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Abstract. We study dynamical mechanisms underlying oscillatory behavior in reciprocal inhibitory pairs of
neurons, using a two-dimensional cell model. We introduce one-and-two dimensional phase portraits to illustre
the behaviors, thus reducing the study of dynamical mechanisms to planar geometrical properties. We examil
whether other mechanisms besides the escape and release mechanisms (Wang and Rinzel, 1992) might be ne
for some cases of reciprocal inhibition, and show that, within the confines of a simple two-dimensional cell mode
escape and release are sufficient for all cases. We divided the behaviors of a single cell into six different tyr
and examined the joint behaviors arising from every combination of pairs of cells with behaviors drawn from thes
six types. For the case of two quiescent cells or two cells each having plateau potentials, bifurcation diagrat
demonstrate the relations between synaptic threshold and synaptic strength necessary for oscillations by esc
oscillations by release, or network-generated plateau potentials. Thus we clarify the relationship between plate
potentials and oscillations in a cell. Using the two dimensional cell model we examine 1:N beating between cel
and find that our simple model displays many of the essential dynamical properties displayed by more sophistica
models, some of which relate to thalamocortical spindling.

Keywords: CPG, escape and release mechanisms, frequency locking, motor pattern generation, nulicline, ph:
portrait, plateau potentials, synaptic threshold, two-dimensional cell model

1. Introduction oscillate, or does it arise from some combination of
these two mechanisms? In the case of two nonoscilla-
Our goal is to understand the principles underlying tory cells, is there just one or are there several mech-
motor pattern generation by central pattern generatorsanisms that may give rise to oscillations of the pair?
(CPGs). An isolated pair of connected neurons is the The behavior generated by a CPG is defined primarily

simplest example of a network that can generate a pat-by the phase-relationships between bursts of the mo-

tern, so is a good system with which to investigate

basic questions about the functioning of small CPGs.

Questions of interest include the following. Does the
oscillatory behavior of a CPG arise from the oscillatory
behavior of a single cell that then drives other cells to
fire at different phases relative to this master cell, or
does it arise as a network effect from the mutual inter-
action of several cells, none of which can individually

tor neurons contained in, or driven by, the CPG. A

single CPG can give rise to several different behav-
iors when different neuromodulatory substances are
applied (Selverston, 1993, Harris-Warrick and Marder,

1991). In the case of two connected cells, what physi-
ological parameters influence most strongly the phase
relationship between the two cells, and by what mech-
anism does this effect arise? Which parameters in a
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pair of cells are most likely to be modified by neuro- rebound (PIR) in the isolated cell, could generate an
modulatory mechanisms? If there are several different alternating rhythm. These authors found two distinct
possible mechanisms underlying oscillatory behavior mechanisms, termagleaseor escapethat could un-

in a pair of linked cells, can the mechanisms change asderly the generation of alternating rhythms in this
a result of neuromodulator application, and is there an model. In the parameter range studied, either of these
experimental test to distinguish them? mechanisms could be responsible for oscillatory behav-

One approach to the investigation of these questionsior. Skinner et al. (1994) extended Wang and Rinzel's
is to use mathematical models. A useful model pro- results, showing that the release mechanism could be
vides a formalization and summary of a wide range subdivided further into mechanisms calledrinsic
of data about a natural system, and may predict cur- releaseand synaptic releasethe escape mechanism
rently unknown regularities in their behavior. When subdivides similarly. Experimentally, the difference be-
the detailed workings of a model can be intuitively tween intrinsic and synaptic mechanisms is that for in-
understood then the model may be used to make qual-trinsic mechanisms, overall oscillation frequency of the
itative predictions without necessarily making exten- cell pair is insensitive to synaptic threshold, whereas
sive computations. If a mathematical model can be de- when the oscillations occur by a synaptic mechanism,
scribed with only a few equations, or equivalently is of the pair frequency is sensitive to synaptic threshold.
low enoughdimensionthen its dynamics can be stud- Are there other mechanisms that may give rise to os-
ied geometrically. This is done in tiptase portraiof cillatory behaviorin areciprocal inhibitory pair of cells,
the model, which is a graphical representation of the or are release and escape the only mechanisms avail-
model’'s dynamics. The phase portrait is constructed able? We had previously noticed that there appeared to
in the model'phase spacevhich has as many dimen-  be several different mechanisms available for oscilla-
sions as there are differential equations in the model. tions of an inhibitory pair of cells (Rowat and Selver-
When the model has only two differential, equations, ston, 1993), especially since two nonoscillatory model
then its phase space is two dimensional, and its dynam-cells, each having plateau potentials, could be made
ics can be studied in a planar phase portrait. Thus theto oscillate when linked with reciprocal inhibition, but
study of cellular dynamics can, in the simplest case, only inasmallwindow of synaptic strengths. The orig-
reduce to geometric properties in the plane. Models inal motivation for this study was to find all different
with more than two equations have higher dimensional dynamical mechanisms that could underly oscillations
phase portraits, which are harder to visualize. of a reciprocal inhibitory pair of neurons.

A pair of cells connected with reciprocal inhibition Due to the wide range of ionic channels known to oc-
occurs in many small central pattern generators (Arbas cur in neural membranes (Hille, 1984, Llinas, 1988),
and Calabrese, 1987; Arshavsky et al, 1993; Friesenone has to assume that many kinds of different neu-
& Stent, 1978; Getting, 1989; Kristan, 1980; Satterlie, ronal dynamics may be possible. Thus we carmot
1985). Thus our initial goal is to understand the mech- priori expect to list all possible different dynamical
anisms underlying the oscillatory behavior of a re- mechanisms underlying mutual oscillations in a pair of
ciprocal inhibitory pair of cells. Reciprocal inhibition  neurons. Our aim is, rather, to take two-dimensional
between populations of neurons was proposed long cell model, that we hope is as simple as possible but
ago by Brown (1914) as a pattern-generating mech- not too simple, and use it to investigate and review the
anism for walking in cats. Perkel and Mulloney (1974) different dynamical mechanisms.
showed that alternate bursting could occurintwo model ~ We use the cell model developed by (Rowat and
neurons connected with reciprocal inhibition if each Selverston, 1993) for a network model of the com-
neuron had a slow intrinsic process giving rise to plete gastric mill CPG in the lobster, where it had
postinhibitory rebound. Satterlie (1985) found an ex- the interesting property that when a network model
ample of two nonoscillatory cells, connected with re- was constructed with all the known connections be-
ciprocal inhibition and each exhibiting postinhibitory tween cells, the network model would automatically
rebound, that produced alternating bursts of spikes. produce a rhythm roughly similar to the biologically
Subsequently Wang and Rinzel (1992) showed that a observed rhythm with very little fine-tuning of param-
reciprocal inhibitory pair of nonoscillatory model neu- eters. Terman and Wang (1995) used a very similar cell
rons, each having a current with fast activation and slow model for a completely different purpose: as the nodes
inactivation kinetics which gives rise to postinhibitory in a rectangular connected array of elements storing
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a visual image. Using a locally excitatory, globally dynamics of a system of equations (Wang and Rinzel,
inhibitory architecture, the array correctly segments 1992; Somers and Kopell, 1993; Skinner et al., 1994).
simple visual scenes. By analysis and simulation, it Our single cell phase-portrait is similar to the Fitzhugh
was shown that all oscillators representing a connected (1961) single cell phase-portrait.

visual region synchronize rapidly, while blocks of os-

cillators corresponding to distinct connected regions

become desynchronized.

2.1. Definition of the Cell Model

Outline of the Paper.In the methods section we de-

fine the cell model and introduce phase portraits. We
define six behavioral regimes of the model cell that cor-
respond physiologically to endogenous oscillations, a
quiescent cell, a state midway between the two previ-

Neurons have many different ionic membrane chan-
nels, but for the purpose of constructing a simple neu-
ral model we separate the corresponding membrane
currents into two classes on the basis of their time con-
stants: fast and slow. A single fast current is used to

ous regimes that we call “almost an oscillator,” tonic
depolarization (firing), chronic hyperpolarization; and

model the sum of all the fast currents, and a single
slow current is used to model the sum of all the slow

plateau potentials. We show these states are charactercyrrents, both inward and outward. For example, the

ized by geometric properties of the phase-portrait of the
cell. These properties, in turn, correspond to specific
relations amongst membrane currents.

In the results section we take pairs of cells with all

fast current could be the sum of a chloride leak current
and a fast persistent sodium (Opdyke and Calabrese,
1994) or a fast persistent calcium current, while the
outward part of the slow current could be the sum of

possible different combinations of individual cell be- potassium or calcium-gated potassium currents, and the
haviors, connect them with fast-acting reciprocal in- jnward part of the slow current could be carried by the
hibitory synapses, and investigate whether the resulting same ions that contribute tg-type currents (Angstadt
model |nh|b|t0ry pair COU|d, in some Circumstances, and Ca|abrese, 1989; Golowasch and Marden 1992;
oscillate. Since the model cells are two-dimensional McCormick and Pape, 1990). The fast current is as-
and the synaptic transfer is immediate, the model of symed to activate immediately. The slow current’s
an inhibitory pair has a four-dimensional phase por- time constant for activations, is assumed to be signifi-
trait, which is not easily visualized. As an alternative, Canﬂy slower than the membrane time constantWe
we Study a pair of linked two-dimensional Single-Ce” have usua”y taken the ratio @J to Ty, to be about 20,
phase portraits, where the phase portrait of each cell pyt even when the ratio is as small as 1.5, most model
changes as a result of synaptic currents “generated” phenomena dependent on the difference in time con-
from the other phase portrait. We also investigate the stants still arise. Spikes are not included in the model
generation of 1:N frequency-locked oscillations in @ pecause for some CPGs, in particular for the ones of
reciprocal inhibitory pair when one cell has the inward most direct interest to us, the gastric mill and pyloric
portion of its slow current smaller than the outward CPGs in the lobster, pattern generation is little affected
portion. when spikes are suppressed (Anderson and Barker,
All the mechanisms in this paper use fast synapses: 1981; Raper, 1979a). Therefore we ignore spike-
the postsynaptic current is an instantaneous function pased synaptic transmission and model the communi-
of the presynaptic membrane potential. This is a rea- cation between cells by graded synaptic transmission
sonable assumption if, as in the lobster gastric milland gjgne.
pyloric CPGs,the oscillation period of the system un-  The model cell has two differential equations, one
der StUdy is several orders of magnitude Iarger than thefor the membrane potentia[' derived from current
synaptic time course. conservation, and one for the lumped slow curmgnt
derived from current activation:

2. Methods v

Tm— = —(fastV, o¢) +q — iinj) 1
We introduce the cellmodel and also introduce one-and ™ dt f a4 tin @)
two-dimensional phase-portraits and their use in under- I d_q — g+ gu(V) )
standing the dynamics of a model. The phase-portrait ® dt >
is a well-known mathematical device for studying the Tm < Ts. 3)
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V andq describe the state of the model so are called gree of N-shape increases with increasingit has an

state variables Due to the difference in time con-
stants (3), Eq. (1) is called tii@st equationand Eq. (2)
the slow equation The other quantities arey,
membrane time constarity; = injected currentj =
fastV, o¢) is an idealized current-voltage (IV) curve
for the lumped fast current where

fastV,o5) =V — Astanh((os/Af) V). (4)
This expression for the fast IV curve has the following
property: the slope of the “reverse” part of the N is
given byo¢ — 1, and the width of the N is given by
A:. Thus the degree of N-shape in the fast IV curve is
controlled by the parameter; as follows (Fig. 1(a)):
the IV curve is N-shaped when; > 1, and the de-
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Figure 1 IV curves and nullclines in the cell model. (a) The curve

i =fastV, o) forthree values of s . (b) The standard slow current
IV curve. Es is the reversal potential. (c) The split slow current
IV curve with different inward and outward conductances. (d) The
V-nullcline foros = 2,1,0. Foros = 2, three values of the
injected current produce three positions of Yhewulicline. (e) The
g-nulicline. (f) Theg-nullcline when using a split slow current. A
fast current null cline is obtained by reflecting the IV curve of the fast
current in theV-axis and then moving it up or down by the amount
of the injected current. A slow current nulicline is identical with the
IV curve of the slow current.

inflexion point whenos = 1; and it is linear when
o = 0. 15 Is the activation time constant for the
lumped slow currengl. The steady-state value of the
lumped slow current is linear iW, with conductance
os for both the inward and outward parts, and having
reversal potentiakg (Fig. 1(b)):

0o (V) = 0s(V — Es). )

In a small extension to the model, the slow current is
split into two linear parts, an inward part with con-
ductancesi, and an outward part with conductance
oout (Fig. 1(c)), whereoi, < ogyt to incorporate the
fact that inward slow currents generally have a smaller
conductance than outward slow currents. In this case
the following expression is used for the lumped slow
current:

oin(V — Es) if
oout(V — Eg) if

V < Eg

V > Es. 6)

qoo(v) = {

The left column of Fig. 1 shows the IV curves for the
fast and slow currents: = fast(V, o¢) in 1a andi
O (V) in 1lb andc.

Note that the variable represents @urrent and
not the activation of a conductancg.approaches the
steady-state valug,, (V) = os(V — Es) with time
constantrs. Equation (2) with (5) is unusual because
the reversal potential for the lumped slow currdsy,
appears here and not in the current Eq. (1). Thus this
model might be called semi-conductance-based.

The fast current can be considered to be the sum
of a leak current and an inward €& current, with
ot = Oca/dL, and the slow curremcan be considered
to be a slow potassium current with = gx /0L .

Dimensions. As can be seen from Eq. (19,andiiy;
both have the dimension of an electrical potential. A
true current is obtained by multiplying the model cur-
rent by aleak conductangg. Thatis, a currentis rep-
resented by the potential sufficient to drive the current
through the membrane leak conductance (a constant).
If, for example,q is taken to represent a slow potas-
sium current, the actual current flowing is obtained by
multiplying g by g, . Similarly the true injected current
corresponding tay; is obtained by multiplying by, .
Thus,ty andzs are in msec.V, Es, g, andijy are in

mV, o¢ is a dimensionless shape parameter, ani
dimensionless since it is a conductance normalized to
the leak conductance.



One-Dimensional Phase PortraitsThe equation

vV _ V+0q)
HUr T @

whereq is held fixed atq = qo, has a single state
variableV and has a single fixed point &t = —qp
when ‘L—\t’ = 0. The system has a one-dimensional
phase portrait, shown in Fig. 2(a).

The line portrays the range of values\6fthe black
dot is the fixed point a¥ = —qp, and the arrows
show that whatever the value @fwhen the system is
started, it moves to the fixed point. In one dimension,
fixed points are eithestableor unstable experimen-
tally, only stable fixed points fixed points are seen. In
the example here, the fixed point is stable becauge if
is displaced slightly—say, t¥ = —qo + § wheres is
small—V returns toV = —qg with time constant;,.
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More generally, consider the equation
dv
tm—— = —(fastV, o) + ), (7)

dt

whereq is held fixed aifg = qp. Takeos > 1 so the
IV curvei = fast(V, o) has a region of negative re-
sistance. For illustrative purposes we use a schematic,
piecewise linear, form for the IV curve of the fast cur-
rent, shown in Fig. 2(c).

The fixed points of Eq. (7) are values\éffor which
o = —fast(V, o;). Whenos = 2andgy = Othereare
three fixed points, labelle&, , Ey, Ey in Fig. 2(c).
The curveqy = —fast(V, 2) is the reflection of the
curve of Fig. 2(c) in the/-axis. Thus the associated
one—dimensional phase portrait has three fixed points
labelledE, , Ey, andEy, as shown in Fig. 2(d)E,
andEy are stable fixed points, whilgy is unstable.

In Fig. 2(e) we have kept; = 2 in (7) and aligned

Figure (2b) shows a stack of one-dimensional phase the one-dimensional phase portraits for several differ-

portraits for three values af, with vertical spacing
proportional tog. Note that the fixed points lie on the
lineq=-V.

bhbulomwu
injected current

Figure 2 One-dimensional phase portraits. (a) A one-dimensional
phase portrait with a single stable fixed point. (b) Stack of three
one-dimensional phase portraits. (c) The piecewise linear IV curve
used fori = fast'V, 2) in Eq. (15) (d)The one-dimensional phase
portrait of Eq. (7) withq = 0. Solid circles are stable fixed points
(attractors), hollow circle is an unstable fixed point (repellor). (e)
Stack of one-dimensional phase portraits for nine valueg of

Eqg. (7). The dashed line connecting the fixed points of the one-
dimensional phase portraits is the curve of gaytreflected in the
V-axis, q = —fastV, 2). (f) The thick vertical line is the one
dimensional phase-portrait for equation(8), whérs fixed atV =

Vp. The dashed line is the lirge= g (V).

entvalues offinavertical stack. Agisincreasedfrom
g = —5, the one—dimensional phase portrait changes
from having a single stable fixed point on the right leg
of the N-shaped curve, to having three fixed points (the
center one unstable), to having single fixed point on the
left leg. A “jump” was forced to occur where the num-
ber of fixed points changed from three to one at the tip
of the upward-pointing knee. Similarlydf is reduced
from q = 3, a rightward jump will be forced between
g = —2 andq = —3. Clearly if there was a means of
increasingy slowly whenV is to the right of the peak
in —fastV, o), and decreasing slowly whenV is to
the left of the dip in—fast(V, o¢), oscillations would
occur. Such a mechanism is provided by the follow-
ing Eqg. (8), which also has a one-dimensional phase
portrait.

Consider the equation

dg

Tsa (8)

= —( + g (V),
whereq. (V) = os(V — Es). If V is held fixed at
V = Vy—for example, by voltage clamp—and initial-
ize q = (o, thenq will rise or fall to its steady-state
value g, (Vo). This is shown in Fig. 2(f) as a verti-
cal, one-dimensional phase-portrait with a single fixed
point. If we appropriately combine the vertical phase
portrait of Fig. 2(f) with the horizontal phase portraits
of Fig. 2(e), oscillations will occur.

The key isthe location of the lire= q.. (V) relative
to the curveq = —fastV, o). The right leg of the
dashed line in Fig. 2(e) should be below the dashed
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line in Fig. 2(f), thus causing to increase slowly, and
the lefthand leg of the dashed line in Fig. 2(e) should
be above the dashed line of Fig. 2(f), thus caugjng
to decrease slowly. This occurs if the two dashed lines
intersect between the peak and dip in Fig. 2(e).

Note also that the speeds of movement in these one- 4

dimensional horizontal and vertical phase-portraits
have simple relationships to the geometry of Fig. 2(e)
and 2(f). The horizontal speed of movement on one of
the one-dimensional phase-portraits in Fig. 2(e) is, by
Eq. (7),

1
— —(tp — (—fast(V, o¢)).

Tm

©)

This is proportional to the vertical distance from the
pointV of the one-dimensional phase-portraitgto

the short-dashed curve. Similarly, the vertical speed
of movement on the one-dimensional phase-portrait at
V =V, in Fig. 2(f) is, by Eq. (8),

1

which is proportional to the vertical distance from the
point gy (Vo) on the line of large dashes to the current
stateq.

Two-Dimensional Phase PortraitsThe Egs. (7) and
(8) constitute the model cell. Thisis atwo-dimensional
system of differential equations with state variables
andg. Asthe state evolvesintimeitdescribesacurvein
the(V, q) phase-plane calledejectory. Figures 3(b)
and 3(c) show a two-dimensional phase portrait and

(c)

Figure 3 The relation between one- and two- dimensional phase-
portraits and the phase portrait for the endogenously oscillating cell
model. In (al), (a2), and (a3), the strength of the “vector field” at
each point is denoted by the thickness and direction of the arrows. In
(al), the horizontal componer%\f) generated by Eq. (7) is plotted,
together with thev-nullicline. Note that the direction of the arrows
changes when th€-nulicline is crossed. In (a2), the vertical com-
ponents @) generated by Eq. (8) have been plotted. Again, note
the change in direction when tlienulicline is crossed. The field

is too weak for the variation in strength with position to be visible.
The combined fiel(ﬂ‘é—\t’, %q) is plotted in (a3). (b) The¢V, q) phase
plane for the cell model, including thé andg-nuliclines and a tra-
jectory (dotted curve). The state of the c@ll, g), as it evolves by

Egs. (7) and (8), follows this trajectory when transients have died
out. The dots are drawn at equal time intervals, hence the spac-
ing signifies speed. The movements on the right and left legs of the
N-shaped fast nulicline are slow compared to the rapid, roughly hori-
zontal, movements on the upper and lower segments. Thus one cycle

the corresponding potential trace for an endogenously consists of two slow segments separated by two horizontal jumps.

oscillating cell model. The dots in Fig. 3(b) are con-

secutive states of the system at equal time intervals.
At each point there are horizontal and vertical compo-
nents to the movement, which can be approximately

The notations 1, 2, 3, and 4 identify corresponding points on the
trajectory in thg'V, ) phase-plane and membrane potential trace in

(c). The trajectory is snake-like, with the snake’s head marked by a
circle and its tail by a square; corresponding positions on the traces
are marked. (c) Voltage trace corresponding to the trajectory in (b).

represented by one-dimensional phase portraits as dedn this and other figures, unless specified otherwiggzs = 1/20.

scribed in the previous section. See also Figs. 3(al),
(a2), (a3). Every state variable in a model hasuli-
cline, defined to be the line of points in phase space at
which the time-derivative of the state variable is zero.
In dimension 3, a nulicline is a surface, and in general,
in dimensiom a nullcline has dimension — 1. They

are very useful in understanding the motion of the state

curve defined by = 0 — namely,
q = —fastV, o¢) + iin. (11)

This divides the phase plane into two regions, one
where theV-component of motion on a trajectory is

of the system in phase space. For example, the timeleftward and one where th¥-motion is rightward

derivative of a state variable has opposite sign on oppo-
site sides of that variable’s nulicline. In the model cell,
the phase space is a plane and Yhaulicline is the

(Fig. 3(al)). Similarly, theg-nulicline, defined by
4~ 0, divides the plane into two regions with
the g-components of motion in opposite directions

dt



(Fig. 3(a2)). Any trajectory crosses thenullcline
vertically, since‘é—\t’ = 0, and theg-nulicline horizon-

tally, sincedde?gt = 0. Points of intersection of the
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tory to V-nulicline is greatest, by Eq. (9). This can be
confirmed in Fig. 3(b) where the greatest spacing be-
tween dots occurs beneath the peak and above the dip

nullclines are fixed points. These facts often enable one in the V-nullcline. The speed of vertical movement

to deduce useful properties of a model without solving
the model equations.

Physiologically, theV-nullcline can be described
in terms of a membrane potential recording as fol-
lows. TheV-nullcline consists of exactly those points

in the phaseplane, which corresponds to the angle of
descent on segment 2 of the trajectory or of ascent on
segment 4 (Fig. 3(c)), is proportional to the vertical
distance from trajectory tq-nulicline (by (10)).

in phase-space at which turning points—maxima and 2.2. Properties of the Cell Model

minima—of the trace can occur. At a turning point the

trace is momentarily horizontal, so the fast and slow Frequency Control.In this cell model the majority
currents must be exactly in balance. Therefore the slow of the time in each cycle is spent on the slow seg-
currentis exactly equal and opposite to the fast current, ments, where the speed is proportional to the vertical

sotheV-nulicline is obtained by reflecting the IV-curve
of the fast current in th&/-axis. A depolarizing (hy-
perpolarizing) injected current moves the fast IV curve
downward (upward), so thé-nulicline is moved up-
ward (downward). Physiologically, thg-nulicline is

the same as the IV curve for the lumped slow currents.

Figure 1(d) shows examples of the fast nullcline for
ot =0,1,and 2, and, fors = 2, it shows how an in-
jected current shifts the fast nullcline up or down. Fig-
ure 1(e) and (f), show that tieenuliclineq = gu (V)
is identical with the steady-state IV curve= (V).

distance to the-nulicline. Since this depends on the
slow conductances, o is the primary determinant of
cycle frequency. This is not a parameter easily ma-
nipulated experimentally. In most neurons, the oscil-
lation frequency varies with injected current, a phe-
nomenon not well captured by our model. Typically in
a conductance-based model (for a particularly simple
example see Morris and Lecar, 1981), injected cur-
rent shifts the fast nullcline and changes the size of its
N-shaped part; since this alters the distances traveled
under control of the slow equation, the cycle frequency

At each point in the phase plane, the movement has changes. This lack in our model is made up to some
a horizontal component given by Eq. (9) and a vertical extent by its simplicity, while still able to capture many

component given by Eq. (10). By Eq. (3),2, is much
larger than 1ts. Hence, at a general position in the

aspects of network interactions.
A simple alternative way to obtain anincrease of fre-

phase plane away from the fast nullcline, the horizontal quency with injected current is to utilize the “narrow
component of velocity is much larger than the vertical channel” effect: if two nuliclines in the phase plane
component. So in predicting the movement of the state come close together in a certain region without cross-
in this two-dimensional phase portrait, the vertical or ing, then, in this region, the phase point must necessar-
g-component can be regarded as approximately con-ily move very slowly, since it is close to two lines on
stant until the rapid horizontal movement\éfbrings each of which one component of the phase point ve-
the staté€V, q) close to the fast nullcline. Thenthe slow locity is zero. This effect was used by Hindmarsh and
equation begins to take effect while the fast Equation Rose (1984) and Rose and Hindmarsh (1985) in devel-
now serves merely to hold the state close to the fast oping three-dimensional neural models. For example,
nuliclline. Thus the motion on segments 1 and 3 of the suppose we deform the slow nulicline by curving its in-
trajectory in Fig. 3(b), away from the fast nulicline, is ward current portion round so that it passes close to the
essentially controlled by Eq. (7) as depicted by the one downward pointing knee of the fast nulicline. Physi-
dimensional phase portraits in Fig. 2(e). The vertical ologically, an A-current might cause this deformation.
motion when close to the fast nulicline is controlled by This is not the same as the split slow current exten-
one-dimensional phase portraits as in Fig. 2(f). This sion, Eq. (6). The effect is to greatly slow down the
reduction of the movements in phase-space into fast approach of the phase point to the knee, so the inter-
horizontal jumps between slow movements along the burst interval on the voltage trace is much larger than
fast nulicline, valid when there is a large difference be- each burst. Any depolarizing injected currentincreases
tween time constants asin (3), is known mathematically the distance from the knee to the slow nulicline, thus
as asingular decompositigror therelaxation regime reducing the narrow channel effect, with a resulting in-

The fastest horizontal movements in the phase- crease of frequency. An example is shown in Fig. 4.
plane—points of steepest ascent or descent on theComparable effects are seen in a small CPGlione
traces—occur where the vertical distance from trajec- (Arshavsky et al., 1991).
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Figure 4  Control of frequency by current when the slow nulicline
has a flat inward portion. (a) Increase in frequency with depolariz-
ing injected current. The figure by each trace is the injected current.
(b) The phase portrait showing inward current saturation level of
theg-current IV-curve. Parameter valuesi =2, As =1,05=38,
g-current inward portion becomes constant-&.55, ry, = 0.05,
1s=1.8.

Intrinsic Behaviors. Six intrinsic behaviors of the
model cell, obtained with different settings of the cellu-

o

VI_ 1% rIV 1
ligj N linj 1.
Quiescent Almost an Endogenous
Cell (Q) Oscillator.( ) Oscillator. (E

(d)

v o\ H |y v H

1 L

2
Uinj 1 linj - linj T—r
Depolarizetz Hyperpolarizzﬂ Plateau p
Cell D) | cell )| Potentiats  (

Figure 5 The six intrinsic of behaviors of the cell model: Q, A,

E, D, H, P. Each box shows the phase portrait on(theq) —phase
plane, corresponding membrane potential trace,lgntrace. The

V- and g- nuliclines are labeled within (solid line) andgn (long
dashes). During a current pulse tenulicline is shifted to a new
position, shown by a thick dotted line in all cases except (c) where
no pulse occurs. The trajectories are sketched with thin dashed lines
and arrows. Numerical notations show correspondences between
trajectories and traces. Times of depolarizing and hyperpolarizing
current pulses are shown on thg trace.os = 0in (a), 1 in (b), 2

in (c), (d), and (e), and 4 in (f).

lar parameters, correspond to six physiological behav- is linear ¢r = 0). As in Fig. 5(b) a current pulse
jors: stable resting potential or quiescence (Q), almost causes the state to jump right to the new temporary

an oscillator (A), endogenous oscillations (E), perma-
nent depolarization (D) with tonic firing in a spiking
cell, permanent hyperpolarization (H), and plateau po-
tentials (P). These behaviors are shown in Fig. 5.
Endogenous oscillations (Fig. 5(c)) occur when
the V-nullcline has a region of negative resistance
(o > 1), and the slow and fast nuliclines intersect be-
tween the peak and dip in thé-nulicline. The single
fixed point is always unstable. The model is “almost
an oscillator” (Fig. 5(b)) when th¥ -nulicline has a
point of inflexion (O< o+ < 1). During a depolarizing
pulse the state moves rapidly rightwards toward the
V-nullcline at its new position (thick dashed curve),

V-nulicline and then to move up thé-nulicline to-
ward the new fixed point. When the pulse ends the
state jumps back left on to the origindtnulicline at

a value ofV below the resting potential, then slowly
returns to the rest potential R. The cell has plateau
potentials (Fig. 5(f)) when thg-nulicline intersects the
N-shapeadV-nulicline (o > 1) in three fixed points.
The low(L) and high (H) ones are stable, giving rise
to plateau potentials; the center fixed point is unsta-
ble (not labeled). In the trace, the cell is started at
the low potential then a depolarizing pulse causes the
state to jump toward the right leg of thé-nulicline,
which is in a new position for the duration of the pulse.

and when the pulse terminates the trajectory spirals On pulse termination the state relaxes toward the high

into the fixed point, giving a damped oscillatory trace.
The cell is quiescent (Fig. 5(a)) when tkienulicline

fixed point (H). The exact trajectory taken depends crit-
ically on the duration of the pulse. At a minimum, the
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pulse must be long enough for the state to cross the change to endogenous oscillations (behavior E, 5(c))
V-nullcline in its original position between the dip and and then to permanent hyperpolarization (behavior H,
peak, before the pulse terminates. A hyperpolarizing Fig. 5(e)) as hyperpolarizing current is injected. Simi-
pulse applied to the cell at H switches the cell back to larly, depolarizing current could cause a transition from
L. The cell is permanently hyperpolarized (Fig. 5(e)) case H to E to D. In the terminology of (Elson and

when theg-nulicline intersects th¥ -nulicline exactly
once, at a fixed point L to the left of the downward knee
in theV-nullcline. A depolarizing pulse in the correct

amplitude range results in one loop in phase space re-

turning to rest at L. The pulse amplitude must be large
enough to raise thg-coordinate of the downward knee
intheV-nulicline above thg-coordinate of L and long
enough for the state to cross the original position of the
V-nullcline once. If L is close to the downward knee a
small damped oscillation occurs after the main loop. A
hyperpolarizing pulse has little effect. The cell is per-
manently depolarized (Fig. 5(d)) when a single inter-
section point occurs at H to the right of the upward knee
intheV-nulicline. Similarly to Fig. 5(e), a depolarized
pulse causes a single excursion and return to H.

When the fast nullcline is N-shaped the cell is ei-
ther an endogenous oscillator (Fig. 5(c)), has plateau
potentials (Fig. 5(f)), is permanently hyperpolarized
(Fig. 5(e)), or is permanently depolarized (Fig. 5(d)).
In the latter case, if spike generation were included in
the model, the cell would be firing tonically. Which
behavior occurs depends on the number and location
of the points of intersection of the slow nulicline with
the fast nullcline. Three points of intersection causes
plateau potentials, as shownin Fig. 5(f). Asingleinter-
section point, on the left leg of the fast nullcline, causes
a hyperpolarized rest potential as in Fig. 5(e); one on
the center leg causes oscillations since it is unstable
(Fig. 5(c)); while one on the right leg causes a depo-
larized rest potential (Fig. 5(d)). If the fast nullcline
is not too N-shaped then the cell has a rest potential R
and after a current pulse it may exhibit damped oscil-
lations (5b) or return immediately to rest (5a). When
oscillating, most of the cycle time is occupied by the
slow movements up and down the right and left legs
of the fast nullicline; these correspond to the burst and
interburst intervals. As we have seen, this primarily
depends on the slow conductance paramstéor oi,
ando,yy); hence the cycle time, or frequency, is deter-
mined primarily by these parametersoif is less than
(greater thany,,, then the interburst interval will be
longer (shorter) than the burst duration.

The only difference between panels (c), (d), and (e)
is the relative position of the fast and slow nuliclines.
This can be manipulated by the amount and sign of
the injected current (cf. Fig. 1(d)). Thus a model cell
originally firing tonically (behavior D, Fig. 5(d)), will

Selverston, 1992), a cell with this behavior is said to
havebursting pacemaker potentials

If model cell has a split slow current (Fig. 1(c)),
then theduty cycle defined to be the ratio of the burst
interval to the time for one complete cycle, will be less
than (greater than) 0.5 &, < oout (Gin > oout)-

Bifurcation Diagrams. The relationship between the
behaviors of amodel as parameters vary is conveniently
summarized in difurcation diagram In the model
cell, if the time constants and the size of theA,, are

kept fixed, there are three parameters, iiyj, andos,

that define a three-dimensional space. Then one plots
the behavior associated with each point of this space.
In Fig. 6, we sebs = 2 and plotted the behaviors in the
(o, iinj) plane. The vertical dotted line shows the be-
havior transitions H-E-D that could occur in response

Quiescent (Q)
4.0
Depolarized (D)
20 '
]
1
1
— Damped Endogenous
€ 0.0 [ Oxcillations| Oscillations &
- A) E)
]
1
[}
20 ]
Hyperpolarized (H)
-4.0 . . L .
0.0 1.0 2.0 3.0 4.0 5.0
Gf

Figure 6  Bifurcation diagram for the model cell. Theg — i
plane is divided into regions corresponding to different cell behaviors
for fixed os = 2. The quiescent cell (Q) region is thg axis. A=
almost an oscillator, E = endogenous oscillations, D = depolarized
cell (tonic firing if spikes present), H = hyperpolarized cell, P =
plateau potentials. Vertical dashed line shows effects of different
amounts of injected current.

The bifurcation diagrams (Figs. 6, 10, and 12) are not claimed
to be exact or even complete. They were drawn using the geometry
of the phase portraits, assuming that the singular decomposition was
in effect, so all jump motions are assumed to be horizontal and the
time required for the “escape” or “release” switches to occur have
beenignored. When these times are taken into account one finds that
oscillations cannot occur when the putative trajectory would spend
too little time across threshold (for example, when the threshold in
release is toward the high end of the range). Thus the regions of
oscillation in the figures are, in general, slightly too large.
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to varying the injected current. The figure shows that below the minimum of the postsynaptic membrane
the transition H to P (plateau potentials) to D is another potential.

possible response to increasing injection of depolariz- A network of two reciprocal inhibitory cells, which
ing current. A central horizontal line followed from we call an inhibitory pair (IP), has a model with
left to right goes through behavior regions Q, A, E, P, four equations. Each cell has Eq. (12) for its fast
corresponding to panels a, b, ¢, and fin Fig. 5. Amore equation, using expression (13) for the synaptic cur-
depolarized (or hyperpolarized) line passes through be-rent, and Eq. (8) for its slow equation. Thus the IP

havior regions Q-A-E-D-P or Q-A-E-H-P). model has a four-dimensional phase space and a four-
dimensional phase portrait. We study this as two linked
2.3. Model of a Pair of Cells two-dimensional phase portraits, one for each cell. In
with Reciprocal Inhibition the two-dimensional phase portrait of each cell, the

position and shape of the fast nulicline varies with the

Each synapse onto a cell is modeled by adding a synap-Synaptic current being received.

tic current into the fast Eq. (1) or (7) as follows: At this point we simplify the model further. We re-
place each sigmoid synaptic transfer function by a 0-1

v = —(fastV,o1) + q+isgn—in)  (12) step function with threshold, equivalently by letting

T
" dt the gainy — oo in (14). Thus the postsynaptic con-
where ductance is either fully on or off, depending on whether
_ the presynaptic cell's membrane potential is above or
isyn =W (Vpre)(V — Eposd- (13) below the threshold. Hence the fast nullcline in the
postsynaptic cell has exactly two distinct positions, de-
W is the maximum postsynaptic conductanggeis pending on whethégy,is on or off. We also replace, in
the pre-synaptic potentiaEpostis the synaptic reversal  each cell, the curvilinear form of the fast IV curve (Eq.
potential, and (4)) by piecewise linear approximation, defined by
foV)=(1+ eVt (14) V+Ar  forV < —Ag/oy
faSt(V,O'f)Z V — A¢ fOrV>Af/Uf
is a sigmoidsynaptic transfefunction with threshold (1-01)V otherwise. (15)

¢ and gainy. Each synapse contributes another post-

synaptic curreniynto Eq. (11). Herd is the threshold

for graded synaptic transmission, which in general is 3. Results
different from the threshold for action potentials; the

latter does not enter into this model. A synapse is ex- We systematically investigated the oscillatory capabil-
citatory if isyn is depolarizing that is, iEpost is higher ity of each combination of pairs of the intrinsic cellular
than the maximum post-synaptic membrane potential behaviors (Q, A, E, D, H, P) in a reciprocal inhibitory
during oscillatory behavior; it is inhibitory if the post-  pair. There are 21 different combinations, and we
synaptic current is hyperpolarizing, by havifgest report in detail only on cases QQ, QD, and PP. Figure 7

Figure 7. There are 21 different reciprocal inhibitory pairs of cells, when each cell has one of the six intrinsic behaviors of Fig. 5. In eacl
case the weights and thresholds have been adjusted to produce oscillatory behavior. For each case we show the two membrane potential |
(upper part) and the corresponding phase portraits for each cell (lower part).

E = endogenous oscillator, A almost an oscillator, @ quiescent cell, D= depolarized, H= hyperpolarized, = Plateau potentials. The
top trace in each pair is generated by the cell with the left phase-portrait.

Parameters are given in the ord@¥i2, Way, 621, 612, 0 1, 0t 5, 0s1, 0s2). In all cases in this and subsequent figuigs,st = —4, y = 40,
andtm/ts = 1/20. Injected current, if present, is listed separately. €@.4, 0.4, 0.2, 0.2, 0, 0, 3, 3), QA (0.1, 0.3, 0, 0, 1, O, 3, 3),
QE = (0.1, 0.4, 0.7066, 0.73333, 2, 0, 3, 3), @D(0.1, 0.1, 0.1, 0.58666, 0, 3, 3, 3} = 0.76, QH= (0.3, 0.3,-0.6,—-0.8, 0, 4, 2, 4),
i1 = —0.4,i, = —0.50666, QP= (0.3, 0.3, 0.10666, 0.4, 0, 4, 2, 2.3), AA (0.2, 0.2, 0,—0.01333, 1, 1, 2, 2)i1 = i2 = 0.4, AE =
(0.1,0.1,01,01, 2,1, 3, 3), AB- (0.1, 0.1,-0.586667, 0.09333, 4, 1, 3, 2), AH (0.1, 0.1, 0.81333, 0.09333, 4, 1, 3, B),= —0.36,
AP = (0.1, 0.34, 0, 0.62666, 1, 4, 3, 3), EE(0.1, 0.1, 0.1, 0.1, 2, 2, 3, 3), EB (0.1, 0.3, 0.16, 0.73333, 2, 4, 3, 3), = 0.7, EH =
(0.1, 0.3, 0.16, 0.73333, 2, 4, 3, 3 = 0.7, EP= (0.1, 0.1, 0.7066, 0.73333, 2, 4, 3, 2), Db (0.3, 0.3, 0.50666, 0.50666, 4, 4, 2,
2),i1 = i = 04, DH = (0.1, 0.1,-0.61333, 0.77333, 3, 3, 3, 3); = —i» = 0.56, DP = (0.22, 0,—0.85333,—-0.54667, 3, 3, 1.4,
1.8),i1 = 0.04,ip = 0.6133 HH = (0.2,20.2, -1, -1,4,4,3,3), i1 = ip = —0.24, HP = (0.1, 0.17333 0.506666 —0.8, 3, 3, 1.4, 1.8),
i1 =0.066i, = —0.56, PP= (0.22,0, -1, -1,4,4,2,2).
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is a summary figure showing antiphase oscillations be-
ing produced for each case.

In case EE, two identical endogenously oscillating
cells linked with identical inhibitory synapses phase-
lock exactly out of phase with each other, as to be
expected. The positions of the synaptic thresholds have
little effect, provided they lie between the maximum
and minimum extent of each cell’'s potential. There is
also an unstable in-phase solution. If the duty cycle
of each cell is small, there is a stable in-phase solution
(Kopell and Somers, 1995) that is not robust against
perturbations. If the oscillators are not identical but
have different intrinsic frequencies (by setting #
0s,),1:N and M:N phase-locking can occur.

In case AA, when each cell is already almost an
oscillator, almost any inhibitory interaction will result
in out-of-phase oscillations. So case AAis very similar
to case EE. In the example shown in Fig. 7, each cell
begins to spiral into a fixed point but is then perturbed
slightly causing its state to move rapidly horizontally
to the new position of the fast nullcline and then begin
to spiral again.

The Case QQ: Two Quiescent Cell#f. both cells are
quiescent in isolation—that is, case QQ with =0
in both cells—oscillations can still occur. The pair
will oscillate provided the synaptic thresholds in each
cell have the correct relationship to the fast and slow
currents. Inthis case there are two distinct mechanisms
of oscillation,escapeandrelease

When the presynaptic cell is below thresholig¢ <
), the fast equation of the postsynaptic cell is

=-V+0q

Tm——

dt

with fast nullcline

-V; (16)
when the presynaptic cellis above threshdgl{ > 0),
the fast equation is

Tma =—(V+ q-+ WV — Epost))

with fast nullcline

q V(A + W)+ W Eyost. (17)
Thus, each cell has two fast nullclines, which we call

the free andinhibited fast nuliclines, defined by (16)

and (17), respectively. In the phase portraits in Figs. 8
and 9, the diagonal lines from upper left to bottom right
are the free (upper line) and inhibited (lower line) fast
nuliclines. Which one is in effect at any time depends
on whether the potential of the other cell in the pair
is above or below its threshold. When the cells are
isolated, the phase portrait for each cell has two linear
nullclines that intersect in a stable fixed point (Fig. 5a).
When one of the cells is receiving inhibition, as in an
inhibitory pair, the inhibited fast nullcline (Eq. (17)),
intercepts they/ -axis at

\Y,

=1 W Eposs With slope  —(1 + W).

Thus the effect of inhibitory synaptic input is to
rotate the fast nullcline clockwise about the point
(Epost — Eposp by an angle tant(—W). The new inter-
section points]; andly, that define the rest potentials
of the cells, are more negative than the poiRis F,
(Figs. 8 and 9).

(a)

(b)

q1

Figure 8 The escape mechanism for a pair of quiescent cells con-
nected with reciprocal inhibition. (a) traces, (b) phase portraits. The
vertical dashed line in each phase portrait is the threshold potential
at which synaptic inhibition of the other cell begins. If the synap-
tic transfer function is sigmoid (Eg. (14)) and not a step function,
the threshold line is at the half-height of the sigmoid cunég.

is the presynaptic threshold for graded synaptic input from dell
cell. In this and Figs. 9, 11, and 14, “slow# slow (g-) nullcline,
“free” = free fast ¥/-) nulicline, “inhibited” = inhibited fast {/-

) nulicline, I; is the inhibited fixed point andF; is the free fixed
point of cell, i = 1, 2. the “ibi” marks the interburst intervalp"
marks the burst interval, on the trajectory of gelParameters are,
(0.4,0.4,-05,-0.5,0,0,3, 3).



(b)

Figure 9 The release mechanism for a pair of quiescent cells con-
nected with reciprocal inhibition. (a) traces, (b) phase portraits. Only
the threshold position differentiates this figure from Fig. 8. Parame-
ters arg(0.4,0.4,0.2,0.2,0, 0, 3.3).

In these phase portraits, the point of intersection of
a slow nullcline and a free fast nulicline ifraefixed
posint (F, and F,), and the point of intersection of a
slow nulicline and an inhibited fast nullcling,(and
1), is aninhibitedfixed point. When a cellis receiving
no synaptic input, its state will either be at the free
fixed point or will be moving slowly along the free
nullcline toward it. When a cell is receiving inhibitory
synaptic input, with a fixed postsynaptic conductance
W, its state will either be at the inhibited fixed point or
will be moving slowly along the inhibited fast nullcline
toward it.

The Escape MechanismSuppose the synaptic thresh-
olds 62, 012 are below the potentials of the inhibited
fixed points (1, 1), respectively, as in Fig. 8. Now
the pair of cells can oscillate as follows. Supposecell
is above threshold and cglls below threshold. This
means that the state of celé moving slowly up along
its free nullcline toward= and the state of cell cur-
rently to the left of the lin&/; = 0,4, is on its inhibited
nullcline and moving slowly down along it towards the
fixed pointl;. Before the state of cglireached;, it
crosses the threshold ling = 6,1, begins to inhibit
cell,, and causes the fast nullcline of ¢elb imme-
diately switch from the free to the inhibited position.
Duetothe difference intime constants (Eq. (3)),£ell
state immediately follows the fast nullcline by moving
rapidly left, approximately horizontally, toward the in-
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hibited position of the fast nullcline. During this jump
in position the potential of celldescends below the
threshold,, and thus cell immediately stops inhibit-
ing cell. The fast nullcline of cefltherefore switches
from the inhibited to the free position so, similarly, the
state of cell jumps rapidly rightward to the new posi-
tion of its fast nullcline, going above thresheld in the
process. By a three-stage process, dadls “escaped
from inhibition.” Since cel is below threshold, the
cells have reversed their positions in the cycle. Now
the same process, with celind cel} interchanged,
occurs, so cell also escapes from inhibition, begin-
ning to inhibit cel}: the cycle is complete.

The pair can be stationary with the states of the cells
at the inhibited fixed pointk, andl,, because each cell
is inhibiting the other. From this situation oscillations
can be started by hyperpolarizing one of the cells below
the synaptic threshold. This releases the other cell from
inhibition and oscillations begin.

When the pair is oscillating, a small hyperpolariz-
ing pulse will have little effect because it cannot cause
a premature crossing of a threshold. A depolarizing
pulse applied during a burst, when the state of the cellis
onthe free nulicline, will also have little effect, whereas
the same pulse applied during the interburstinterval can
easily bring the potential above threshold, causing an
early “escape from inhibition” if the pulse is not too
short. Thus the pulse causes a phase advance in the
two-cell network. In Fig. 8, right phase portrait, once
can see that a depolarizing pulse during the trajectory
segmentbi is the only reasonable way to cause a pre-
mature threshold crossing event.

Geometrically, the triangle formed by the slow null-
cline, the inhibited fast nullcline, and the threshold
Vi = 01 must lie to the left of the inhibited fixed
point I; and not be too large. K is too negative, then
the potentiaV will never reach it.

The Release MechanismSuppose that the thresholds
of cell; and cel} are just above the potentials of the
free fixed pointsF;, F, respectively, as in Fig. 9. In
this case the pair can oscillate by a similar mechanism.
If the state of cell is above thresholé,; and the state
of cell, is below threshold,,, the switch between cells
is triggered by the state of cellwhile being attracted
toward the fixed poinF;, descending below threshold
6,1 and thus releasing celirom inhibition. The poten-
tial of cell, then jumps up, crossing threshd@lg as it
does so, and causes gdlb be inhibited. Now the sit-
uation of the cells has been reversed, and after =l
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Table 1 Differences between the escape and release mechanisms for reciprocal inhi-
bition between two quiescent cells.

Escape Release
Presynaptic threshold Low High
Fixed point Both low Both high
To start oscillation from rest  Hyperpolarizing pulse Depolarizing pulse
To stop oscillations Slow-tailed depolarizing Slow-tailed
pulse hyperpolarizing pulse
To advance pulse Depolarizing pulse during  Hyperpolarizing pulse
interburst interval during burst
released from inhibition by cell one oscillation cycle Reciprocal inhibitory pair of cells
is complete. Case Q-Q

5.0

The pair can be stationary with the states of the cells

at the free fixed point§; andF,, because neither cell SSrrF

is inhibiting the other. Oscillations can be started by 30 an /// A
depolarizing one of the cells above the synaptic thresh- BRE6

old. When the pair is oscillating, a depolarizing pulse 10 | "OOF /
has little effect because it cannot cause a premature z SIS //:

crossing of a threshold. A hyperpolarizing pulse ap- 0 TR "‘dgbl PP |

plied dqung an mte_rpurst mterlval, v_vhen the stgte of \3\\\\65.35"\

the cell is on the inhibited nullcline will also have little a0l ali s N N

effect, but the same pulse applied during the burst will © 8§y

bring the potential below threshold prematurely, the 5o .

cells will switch, the burst interval will be shortened, 0.0 20 40

and the network is phase advanced. See trajectory seg- Synaptic conductance W

mentb in Fig. 9. The different responses of the escape Figure 10  Bifurcation diagram for two quiescent cells connected

and release mechanisms to short pulses is summarizedvith symmetrical reciprocal inhibition (case QQ), in the-9 plane.

in Table 1. Note that the-axis could be replaced by an equivalent injected cur-
Oscillations cannot occur if the threshold line in rent axis (with different scale). See text. Model parameters as for

h oh trait lies bet the inhibited and f Figs. 8 and 9. The five regions are: (&S steady-state atFj,

e_ac p ‘jise por r_al 1es be Ween_ e Innibited and free F2); OR-SSE, oscillations by release or steady-state B, F);

fixed points. This would occur if a neuromodulator pp, plateau potentials where the two steady stateglaré,) or

either made the synaptic conductaniig too large or (F1, 12); OE-SS 1, oscillations by escape or steady-statél atl5);

raised the synaptic threshold too high. One cell be- SSi, steady-state atés, I2). The arrows across the OR-§SSSr

comes locked at a high potential and the other cell at border indicate that oscillations by release could be stopped by shift-

. . . ing the threshold upwards—thus destroying oscillations by release if
a low pOtentlal' The cells can switch (hlgh IOW) present—and then slowly moving the threshold back to its original

after application of a current pulse to one of the cells vajue. Equivalently, by the same effect can be obtained by inject-
that causes it's membrane potential to cross the synap-ing and slowly releasing a hyperpolarizing current. Similarly, the

tic threshold (up or down). Thus each cell individually ~arrows across the OE-§&SS; border indicate that oscillations by
behaves as if it has intrinsic plateau potentials escape could be stopped by shifting the threshold downwards and

. slowly returning to its original value, or equivalently, by injecting
The relation between escape and release can be seeq, slowly releasing a depolarizing current. The podatsy, ¢,

in the bifurcation diagram in th&/ — ¢ plane for the dy on the vertical dotted line are defined by corresponding labeled
case QQ, Fig. 10. If the threshold is above the free rest points in Fig. 8(b).

potential—that is, thé/-coordinate of the free fixed

point F;,—but not too high, then oscillations by release for escape and release. Here, either one cell is free
occur (region OR-S&). Oscillations by escape occur  and inhibiting the other cell, or vice versa, and small
for threshold in a relatively narrow band of negative pulses to one of the cells can cause the pair to switch
values (region OE-S§3. Otherwise the pair does not polarities like a flip-flop. However, this region reduces
oscillate. Note the region of plateau potentials when in size and disappears when the gain of the synaptic
the synaptic threshold lies between the values requiredtransmission functiony) is sufficiently reduced.

\

Threshold
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Thus the presence of plateau-like responsesinanon- By the preceding description one can use current
isolated cell does not necessarily imply these are causedinjections to get a change in behavior almost the same
by intracellular mechanisms but may rather be caused as that obtained by shifting the graded threshold. The
by network interactions. The dashed line shows that if only differences between a behavior change obtained
the synaptic conductan®® could be slowly increased, by modifying the graded threshold and that obtained by
keeping the synaptic threshold below rest, then the pair injecting a current are: (1) the ranges of the oscillations
would change from a state in which both cells are in- in each case will be different, since the fixed points are
hibited, to oscillations by escape, to network plateau shifted along the voltage axis; and (2) the frequencies
potentials. of the oscillations will be slightly different because of

One can see that if the threshold for graded synap- the spreading apart of free and inhibited fast nullclines
tic transmission could be changed one would traverse with depolarizing current that affects the amount of
(from low to high threshold) the following range of be-  time spent on the slow parts of the limit cycle.
haviors: steady-state with each cell inhibiting the other ~ An important caveat must be added. This duality
(region SQ); either oscillations by escape or a steady- between moving a threshold and altering the injected
state with each cell inhibiting the other (region OE- currentapplies only over ranges of membrane potential
SS1); plateau potentials with switches between which for which the fast nullclines are approximately linear—
cell is free and inhibiting the other (region PP); either that is, the fast IV curve, with and without synaptic
oscillations by release steady-state with both cells free current, must be approximately linear in the range con-
of inhibition (region OR-S&); and steady-state with  sidered.
both cells below threshold, free of inhibition (region Generally, the graded threshold is fixed in an ex-
SSF). periment, but this approximate duality allows for the

changing of behaviors, and hence mechanisms of os-

. ] cillation, by using injected currents instead to obtain
A Dua!|ty Betweeni Thresholql and Injected Current.  {ha same effects. For example, the series of behaviors
There is an approximate duality between the presynap- corresponding to regions $SOE-SS, PP, OR-S§&:,
tic threshold for grade(_j j[ransmissiogr;(ided thresh- SS, would be obtained, if one started in §y in-
old) and the amount of injected current, for the follow- ecting successively larger a mounts of hyperpolarizing
ing reason. An injected current shifts the fast—free ¢ rent into both cells.
and inhibited—nuliclines up (depolarizing current) or | the leech, reciprocal inhibitory pairs of heart in-
down (hyperpolarizing), without shifting the slow null-  tarneyrons are believed to oscillate by an escape mecha-
cline. Consider Fig. 9, left panel. A depolarizing cur- pism (Calabrese etal., 1995). The swim CPGlione
re_nt injection shifts thg fast nu!lclines 'Foward less neg- (Arshavsky etal., 1985a, b, ¢, d) appears to operate by a
ative potentials, causing the fixed poirig and |, to release mechanism. In the isolated lobster stomatogas-
move rightward in the phase plane. Thus such a current e ganglion, with no extraganglion modulatory inputs,
raises the fixed points to less negative potentials. The e cells LP and PD in the pyloric CPG appear to oscil-

first major change occurs when the fixed points bracket |5 by an escape mechanism (Miller and Selverston,
the graded threshold—uwith the possibility of plateau 1982).

potentials. When more depolarizing current is applied

the fixed pointl; would lie above the graded threshold,

in position for oscillations using the escape mechanism. Case PP: Both Cells Have Plateau Potential$his
Now the phase portraits of Fig. 8 describe the dynamics is illustrated in Fig. 11. When there are no synaptic
of these oscillations. Here one can see that shifting the inputs, cell has two fixed pointstH; andD;, and cel}
threshold to lie below (more negative than) the potential has fixed pointH, and D,. Brief current pulses ap-
labeledal would destroy this mechanism. Translat- plied to cel} can cause its potential to jump between
ing to currents, even more depolarizing current in each H; and D;. Similarly, brief current pulses applied to
cell would cause the difference in potential between cell, can cause jumps betweéh andD,. The synap-
the fixed pointgF, 11, Fp, 12) and the threshold to be  tic strengths must be large enough to destroy the high
too large for the threshold-crossing events needed for plateau fixed point®; andD.

the escape mechanism to occur; consequently the pair When cell is receiving inhibitory synaptic input
of cells will approach a steady-state with each cell in- from celk, the fast nullcline shifts to its inhibited po-
hibiting and being inhibited by the other (region,$5 sition by a downward motion and a small clockwise
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(a)

Figure 11 Two cells, each exhibiting plateau potentials, may os-
cillate when linked with reciprocal inhibition, in this case by an es-
cape mechanism. (a) traces, (b) phase portraits. (“slow,” “free,”
“inhibited” as in Fig. 8). The slow nulicline in each cell inter-
sects the fast nullcline in three places; the poidfsand D; are

the low and high plateau potentials in ¢ell = 1, 2. Parameters are
0.2,-1,-1,4,4,2,2).

rotation, resulting in a single inhibitory fixed poiti.
Similarly, celb has the single inhibited fixed poit.

In the situation in Fig. 11, the synaptic threshold for
each cell is below the potential of the cell's inhib-
ited fixed point. If cell’s potential is below threshold
and cel’s potential above threshold, the state of cell
moves rapidly onto the inhibited fast nullcline and be-
gins to move slowly along it towarti, while the state

of cell, is attracted onto the free nullcline and moves up
toward the high free fixed poiid,. Sinceds,; is so low,
the state of ceflstays below threshold only briefly then
crossesss, inhibits celb, and causes the inhibited fast
nullcline to come into effect there. The state of gell
moves rapidly left onto the left leg of the inhibited fast
nulicline. Before reaching the inhibited fast nullcline
the state goes below thresheld, finally allowing the
state of celj rebound up to the right leg of cel free
fast nullcline. Now a situation has bee reached with
cell; depolarized above threshold and gdilyperpo-

Reciprocal inhibitory pair of cells
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Figure12 Bifurcation diagram for two cells with plateau potentials
when connected with symmetrical reciprocal inhibition (case PP), in
the W-6 plane. Other parameters as in Fig. 11. The six regions are:
PRng, each cell is at a Plateau potentiklor D;) independently of

the other cell; OR-PRy, oscillations by release or a steady state with
each cell atindependent plateau potentials;, Bffee possible steady
states—Hj, 12), (L1, H2) or (H1, Hp); PPy, four possible steady
states—Hy, 1), (L1, I2), (I1, Hp) or (l1, L); OE-SS, oscillations

by escape or steady-state(&, 12); SS, steady-state at1, 1.)

The downward and upward shoulders in the traces
are due to the slowing of the trajectories near the up-
ward knee in the free nullcline and the downward knee
in the inhibited nullcline.

If the graded thresholds are fixed at a potential more
negative than the rest potential (see dashed line in
Fig. 12), then there is a window of synaptic strengths
(W12 = Why) for which oscillations can occur. W
is too small, the high fixed point still exists on the in-
hibited free nullcline so oscillations do not occur, and
if W is too large, then the intersection poirntsare to
the left of the threshold&; and the pair locks up with
one cell's state al; and the other ab;. If the graded
thresholds are at potential significantly more positive
than the rest potential (such as 1.0 in Fig. 12), then
oscillations by release occur for all synaptic strengths
above a minimum value.

The bifurcation diagram for case PP, Fig. 12, is sim-
ilar to the bifurcation diagram for case QQ, but with a
positive minimum synaptic conductan®¢ sufficient

larized below threshold, so the same mechanism with {© destroyD; (vertical line on left) and also a mini-
the cells interchanged will bring the system back to the Mum positive threshold for oscillation by release. This
starting state, and one cycle is complete. This processthreshold is the potential of the high fixed point D.

is closely related to the escape mechanism for a pair of

quiescent cells. Similarly, two cells with plateau po-

Case DQ: One Cell Depolarized, One Quiesceitthis

tentials can also oscillate through a release mechanism.case, in Fig. 13, demonstrates the difference between
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Figure 13 The synaptic and intrinsic escape mechanism. (a) and
(b), oscillations by synaptic escape; (c) and (d), oscillations by intrin-
sic escape. Nullcline labels have been omitted. Note the difference
in the cell phase portrait in (b) and (d). There is no inhibited fixed
pointly in (d) and the threshold is higher (less negative) in (d) thanin
(c). Parameters are, synaptic, (0.2, 6-8,466,—0.52, 4. 5, 0, 3, 3),

i1 =0.4,i2 = 0, intrinsic,(0.2, 0.4, 0, —0.466,—0.52, 4.5, 0, 3, 3),

ip =1.38,i, =0.

synapticand intrinsic mechanisms as introduced by
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cell; and by synaptic escape in celln the latter case,
cell; escapes from inhibition simply by coming to the
downward knee in the inhibited nulicline and jumping
onto the right branch of the free nullcline, crossing
threshold as it does so. In moving from the (ab) case
to the (cd) case, more depolarizing current is present
in cell; and its graded threshold has been made less
negative. This shiftin threshold could not be achieved
by suitable current injections as described earlier when
the fast nullclines are completely linear. One could
achieve the same effect as this threshold shift if it were
possible to lower (make more negative) the reversal
potential for the lumped fast IV curve.

The Remaining CasesThe other five cases where
both cells of the pair have N-shaped fast nullclines,
but neither cell is an endogenous oscillator (cases HP,
DP, HH, DH, DD), are very similar to the PP case, and
we will not describe them in detail. The DH exam-
ple in Fig. 7 shows cell“missing a beat” to give 1:2
frequency locking. The mechanisms at work in case
DH andinthe 2: 1 frequency locking examples of cases
EP and AH have one componentin common, which we
will discuss after describing the 1 : 4 frequency locking
case shown in Fig. 14.

In the case QE shown, the threshold in cé&ltoo
high so the cell is being driven by cglvith no feed-
back. In cases QD, QH, and QA the Q cell acts as
a switch that keeps the second cell oscillating, essen-
tially by injecting current pulses into the second cell,
resulting in responses like those shown in Figs. 5d, e,
and b, respectively. In the A row, AE, AD, AH, and
AP, the position of the first cell’s threshold does not
need to be set carefully so long as it lies within the
upper and lower extremes of the membrane potential.
In the E row, again the threshold of the first cell does
not need to be set carefully. In case DD, the thresholds
are in the release position very close to the depolarized
rest potential, thus extending the length of the burst and
reducing the frequency.

1:N Frequency Locking. In the pair of cells in Fig. 14,

cell, would be an endogenous oscillator if isolated
since the slow nulicline intersects the fast nulicline at
a single point between the two knees of the fast null-

Skinner et al. (1994). Another instance using a release cline. Cell has a split slow current with a significantly

mechanism appears in Fig. 7, QD. The oscillations in

smaller inward conductance than the outward conduc-

the top two panels show oscillations by synaptic escape tance. Thus the slow nulicline intersects the free fast

in both cells, while in the bottom two panels oscillations

nulicline at a single point-;. So if cell was isolated,

by escape are again present, but by intrinsic escape inits state would remain at the fixed poiRt. If cell;
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Figure 14 1:4 frequency locking in a pair of cells connected with
reciprocal inhibition. (a) Traces of1, qi, andV,. Theq; trace
has been inverted to show similarity to the conductance in the
E-cell model of Kopell and LeMasson (1994), tHeactivation vari-
ables of Wang (1994), and the (Wang et al., 198bxurrent in

TC cells. (b) Phase portraits—"slow,” “free,” and “inhibited” as
in Fig. 8. There are no stable fixed points in gellParameters
are(0.106667 0.106667 0.1, 0.1, 2, 2, (0.76666 7.1), 4). Note the
pair of conductanceé&in, oout) given for the split slow current in
cell;. (c) Schema showing detail of the one-dimensional phase-
portraits at the left “knee” in thé/-nulicline of cely. If cell; is
being inhibited by cell and than released at the first arrowhead on
the inhibitedV -nulicline, the horizontal movement is defined by the
one-dimensional phase portraitpl so the state jumps only to the
left fixed point. If cel} is released at the second arrowhead, the

isolated condition. This holds true only if the synaptic
connection strengtMb; does not move the point of
intersection of the inhibited and slow nullclines out-
side the region between the knees of the inhibited fast
nullcline. Then cell will continue to oscillate whether
cell; is above or below threshold. When gei$ hy-
perpolarized by cell its free fast nullcline shifts to
an inhibited position (see left phase portraitin Fig. 14)
which intersects the slow nullcline at the inhibited fixed
point I;. Suppose for the moment that geis per-
manently inhibited by cell The state of cell trav-

els slowly down the inhibited fast nullcline towatg,
moving more slowly the closer it gets. Legt be theg-
coordinate of the downward-pointing knee of the free
fast nullcline. Since the-coordinate ofl; is below

gk, eventually the state of celWill get so close td;

that itsg-coordinate is below . If at this time inhibi-
tion by celb is removed, cefls state will rebound and
jump onto the right leg of the free nulicline. At this
moment the horizontal line through the state of cell
defines a one-dimensional phase-portrait with a single
attracting fixed point at the intersection of the right
leg of the free fast nullcline with the horizontal line.
If the inhibition by cel} is removed too early, with
the g-coordinate of the state still aboweg, the one-
dimensional phase-portrait defined on the horizontal
line through the state still has three fixed points. See
Fig. 14(c),phpl andphp2. In particular the left leg of
the free fast nullcline defines an attracting fixed point
on this one-dimensional phase-portrait so the state of
cell; jumps only a short distance onto the left leg of
the free fast nullcline, and then moves slowly down the
free fast nullcline toward the free fixed poifg. If

the inhibition by cell is restarted, the state will switch
back onto the left leg of the inhibited fast nullcline and
continue moving slowly downward, this time toward
I;. Thus the left legs of the free and inhibited fast null-
clines define two sides of a corridor down which the
state of cell moves, sometimes on one side towards

one-dimensional phase portrait has only one fixed point so the state F;, sometimes on the other towaFd, depending on

jumps to the right leg of the free nulicline.

whether cel is inhibiting celk or not.
Since cel} continues to oscillate whatever the state
of cell;, eventually the state of celfjets low enough—

receives a constant depolarizing current, enough thatbelow gk —that the next time cellis released from

the free fast nulicline intersects the slow nulicline in a
single point between the two knees of the fast nulicline,

inhibition by celb, its state jumps right all the way
onto the right leg of the free fast nullcline. However,

it becomes an endogenous oscillator with a duty cycle since theg-distance betweem; and the downward-

of less than one half.
When the cells are linked with reciprocal inhibition,
cell, continues to oscillate in manner very similar to the

pointing knee of the free fast nullcline is small, the
state passes very close to this knee while jumping right.
This slows down the jump (cf. Eq. (9)), causing the
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pronounced shoulder in the membrane potential trace  Different pairs of cellular types oscillate by different
of cell; as it rises to the single main peak in each cy- dynamical mechanisms. If both cells are oscillators,
cle. The three intermediate bumps between each mainthen obviously the reciprocal inhibitory pair will os-
peak correspond to the trapping of the gethte onthe  cillate; the synaptic connections provide a mechanism
right side of the corridor when the inhibition fromcell ~ for the oscillators to phase-lock in a specific relative
is removed. phase. When the natural frequency of each cell is dif-

The potential of cell continues to oscillate endoge- ferent (due to differents values), the phase of each cell
nously while the state of cglis below threshold. When  relative to the other is shifted slightly so that the cells
the cell state finally escapes from the corridor and are no longer exactly 180ut of phase. If only one
jumps to the right leg of its free fast nulicline, it rises cell is an oscillator, the oscillating cell drives the re-
above threshold, causing the state of c#dl be con- ciprocal inhibitory pair and the other cell is a follower.
fined for a brief time to its inhibited free nulicline. This  If neither cell is an oscillator, in particular if each cell
can be seen in cels trajectory where it switches from  is completely quiescent, then some other mechanism
the left leg of the free fast nullcline to the left leg of is needed. Here we have shown how oscillations can
the inhibited fast nullcline. By the time the cefitate arise in a reciprocal inhibitory pair of individually qui-
begins to jump right, the state of celhas gone be-  escent cells by means of escape or release mechanisms.
low threshold again, so the cgliree fast nulicline is The same cell model allows us to construct a model of
reinstated. This can be seen as the lower trajectory in 1: N frequency locking in the reciprocal inhibitory pair
the celpb phase-portrait and also as the small down- that relies on a dynamics where the phase point of one
ward step in thé/, membrane potential trace. Imme- cell gets “trapped” between the free and inhibited po-
diately following this step the rate of movement along sitions of this cell’s fast nullcline for several cycles of
the inhibited fast nullcline is slower than along the free the other cell. This same mechanism can give rise to
fast nullcline because in the phase-portrait the distance 1: N frequency locking in several different pairs of re-
between the state and the slow nulicline is less (cf. ciprocal inhibitory pairs, such as, cases EP, AH, and
Eq. (10)); hence the slope of c&dl potential trace is  DH in Fig. 7.
smaller immediately after the step than just before it.

The cel} potential then rebounds into a higher peak 4.1, Usefulness of Geometrical Description
than the previous three cycles.

In Fig. 7, the cases EP, AH, and DH all involve es- \ve have shown how to use the geometric properties of
sentially the same mechanism: the state is trapped be-phase portraits to understand the dynamic properties of
tween the left legs of the free and inhibited positions 3 simple cell model and of the reciprocal inhibitory pair
of the fast nullcline until it gets low enough that after of neurons. The cell model was originally derived to
the next release from inhibition the state can rebound match the major dynamical properties of stomatogas-
up to the right-leg of the fast nulicline. The fine details - ric ganglion neurons, such as postinhibitory rebound,
vary from case to case and the careful reader will easily p|ateau potentials, and endogenous oscillations. When
work them out. two such models are combined by graded inhibition
into a four-dimensional model of reciprocal inhibition
using fast synapses, the resulting dynamical behavior
can be analyzed using geometrical relationships be-
tween phase planes. This approach to modeling single
cells depends critically on the existence of a significant
difference in time scales between the “fast” currents
and the “slow” currents.

4. Discussion

In this paper we provided a tutorial introduction to
one- and two-dimensional phase portraits, introduced a
simple two-dimensional cell model, and used it to ana-
lyze dynamical mechanisms underlying oscillations by
a pair of cells connected with fast reciprocal inhibition.
The answer to the original question—whether, in order 4.2. Behavioral Range of the Cell Model

for an arbitrary pair of cells connected with reciprocal

inhibitory synapses to oscillate, any other mechanism The cell model displays behaviors corresponding to
besides release and escape need be considered—is physiological properties of individual neurons such
disappointing no when the synapses are fast and theas endogenous oscillations, postinhibitory rebound in
gainy of the synaptic transfer function is high. an otherwise quiescent cell, plateau potentials, tonic
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firing, or chronic hyperpolarization. Six different be- tic firing rate in response to a change in firing rate of the
haviors of an isolated cell can be characterized by ge- presynaptic cell. In a different neuromodulatory condi-
ometrical properties in the cell's phase portrait (Fig. tion (the gastric and pyloric CPGs are in the same gan-
5) These properties in turn translate into geometrical glion) the relative strengths of the pyloric synapses was
relationships between the IV curves of the lumped fast measured by Miller and Selverston (1982) by a similar
and slow currents. method. Exact figures for the conductances associated
with these synapses are not known. Data on the rela-
tive efficacy of stomatogastric ganglion synapses was
summarized by Wiens (1982). In a modeling study of
the leech heart CPG, that contains a small network of
identified neurons, Nadim et al., (1995) used a value of
300 nS for the graded postsynaptic conductance.

Two examples of the appropriate ranges for connec-

4.3. Behavioral Range of the Model
of Reciprocal Inhibition

Our cell model enabled us to explain how every combi-
nation of individual cellular behaviors can generate os-
cillations in the reciprocal inhibitory pair and provides .
a unified explanation of many different IP behaviors. tion Stre“,gth a.nd threshold, for the two cases QQ and
It shows how a cell that exhibits endogenous plateau PP» @€ given in Figs. 10 and 12. In order to map the

potentials but not endogenous oscillations can be part range thus de”"e‘?' |ntc_) physiological units, one has
of the pattern-generating mechanism when linked to [© @ssume a physiological, presumably conductance-

another cell with plateau potentials or even to a quies- P@s€d, model and derive a mapping between the units
cent cell, provided the synaptic strengths and thresh- used herein oursemlconductance—basgd model anc!the
olds are within the correct ranges. On the other hand, conductance-based model. An approximate mapping

when a nonisolated cell displays plateau potentials, itis 'S derived in the Appendix between the model used
possible that these are caused by synaptic interactionsthroughout this review and the Morris-LeCar model
with another cell, not by an endogenous mechanism, (1981).

as shown by the bifurcation diagrams Figs. 10 and 12.

The basic mechanisms involved in all cases when nei-

ther cell is an oscillator are escape and release. 45 Plateau Potentials

4.4. Physiological Ranges of Synaptic Threshold Plateau potentials are important in generating motor
and Conductance behavior (Marder, 1991; Kiehn, 1991). From Fig.
6 we see that once the gain of the fast inward cur-
In this review we have seen that the mechanisms of os-rent is above a certain threshold, an isolated cell will
cillation when neither cell is an oscillator depend criti- have plateau potentials, and that a steady current in-
cally on relationships between the presynaptic thresh- jection will convert it into a steady depolarized or hy-
old for postsynaptic activation, the synaptic strength, perpolarized states. From Fig. 10 we see that even if
and the IV curve for the slow current. Further, these an individual cell does not possess plateau potentials,
relationships vary from one mechanism to another. the same cell embedded in a network connected with
Thus it is appropriate to ask for the physiologically graded synaptic transmission could have plateau po-
appropriate ranges for synaptic threshold and synaptic tentials and that, once established, plateau potentials
strength in a specific system such as the lobster gastricare insensitive to synaptic strength. However, if the
mill CPG. The synaptic threshold for graded transmis- gain of the synaptic transfer function is low enough
sion in the lobster gastric mill has been measured at that the width of the sigmoid is a significant proportion
~ —47 mV (Graubard, 1978; Johnson et al., 1991) and of the potential difference between the free and inhib-
as~ —59 mV (Graubard et al 1983). Release thresh- ited fixed points, the region of plateau potentials in this
oldsin other systems range fram—40 mVto~ —75 figure disappears for low synaptic conductance. We
mV (Harris-Warrick et al., 1992b, p. 79). also see from this diagram that a change in threshold
The postsynaptic conductance (strength) has rarely, in a nonisolated cell, hence a current injection (cf. Fig.
if ever, been measured directly. A rough measure of 10), can convert plateau potentials into oscillatory be-
the relative strength of several gastric mill synapses, havior. This may be the reason why plateau potentials
in one neuromodulatory condition, was obtained by have often been confused with oscillatory behavior in
Russell (1985) by measuring the change in postsynap-the past (Marder, 1991).
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satisfied. A pre-requisite for this restriction to hold is
that the duty-cycle of the oscillators is small. However,
When the synaptic time course is comparable with the small perturbations to the antisynchronous oscillation
cycle time, other behaviors than out of phase oscilla- usually result in it being replaced by the synchronous
tions are possible for the reciprocal inhibitory pair. In oscillation, so it is not clear whether this additional os-
particular synchronous oscillations are possible. This cillation mode will be of biological significance. Our
was first shown by Wang and Rinzel (1992) in a model model and the Morris-LeCar model both satisfy the
with slow graded synaptic transmission, and subse- extra Kopell-Somers restriction when the duty cycle
quently Van Vreeswijk et al. (1994) elegantly showed is small, and thus, when reciprocal inhibition is con-
that when spike-mediated transmission is used, syn- sidered, one finds a second oscillation mode that is
chronous oscillations are to be expected when the rise synchronous. However, the rate of approach to the sec-
time of the synaptic response is longer than the dura- ondary oscillation mode is much slower than to the
tion of an action potential. Hansel et al. (1995) con- first, and when the mode is established it is not robust
sidered networks connected with excitatory synapsesto small perturbations.

and showed that in general, excitatory synapses with Escape and release mechanisms have been previ-
a slow time course cause pairs of cells to be desyn- ously described by (Wang and Rinzel, 1992). Their
chronized. The same arguments applied to inhibitory cell model includes a leak current and a voltage depen-
synapses show that pairs will become synchronized. dent inward current that activates instantaneously and
Wang and Rinzel (1993) applied their 1992 model to inactivates slowly. The fast nullcline arising from their
investigate sleep spindle rhythmicity in thalamic nu- current equation corresponds to our fast nullcline, and
clei. Because GABA receptors mediate inhibition the nulicline arising from the equation for inactivation
with a large delay constant, their model suggests that of the inward current corresponds to our slow nullcline.
GABA g receptors may play a critical role in synchro-  Their nuliclines intersect at single points when the fast
nization among reticular neurons. nullcline is either free or inhibited; the rebound exci-
tation when the other cell falls below synaptic thresh-
old gives rise to oscillations. The abstract dynamical
mechanismis the same in their model and in ours, when
considered as properties of linked phase-portraits, but
the physiological implementations of the mechanisms

4.6. Effect of Slow Synapses

4.7. Comparison with Other Work

Our survey extends and complements the work of

Wang and Rinzel (1992) and Skinner et al. (1994). Our
model's dynamical behavior is similar to the
conductance-based Morris-Lecar model (Morris and
Lecar, 1981) used by Skinner et al. (1994), and LoFaro
et al. (1994) to study reciprocal inhibition, and by
Somers and Kopell (1993) and Kopell and Somers
(1995) to study mutual excitation. The latter authors
explored why two Morris-LeCar cells linked with mu-
tual excitation will approach complete synchrony very
rapidly, essentially within one cycle, and stated con-
ditions on the dynamics of any two-dimensional cell
model for this to occur. Termedompressionthese
conditions are also satisfied by our cell model. The
arguments for synchronization of mutually excitatory
cells apply equally well to antiphase oscillations of re-
ciprocally inhibitory cells. For this reason our model re-
ciprocal inhibitory pairs always converge to antiphases
of behavior very rapidly, within one cycle. In a sec-

differ: in their case the slow variable controls inactiva-
tion of the conductance of an inward current, while in
our model the slow variable controls the activation of
a current.

Rose and Hindmarsh (1989a, 1989b, 1989c) and
Hindmarsh and Rose (1994a, 1989b, 1989c) make ex-
tensive use of phase diagrams in providing a deep anal-
ysis of the properties of thalamo-cortical neurons. In
particular, at one point they use a “lumped slow cur-
rent” in reducing a six-dimensional model to a two-
dimensional model; most of their analyses are de-
pendent on geometric properties in a two dimensional
phase plane.

4.8. 1:N Frequency Locking

A 1:N frequency-locking mechanism was described

ond paper (Kopell and Somers, 1995) they pointed out by LoFaro et al. (1994) and Wang (1994). LoFaro

that, although synchronous oscillations are always pos-

sible with mutual excitation, antisynchronous oscilla-
tions can also occur provided a further restriction is

et al. (1994) used a model reciprocal inhibitory pair
using the Morris-Lecar equations for each cell with the
addition of a slow inwardh-like currentin one cell, and
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a synaptic model similar to ours except that in some et al. (1995) both went further and used a distributed
cases the synaptic current had a time-dependent, butversions of this mechanism in large networks, the for-
fast, build-up. In their model, the frequency-locking meras a model of cortical architecture, and the latter as
ratio increased as the hyperpolarizing current injected a component mechanism in a large-scale thalamic net-
into theip-cell in creased (LoFaro et al., 1994, Fig. 2), work model with two cell populations: the excitatory
in agreement with data from the pyloric CPG in the lob- thalamocortical (TC) relay neurons and the inhibitory
ster. We obtain almost identical behavior in our model: nucleus reticularis thalami (RE) neurons. Gah
adepolarizing current of appropriate amplitude incell  Fig. 14 maps to the TC cells and gethaps to the RE
raises its fast nullcline (Fig. 14), sothat 1: 1 frequency- neurons. In the network model of Kopell and LeMas-
locking occurs. Then as this is reduced, or equiva- son (1994), theik cells burst intermittently and have a
lently, as hyperpolarizing current is increased, the ratio slow inwardly, type current for which the conductance
changesto 1:2to 1:3to 1:4. Higher ratios also oc- has a time course that is similar to the time course of
cur (data not shown). The details of the mechanisms the slow current in cell plotted as—q; in Fig. 14.

differ slightly because the (LoFaro et al., 1994) model
has a slow potassium current and, in addition, a third
equation for ariy current; the latter serves to slowly
shift the position of the fast nullcline and hence the po-
sition of the inhibited fixed point (cf. the fixed point
I1 in Fig. 14). We used a reduced conductance for the
inward portion of the slow current, obtaining the same
behavior with only a two-equation model for gelWe

can also obtain this behavior by keeping the same con-
ductance for the inward and outward parts of the slow
current but making the time constant for the inward part
slower.

Wang (1994) studied two dynamical modes of a four-
dimensional model of a thalamic relay neuron with
six ionic currents. In addition to ah,-current, his
model hadlt, Ina, Ik, Inap, @andl currents. One
mode was rhythmic bursting in response to steady in-
jected current, the other was intermittent phase-locking
when driven by a periodic hyperpolarizing current in-
jection. Both these behaviors occur in simple form in
our model (Fig. 14): if the feedback inhibition from
cell, is removed and a depolarizing current injected,
cell; exhibits bursting; other wise IN intermittent
phase-locking occurs as described. A wide variety o
intermittent phase-locking phenomena were found to
occur, including the case of I of a phase-locking
for N = 2, 3, 5, 6. One conclusion was that the
intermittent phase-locking originated from a temporal
integration of hyperpolarizations by the slowly activat-
ing sag currenty,. The activation variablél for thely,
current displays a similar time-course to our slow cur-
rent variableq; (Fig. 14(a)), which has been inverted
in the figure to show the similarity.

Thus our model for 1N frequency locking between  4.10. Final Summary
two cells (Fig. 14) contains the essential ingredients un-
derlying the mechanisms of LoFaro etal. (1994) and of We have shown that when attention is restricted to a
Wang (1994). Kopell and LeMasson (1994) and Wang very simple two-dimensional dynamical cell model,

4.9. Neuromodulators

The motor patterns produced by a CPG such as the
lobster gastric mill can be profoundly altered by
numerous neuromodulatory substances, for example
acetylcholine, dopamine, histamine, proctolin, oc-
topamine, serotonin (see Selverston, 1993, for a re-
view). Changes in synaptic efficacy—but not in synap-
tic conductance—at all pyloric synapses in response
to the neuromodulators dopamine, serotonin and oc-
topamine was investigated by Harris-Warrick et al.
(1992a) (summarized in Harris-Warrick et al., 1992b).
In a few cases, some biophysical changes underly-
ing neuromodulator-induced behavioral changes are
known; one is the effect of dopamine on the lobster
pyloric CPG. The numerous biophysical changes un-
derlying the behavioral effects of dopamine (Harris-
Warrick and Marder, 1991) include (1) reduction of
amount of transmitter release by the PD cell (Eisen and
Marder, 1984), (2) reduction in the transient Kurrent

I in the PY neurons (Harris-Warrick et al., 1995hb),

f (3) modulation of thd 5 and |y, currents in the LP cell
(Harris-Warrick et al., 1995a). Dopamine modulated

| o by reducing its maximal conductance and shifting its
activation and inactivation curves, while it modulated
Iy, by shifting its activation curve in the depolarized di-
rection and increasing its gain. Inthe case of serotonin,
the biophysical effects on one crustacean motoneurone
were measured by Kiehn and Harris-Warrick (1992):
serotonin enhancdg and decreasds ca)-



Fast Reciprocal Inhibition 125

the mechanisms of escape and release are sufficientto where

produce oscillatory behavior in essentially all cases of
reciprocal inhibition. We have also provided a parsi-
monious model for “beating” between two cells that
underlies several more sophisticated models of this
type of behavior; shown how plateau potentials can
arise from quiescent cells connected with reciprocal
inhibition; sketched the outlines for ranges of synaptic
threshold and strength required for oscillations in cases
of two quiescent cells or two cells with plateau poten-
tials, with the ability to generate similar maps of the
ranges needed for other combinations; and predicted
that some oscillations caused by reciprocal inhibition
could be stopped by a suitably shaped current injec-
tion. We have done this without involving the reader
in any sophisticated mathematics other than the geo-
metric properties of two dimensional phase portraits.
This was done with an extremely simple cell model

that, nevertheless, captures the essential mechanism of

many dynamical phenomena in small neural networks.
If there is a well-defined relationship between it and

a larger conductance-based model, the parameters and

dynamics of the simple model map to parameters and
dynamics of the larger model and thus provide a guide
to the role of physiological parameters in the behavior
of the larger model. Thus the simple model is a valu-
able tool for preliminary exploration of the dynamics
of small networks.

Appendix: Relation of Our Model
to a Conductance-Based Model

Consider the Morris-LeCar cell model, which has a
leak conductancg, with reversal potentiaV/_, a per-
sistent calcium conductangg, with activation vari-
ableM, (V), and slow potassium conductargzewith
time-dependent activation variate The calcium cur-

rent is assumed to be so fast that it activates instanta-

neously. The time course for activation of the potas-
sium activation variabl&l is given by the second equa-
tion below.

av
CE =0V —-WV)
—0caMoo (V) (V — Vca)
=0k N(V — Vi) — linj
dN

i AN(V)(Neo (V) = N),

1

1 V -V
Moo (V) = §<1+tan)'< ))

2
1 v
Noo (V) = §<1+tam’< 3

“))
V) = ¢NCOSI-<V

4
VA

2V, )

Divide by g, and set
C

T o
fastV, gea) = (V — V) + %‘me)(v Ve

Tm

. linj
linj = —

gL
1
V) =
(V) )
=NV - Vi)
gL
e (V) = ZNLV)V = Vi),
gL
This gives
Tma = —(fast(V, gca) +q + iinj)
1 dg 1 ok av

dN
—( =V N
|:dt( k) + @

]

V)t an(V) gL
- g—K[mm ~ N)(V — Vk)
oL

1 av
- NZL
An (V) dt:|
=0o(V) —q +e,

where, since & N < 1,
c— 1 Ok, (fastV.gca + @)
An(V) g Tm
< on 2 (fastV) +q).

For the majority of the time in one cycle, the phase
pointis on or near the fast nuIIcIir%l —(fastV) +
q) = 0, hences ~ 0. For the remainder of a cycle,
€ % 0 only during the brief jumps from one arm of the
fast nullcline to the other. Due to the difference in time
constantsg changes by a negligible amount during a
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jump, so the overall effect efis negligible. Dropping
¢, we have reformulated the Morris-Lecar model as

dv .
g = —(fast(V, gca) + q + iinj)
dq
TN(V)E =0x(V) —Q.

If we now replacery(V) by a constantrs =
w(Vs) = 1/¢n, then we have a model identical in
form to the cell model given by Egs. (1) and (2). The

approximate map between the parameters of our model

and the Morris-LeCar model is given by:

Tm = C/gl
75 ~ TN (V3).
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