isomorphism E W Rn! V by

E.x/D

nX

iD1

xiEi :

This map is a homeomorphism, so
�
V;E�1

�
is a chart. If

�
zE1; : : : ; zEn

�
is any other

basis and zE.x/D
P
j x

j zEj is the corresponding isomorphism, then there is some

invertible matrix
�
A
j
i

�
such that Ei D

P
j A

j
i
zEj for each i . The transition map

between the two charts is then given by zE�1 ıE.x/D zx, where zx D
�
zx1; : : : ; zxn

�




