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Abstract

The reshaping and decorrelation of similar activity patterns by neuronal networks can enhance their discriminability,
storage, and retrieval. How can such networks learn to decorrelate new complex patterns, as they arise in the olfactory
system? Using a computational network model for the dominant neural populations of the olfactory bulb we show that
fundamental aspects of the adult neurogenesis observed in the olfactory bulb – the persistent addition of new inhibitory
granule cells to the network, their activity-dependent survival, and the reciprocal character of their synapses with the
principal mitral cells – are sufficient to restructure the network and to alter its encoding of odor stimuli adaptively so as to
reduce the correlations between the bulbar representations of similar stimuli. The decorrelation is quite robust with respect
to various types of perturbations of the reciprocity. The model parsimoniously captures the experimentally observed role of
neurogenesis in perceptual learning and the enhanced response of young granule cells to novel stimuli. Moreover, it makes
specific predictions for the type of odor enrichment that should be effective in enhancing the ability of animals to
discriminate similar odor mixtures.
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Introduction

Contrast enhancement and decorrelation are common steps in

information processing. They can reshape neuronal activity

patterns so as to enhance down-stream processing like pattern

discrimination, storage, and retrieval. The activity patterns can be

complex and new patterns may become relevant due to changes in

the environment or in the life circumstances of the animal. How

can networks adapt to such demands, as they arise, for instance, in

the olfactory system? What are neural substrates that would allow

the necessary network restructuring?

In the olfactory system initial sensory processing is performed in

the olfactory bulb. Its inputs consist of activation patterns of its

100–1,000 glomeruli, each of which can be considered as an

individual input channel representing a specific olfactory receptive

field. The bulbar network reshapes the patterns representing odor

stimuli and typically reduces the correlation between output

patterns representing similar odors as compared to the respective

input patterns [1–3]. It does so despite the fact that even simple

odors evoke complex activation patterns due to the fractured

representation of the high-dimensional odor space on the two-

dimensional glomerular surface [4]. Unlike spatial contrast

enhancement in the retina [5], this decorrelation can therefore

not arise from local lateral inhibition that is confined to

neighboring glomeruli [3,6]. What types of network connectivities

can then underlie the enhancement of small, but significant

differences in the representation of similar odors?

Previously, a number of different decorrelation mechanisms

have been proposed, each of which exploiting a different aspect of

the nonlinear dynamics of the bulbar network. The network

connectivities were taken to be fixed, either without any lateral

inhibition [4], with all-to-all inhibition [7], or with sparse random

connections across large portions of the bulb [3]. These networks

were shown to reduce quite effectively the correlation between the

representations of moderately similar stimuli.

A different perspective is suggested by two distinctive features of

the olfactory system: i) many odors do not have an intrinsic

meaning to the animal and their significance is likely to be learned

by experience [8–10]; ii) the bulbar network structure is not static

but undergoes persistent turn-over due to neurogenesis and

apoptosis even in adult animals [11,12].

So far, the specific role of adult neurogenesis for olfactory

processing is only poorly understood [13,14]. It is known that

environmental changes like sensory deprivation [15–18] and odor

enrichment [19–21], associative learning [22–25], and life

circumstances like mating [26] and pregnancy [27] affect

anatomical and functional aspects of the olfactory bulb. Moreover,

genetic [28,29], pharmacological [30–32], and radiational manip-

ulations [33,34] have identified the significance of neurogenesis in

these modifications.

Here we ask whether the neuronal turnover associated with

adult neurogenesis can provide a neural substrate for the

adaptation of the network to the decorrelation of different relevant

stimuli that may be highly similar. Such a contribution of

neurogenesis to pattern separation has been proposed for the

olfactory bulb as well as the dentate gyrus [35]. We use a minimal

computational network model of neurogenesis in the olfactory
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bulb that incorporates the persistent addition of new inhibitory

interneurons (granule cells) into the olfactory bulb [36], their

connection with the principal mitral cells via reciprocal synapses

through which the mitral cells excite the granule cells and the

granule cells inhibit the mitral cells [37], and the activity-

dependent apoptosis of the granule cells [15,32,38–41]. Using

stimulus ensembles based on glomerular excitation patterns

observed in rat [42] we find that the networks learn to decorrelate

even very similar stimuli. This results largely from the surviving

granule cells detecting strongly co-active mitral cells and providing

lateral inhibition between them. Our modeling gives a natural

interpretation of recent experiments on the role of neurogenesis in

the perceptual learning of a non-associative odor discrimination

task [40] and the detection of novel odors [20]. Our computational

model predicts that learning to decorrelate highly similar mixtures

comprised of dissimilar components requires the exposure to a

mixture of the components rather than the individual components

themselves. This can be tested in behavioral experiments using

suitable enrichment protocols [40,43–45].

Results

Activity-Dependence of Survival Drives Decorrelation
In our computational model we consider the recurrent network

formed by principal mitral cells and inhibitory granule cells. We

focus on the adaptive restructuring of the network connectivity in

response to a stimulus ensemble and model the individual neurons

in a minimal fashion using linear firing-rate dynamics (cf.

METHODS, Discrete Adaptive Network Model). Focusing on the

evolution of the network structure we ignore transients in the

evolution of the neuronal activities and consider only their steady

states in response to any given odor stimulus. The network is

persistently rewired by adding in each time step of the network

evolution randomly connected new granule cells and removing

granule cells that are not sufficiently active during the steady state

reached in response to odor stimulation (Fig. 1). Specifically, the

survival probability of a granule cell depends in a sigmoidal

fashion on its ‘resilience’ R, which we introduce as its thresholded

activity summed over the stimulus ensemble.

In most of the computations we use input patterns that are

based on a set of experimentally obtained glomerular activity

patterns in rat [42] corresponding to the odorants +-limonene,

+-carvone, 1-butanol, 1-hexanol, 1-heptanol, and acetic acid

(Fig. 2A). They drive 424 mitral cells, which in turn excite about

10,000 granule cells. Due to the reciprocal character of these

synapses each granule cell provides self-inhibition to each of the

eight mitral cells that drive it as well as lateral inhibition between

them (Fig. 1A). All synaptic strengths are taken to be fixed. Unless

noted otherwise, all excitatory and all inhibitory synapses have

equal strengths, respectively.

The network that eventually emerges as a statistically steady

state from the persistent rewiring substantially reshapes the

representation of the stimuli (Fig. 2B). In particular, the mitral

cell activation patterns, which represent the output of the olfactory

bulb, differ from each other significantly more than the glomerular

input patterns. To quantify this reduction in similarity we use the

Pearson correlation rab of the patterns associated with stimuli a
and b (cf. Eq.(10)), as has been done in previous, experimental

studies [1–3]. Thus, the network achieves a substantial decorrela-

tion of the stimulus representations (Fig. 2Ci,ii). This is the case for

the highly similar +-limonene- and +-carvone-pairs as well as the

less correlated, remaining stimuli of the odor ensemble. Moreover,

through the enhanced inhibition of mitral cells that are strongly

driven in this stimulus ensemble and the spontaneous activity of

mitral cells that receive very little or no input [3,46] the network

reshapes the quite focal input patterns into output patterns in

which the activity is more broadly distributed over the whole

network (Fig. 2B). Such a reduction of the focality of the output

patterns has been observed for mitral cell activity in zebrafish [3].

Particularly for stimuli that predominantly overlap in these focal

areas such a reshaping of the pattern can reduce the correlation

significantly.

Insight into the mechanisms underlying the decorrelation by the

network is gained by following the evolution of the connectivity

and the associated decorrelation performance as the network

builds up from a network without any granule cells (Fig. 3). The

early stages of this evolution are not meant to mimic the peri-natal

development of the bulb, which is controlled by mechanisms other

than those included in this model. To visualize the network

connectivities the stimuli are down-sampled to 50 channels (cf.

METHODS, Natural Stimuli) and the two-dimensional activation

patterns are re-arranged into one-dimensional vectors in which the

mitral cells that are strongly activated during the +-limonene

presentation are located at the beginning of the vector and those

that dominate during the +-carvone presentation at the end.

Because the overlap between the activation patterns of these two

pairs of enantiomers is small there are only few mitral cells that

receive significant input for both types of stimuli. They end up

towards the middle of the activity vector. For visual clarity the

diagonal elements of the connectivity matrices are divided by 10.

During the initial phase 0vt *v 40 the granule cell population is

small and provides only little inhibition to the mitral cells. Their

activities and with them the activities of the granule cells are

therefore high and none of the granule cells are removed (Fig. 3A).

Since the granule cells establish random connections with the

mitral cells the resulting effective connectivity between the mitral

cells is essentially random (Fig. 3Bi) and the activity patterns are

only reduced in amplitude without any qualitative changes; the

correlations remain high. As the mitral cell activities decrease,

some granule cells fall in their activity and resilience below the soft

survival threshold R0 (cf. Fig. 1Bi) and their survival probability

drops drastically (t *w 40). This apoptosis is selective, resulting in a

structured connectivity, in which more highly active mitral cells

Author Summary

The olfactory bulb is one of only two brain regions in
which new neurons are added persistently in substantial
numbers even in adult animals. This leads to an ongoing
turnover of interneurons, in particular of the inhibitory
granule cells, which constitute the largest cell population
of the olfactory bulb. The function of this adult neurogen-
esis in olfactory processing is only poorly understood.
Experiments show that it contributes to perceptual
learning. We present a basic computational model that is
built on fundamental aspects of the granule cells and their
connections with the excitatory mitral cells, which convey
the olfactory information to higher brain areas. We show
that neurogenesis can reshape the network connectivity in
response to olfactory input so as to reduce the correlations
between the bulbar representations of even highly similar
stimuli. The neurogenetic adaptation of the stimulus
representations provides a natural explanation of the
perceptual learning and the different response of young
and old granule cells to novel odors that have been
observed in experiments. The model makes experimentally
testable predictions for training protocols that enhance
the discriminability of odor mixtures.

Neurogenesis and Decorrelation in Olfaction

PLoS Computational Biology | www.ploscompbiol.org 2 March 2012 | Volume 8 | Issue 3 | e1002398



receive stronger inhibition (Fig. 3Bii), and a reduction of the mean

pattern correlation. The correlation between the highly similar

stimuli is, however, still high. In the third phase of the network

evolution the size of the granule cell population remains constant,

but the connectivity evolves slowly towards establishing strong

effective mutual inhibition between mitral cells that are highly co-

active during +-limonene or +-carvone presentations (marked by

circles in Fig. 3Biii). In parallel, the correlation r(top) of these highly

similar enantiomers is strongly reduced.

The effectiveness of the inhibition of highly co-active mitral cells

in decorrelating activity patterns is illustrated using a very simple

example with stimuli exciting only three mitral cells (the relevant

two stimuli are shown in Fig. 4). Like the highly similar olfactory

stimuli in Fig. 2, these stimuli overlap in strongly co-active

glomeruli. This allows the population of granule cells that connect

to the mitral cells driven by these glomeruli to be much larger than

the other two populations. The reciprocity of the synapses implies

that these mitral cells receive substantially stronger inhibition than

the other mitral cell. The resulting reduction in amplitude reduces

also the correlation between the two mitral cell activity patterns. In

Fig. 3Biii the corresponding enhanced connectivity between mitral

cells that are highly co-active during +-limonene (or +-carvone)

stimulation is marked by black circles.

Threshold Promotes Lateral Inhibition Based on Co-
Activity

What determines the performance of the networks arising from

the persistent turn-over? The granule-cell survival is controlled by

two thresholds: i) for each stimulus for which the granule cell

activity surpasses the resilience threshold Gmin its resilience R

increases (cf. Eq.(8)) and ii) the resilience accumulated across all

stimuli of the ensemble has to be above the soft survival threshold

R0 in order for the granule cell to have a significant survival

probability (cf. Eq.(9)). The survival threshold R0 controls in

particular the total number of granule cells and with it the overall

level of inhibition. In general, the overall correlation of the outputs

decreases with increasing inhibition (data not shown) at the

expense of the output amplitudes. In our comparisons we adjust

therefore R0 to keep the mean output amplitudes fixed.

A more subtle and interesting role is played by the resilience

threshold Gmin. For Gmin~0 the network achieves an overall

decorrelation that is quite comparable to that of the network of

Fig. 2 with Gmin~0:6; the highly similar stimuli +-limonene and

+-carvone, however, are only very poorly decorrelated (Fig. 5A).

The origin of this poor performance is apparent in the effective

connectivity obtained with Gmin~0 (Fig. 5B). A comparison with

the connectivity arising for Gmin~0:6 (Fig. 3) reveals that the

connections among the mitral cells that are co-active in response

to +-limonene (or +-carvone) stimulation (black circles) are not

stronger than among mitral cells that are not co-active (red circle).

As had been observed in Fig. 3, it is the connections among co-

active mitral cells, however, that are essential for decorrelating

these stimulus representations.

How does the threshold Gmin provide a co-activity detector?

Why do the connections among mitral cells that are not co-active

interfere with the decorrelation? The function of the threshold can

be illustrated with a minimal set of two pairs of strongly correlated

stimuli S(a) activating four glomeruli, S(1,2)~ S+s,S+s,0,0ð Þ and

S(3,4)~ 0,0,S+s,S+sð Þ with s%S (Fig. 6A). Stimuli S(1,2) and

S(3,4) may be viewed as caricatures of the limonene and carvone

Figure 1. Main components of the model. A) Sketch of the recurrent bulbar network model with neurogenesis. Odor stimuli evoke glomerular
activation patterns (green). The glomeruli drive mitral cells (blue), which relay the information to cortex. In addition, they excite granule cells (red),
which through their reciprocal synapses provide self-inhibition and lateral inhibition to the mitral cells. New granule cells migrate persistently from
the subventricular zone to the olfactory bulb and are incorporated into the network (yellow to orange). They are removed if their activity is too low
(dark red). B) The survival probability of granule cells depends sigmoidally on their resilience (i), which is a threshold-linear function of their activity
(ii), summed over the stimulus ensemble.
doi:10.1371/journal.pcbi.1002398.g001

Neurogenesis and Decorrelation in Olfaction
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enantiomers, respectively. The granule cells in population n12

inhibit the mitral cells that are co-active in stimuli S(1,2) (cf. Fig. 6A)

and are therefore needed for decorrelation. The granule cells in

population n13, however, are connected to mitral cells that are not

co-active in any of the stimuli; they may interfere with the

performance of the network. The resilience R12 of the granule cells

in population n12 is comprised of two large contributions due to

the strong inputs in stimuli S(1) and S(2) and two small

contributions from stimuli S(3) and S(4), while the resilience R13

of the cells in population n13 is determined by 4 intermediate

contributions. In our model (3,4) for the neuronal dynamics the

granule cell activities are linear in the mitral cell activities. For

s%S the activity G13 of the interfering population n13 is almost the

same for all four stimuli and is close to the average of the activity

G12 across the four stimuli. As a result, the rectifier, which makes

the resilience function (8) concave, renders the granule cells that

establish interfering connections less resilient than the granule cells

connecting co-active mitral cells, R13vR12. This suppresses the

interfering population n13 relative to n12, as is apparent in a

comparison of Fig. 3Biii and Fig. 5B.

Within the framework of the population formulation

eqs.(15,16,17) the simplicity of the minimal stimulus set of

Fig. 6A allows a detailed analysis of the role of the threshold in

the balance between the suppression of interfering connections

and a reduction of the beneficial inhibition of co-active mitral cells.

Due to the symmetry of the stimulus ensemble only two granule-

cell populations have to be analyzed, n12 and n13. Their dynamics

can be understood using a phase-plane analysis. For steep survival

curves p(R) the nullclines of n1j , which are defined by
dn1j

dt
~0, are

very well approximated by R1j~R0 (cf. Fig. 1Bi). Starting from

n1j~0, both population sizes increase linearly in time until they

reach one of the two nullclines. Then the system follows slowly that

nullcline until a fixed point is reached. This can be the intersection

of the two nullclines (Fig. 6Bi). In addition, since n13 cannot

become negative, an intersection of the nullcline R12~R0 with the

axis n13~0 also represents a fixed point if at that point R13vR0

(Fig. 6Biii) and similarly with the roles of n12 and n13 interchanged.

A straightforward expansion shows that for highly similar

stimuli, s%S, the correlation between the two output patterns

M(1,2) is given by

r12~1{4
1z2n12ð Þ2

1z2n13ð Þ2
s2

S2
: ð1Þ

 

 

Figure 2. Decorrelation of natural stimuli. A) Glomerular activation patterns in rat for the odorants +-limonene, +-carvone, 1-butanol, 1-
hexanol, 1-heptanol, and acetic acid [42]. B) Mitral cell activity patterns of a network trained on all eight stimuli. C) Correlation matrix of the input
patterns (i) and of the mitral cell output patterns (ii). The stimuli are ordered as in A and B. Parameters: c~20, R0~0:1, Gmin~1:2, Nm~424,
nconnect~8, b~33, w~0:005, Msp~1.
doi:10.1371/journal.pcbi.1002398.g002
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Thus, as expected, the correlation decreases with increasing

reciprocal inhibition n12 of co-active mitral cells and increases with

increasing strength of the interfering connections n13. As discussed

above, the relation between these two populations can be

controlled using the threshold Gmin. For fixed resilience threshold

R0 the correlation is minimized for (cf. Eqs.(23,22))

Gmin~G
(opt)
min :

1

2

R0Msp

S
: ð2Þ

This is the smallest value of Gmin for which the interfering

connections vanish, n13~0. Thus, it maximizes the inhibition

between co-active mitral cells without inducing interference. This

leads to optimal decorrelation, as is also apparent in the output

activity patterns in the bottom panels of Fig. 6B.

Thus, the threshold Gmin in the resilience suppresses interfering

connections between mitral cells that are not co-active and

promotes a connectivity that is based on co-activity. To provide a

context of the performance of this co-activity based connectivity

we compare the decorrelation achieved by the resulting networks

with that obtained by a number of other types of adaptive

networks. In some of them the inhibition is also based on co-

activity, in others on distance, correlation, or covariance (see Text

S1 with Figs.S1,S2,S3 therein). We find that the networks whose

adaptation mechanism is based on some form of co-activity of

mitral cells or glomeruli are able to decorrelate representations of

highly similar stimuli and achieve a reduction of the overall

correlations without and with significant spontaneous mitral cell

activity. Among these networks are networks motivated by an

earlier model for neurogenesis [47] as well as networks that aim to

orthogonalize the stimulus representations by orthogonalizing (and

normalizing) the activity vectors of pairs of mitral cells [48].

Alternatively, the connectivities can also be based on the

correlations or covariances of the inputs. For instance, a

correlation-based connectivity was found to capture the outputs

of the bee antennal lobe, which is the insect homolog of the

olfactory bulb, better than random or local connectivities [49]. We

find that correlation- and covariance-based recurrent networks do

not decorrelate stimulus representations very well. In various

situations they even tend to increase rather than decrease the

correlations. This reflects, in part, the fact that they are not

sensitive to the spontaneous activity of the mitral cells.

 

 

 

 

 

 

Figure 3. Decorrelation and connectivity. Evolution of the pattern correlation and rate of granule cell removal (scaled by their influx) (A), and
the effective connectivity matrixW between pairs of mitral cells (cf. Eq.(7)) (B). Initially (tv40) almost all granule cells survive, generating a random
connectivity that does not decorrelate the stimuli (Bi). By t~100 the selective removal of weakly active granule cells leads to a structured
connectivity (Bii) that reduces the mean correlation �rr. The highly similar stimuli +-limonene and +-carvone are only decorrelated by strong
inhibition between highly co-active mitral cells (marked by black circles), which emerges in the final steady state (Biii). Parameters for the simulation
in A as in Fig. 2. The correlations have been averaged over 16 runs. The symbols at t~1450 denote output correlations for different slopes of the
survival curve, c~20,10,5,2.5,1 (cf. Fig. 1Bi). For visual clarity the connectivities are shown in B for a reduced network of 50 instead of 424 mitral cells
(for parameters see Fig.S1B in Text S1). In the connectivity matrices the diagonal elements have been divided by 10.
doi:10.1371/journal.pcbi.1002398.g003
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Imperfect Reciprocity of Synapses Is Sufficient
Anatomically, the dendrodendritic synapses between mitral cells

and granule cells are found to be predominantly reciprocal, i.e.

each granule cell has inhibitory connections only to those mitral

cells from which it receives excitatory connections [37]. In

combination with the threshold Gmin this establishes effectively

Figure 4. Decorrelation by inhibition of strongly co-active mitral cells. Since mitral cells 1 and 2 are strongly driven in both stimuli the
population of granule cells (GC) connected to these mitral cells (red) is much larger than the other two populations (blue, green). The associated
inhibition strongly suppresses the activities of mitral cells 1 and 2, but not of mitral cell 3, which reduces the correlation of the patterns from r~0:96
to r~0:64. The mitral cells have a spontaneous activity Msp~1.
doi:10.1371/journal.pcbi.1002398.g004

 

 

Figure 5. Resilience threshold Gmin reduces interference and enhances decorrelation of highly correlated stimuli. A) For Gmin~0 the
networks achieve the same level of overall decorrelation as networks with suitable Gminw0, but they decorrelate the representations of highly similar
stimuli very poorly. Parameters: c~20, R0~4, Gmin~0, Nm~424, nconnect~8, b~33, w~0:0057, Msp~1. For Gmin~0:6 parameters as in Fig. 2. B)
Effective connectivity matrixW for 50 mitral cells with diagonal elements divided by 10. For Gmin~0 the interfering connections between mitral cells
that are active for +-limonene or for +-carvone (red ellipse) are as strong as those between co-active cells (black ellipses); cf. panel bottom right on
Fig. 3. Parameters: c~20, R0~2:25, Gmin~0, Nm~50, nconnect~4, b~16, w~0:0023, Msp~1.
doi:10.1371/journal.pcbi.1002398.g005
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inhibitory lateral connections selectively between highly co-active

mitral cells and allows the networks to decorrelate their highly

correlated inputs.

As implemented in our model so far, the reciprocal synapses not

only provide an anatomical connection between co-active mitral

cells but due to the homogeneity of the inhibitory synaptic weights

they also induce a symmetric connectivity matrix and the amount

of self-inhibition that a given mitral cell experiences is directly

related to the amount of lateral inhibition it provides to other

mitral cells. What roles do these different aspects play in the

decorrelation?

To test the importance of the correct anatomical connections

we redirect a fraction of the inhibitory connections of each granule

cell to randomly chosen mitral cells instead of the mitral cells that

drive that granule cell. As expected, as the fraction of such non-

reciprocal synapses increases the correlations increase as well.

Without any reciprocal synapses the network does not decorrelate

the stimuli at all (Fig. 7). The network performance is, however,

quite robust: the overall decorrelation deteriorates noticeably only

when more than 50% of the connections have been rewired. The

highly correlated stimuli are, however, more sensitive to the

rewiring with r(top) increasing from r(top)~0:44 to r(top)~0:52

Figure 6. Interference and optimal resilience threshold Gmin. A) Two pairs of symmetrically related stimuli comprised of four glomeruli each
(cf. eqs.(18,19). The granule cells are described by the populations n12~n34 and n13~n23~n14~n24. Stimulus pairs S(1,2) and S(3,4) are highly
correlated (r~0:99). B) Top panels: Phase plane with nullclines R12~R0 (red) and R13~R0 (blue) and the trajectory (n12(t),n13(t)) (black symbols)
starting from n12~0~n13 and ending up on the fixed point. The network evolution is indicated by black arrows. Bottom panels: mitral cell activity
patterns. i) Gmin~0:1. Interference (n13w0) strongly suppresses the weakly driven mitral cells. High correlation (r~0:92). ii) Gmin~G

(opt)
min ~0:25. No

interference (n13~0), but strong inhibition among the highly co-active mitral cells through large population n12. Low correlation (r~0:56). iii)
Gmin~1:5. The inhibition of co-active mitral cells is weak. High correlation (r~0:91). Other parameters: Msp~1, S~2, s~0:5, R0~1, b~0:001,
c~500.
doi:10.1371/journal.pcbi.1002398.g006

Neurogenesis and Decorrelation in Olfaction

PLoS Computational Biology | www.ploscompbiol.org 7 March 2012 | Volume 8 | Issue 3 | e1002398



when 50% of the connections are rewired, while �rr changes only

from �rr~{0:08 to �rr~{0:05.

The granule cells deliver their inhibitory inputs onto the

secondary dendrites of the mitral cells at highly variable distances

from the mitral cell somata. Their effect on the mitral cell firing

will therefore vary over quite some range; in fact, some synaptic

contacts will be too far away from the mitral cell soma to have any

noticeably effect on that mitral cell’s firing. To assess the impact of

such heterogeneities we modify the inhibitory synaptic weights,

which so far had the same value w for all synapses, by picking

them with equal probability from the two values w+Dw. This

breaks the symmetry of the inhibition and for Dw~w half of the

inhibitory connections are completely ineffective. The overall

decorrelation is, however, not affected by this heterogeneity and

even the decorrelation of the highly similar stimuli deteriorates

only slightly over the whole possible range 0ƒDwƒw (Fig. 7B).

Essentially the same result is obtained if the synaptic strengths are

distributed uniformly in the interval ½w{Dw,wzDw�. While for

very large granule cell populations the heterogeneities of different

granule cells are expected to average out each other, for the

parameters used in our study the effective connectivity matrix is

still noticeably asymmetric: its anti-symmetric component amounts

to about 20% of the symmetric one.

Through the reciprocal character of the dendrodendritic

synapse a granule cell mediates lateral inhibition between the

mitral cells that drive it as well as self-inhibition of each of them.

Due to the complex dendritic dynamics of granule cells [50,51]

these two types of inhibition can be of different strength. In fact,

recent observations suggest that self-inhibition is significantly

weaker than lateral inhibition [52]. While our minimal model does

not capture any explicit dendritic processing, the strength of self-

inhibition and lateral inhibition that a mitral cell receives is given

by the diagonal and off-diagonal coefficients of the effective

connectivity matrix W:W(mg)W(gm), respectively. We can

therefore change the balance between self-inhibition and lateral

inhibition phenomenologically by rescaling the diagonal terms,

W ii?N{1
dW ii with 0ƒdƒ1, at the expense of the off-diagonal

terms, W ij?N{1
(1{d)W ij for i=j, while keeping the row-sum

of the matrix fixed through the normalizing factor N . Reducing

self-inhibition in this fashion (dv

1

2
) enhances the decorrelation of

the representations of the natural stimuli significantly (Fig. 7C),

because it further enhances the competition between dominant,

co-active mitral cells. Conversely, increasing the self-inhibition

(dw

1

2
) reduces the competition. In the complete absence of lateral

inhibition (d~1) granule cells are effectively coupled only to a

single mitral cell. This provides still good overall decorrelation, but

the representations of the highly similar odors are only poorly

decorrelated. Thus, the experimentally observed reduction of self-

inhibition may contribute to an improved decorrelation perfor-

mance of the bulbar network.

These comparisons show that for effective decorrelation the

most important aspect of the reciprocity of the dendrodendritic

synapse is that it provides mutual anatomical connections between

the relevant mitral cells, i.e. between those that are co-active for

some stimuli. The effective synaptic strengths can be quite

heterogeneous without compromising the performance of the

network. In fact, reduced self-inhibition can enhance the

decorrelation substantially.

Young Granule Cells Respond to Novel Odors
One possible role of neurogenesis is to provide a persistent

supply of new neurons, which may play a different role than old,

mature neurons. An aspect of this type has been identified in

experiments focusing on the responsiveness of young and old

adult-born granule cells [20,53]. In the experiments, adult-born

precursor cells, which develop into granule cells, were marked in

the subventricular zone. After they have migrated to the olfactory

bulb and have integrated into the bulbar network their response to

odor stimulation was measured using the expression levels of

various immediate early genes. It was found that the fraction of

adult-born granule cells that respond to novel odors is significantly

higher shortly after their arrival in the olfactory bulb than a few

weeks later. It has been argued therefore that one important

function of the young granule cells may be to serve as novelty

detectors [20].

In our computational model a differential response of young

and older adult-born granule cells to novel odors arises quite

naturally. After establishing a network by exposing the system to

the stimulus ensemble S(a), a~1, . . . ,7, we mark granule cells as

they are integrated into the network and measure their response to

various stimuli as a function of their age. Assuming that the

granule cell activity has to surpass a minimal value to activate the

expression of the immediate early genes, we consider granule cells

as responding if they reach an activity above a threshold GIEG . As

the network evolves the less active granule cells die and are

removed from the network (Fig. 8Ai). As in the experiments, we

Figure 7. Effective decorrelation does not require complete reciprocity of the synapses. A) A fraction of the inhibitory connections are
rewired to a randomly chosen mitral cell. Dashed lines denote input correlations. B) The inhibitory synaptic strengths are picked with equal

probability from the two values w+Dw. C) Reducing self-inhibition in favor of lateral inhibition, dv

1

2
, enhances the decorrelation. Parameters: c~10,

R0~0:1, Gmin~1:2, Nm~424, nconnect~8, b~33, w~0:005, Msp~1.
doi:10.1371/journal.pcbi.1002398.g007
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find that the fraction of young adult-born granule cells that

respond to a novel stimulus, i.e. a stimulus that is quite different

from the stimuli in the background ensemble, decreases as the

granule cells become older (Fig. 8Aii). This decrease results from

the reduced survival probability of these cells, which is due to the

weak drive they receive by the stimuli in the stimulus ensemble

that determines granule-cell survival. In contrast, the fraction of

granule cells that respond to a familiar stimulus, i.e. a stimulus in

the background ensemble, decays very little or even increases over

the same time frame, reflecting their higher survival rate.

For what range of the threshold GIEG does our model yield

results that agree qualitatively with the experiments in [20]? When

the threshold GIEG is increased beyond the resilience threshold

Gmin ever fewer marked granule cells respond and the fraction of

marked granule cells that respond to the stimuli - averaged over all

stimuli - drops from 1 to 0 (Fig. 8B bottom panel). Thus, the

experimentally obtained response fractions of 10–20% [20] set an

upper limit for GIEG relative to Gmin. At the same time, decreasing

GIEG reduces the difference between the temporal evolution of the

response to novel and to familiar stimuli. We characterize the

evolution by the ratio rf =ri between the fraction rf of granule

cells responding to the stimulus at the final time of the simulation

and the fraction ri immediately after the end of the marking

period. On average this ratio increases with increasing GIEG for

the familiar stimuli, but it decreases for the novel stimulus (Fig. 8B

top panel). For the response to novel odors to differ significantly

from that to familiar odors GIEG cannot be much smaller than

Gmin. It is worth noting that varying the steepness c of the survival

curve does not affect the decorrelation of the odor stimuli

substantially (symbols at t~1,450 in the top panel of Fig. 3), but

the difference in the response to novel compared to familiar odors

is significant only if the survival curve is not too steep (Fig. 8B top

panel).

Thus, the activity-dependent survival of the granule cells

combined with their random connections to the mitral cells is

sufficient to capture the experimentally observed enhanced

response of young adult-born cells to novel stimuli if the threshold

GIEG for the activation of the immediate early genes is close to the

resilience threshold Gmin, which is an essential determinant of the

survival of the granule cells.

Neurogenesis Contributes to Perceptual Learning
In a wide range of experiments possible connections between

adult neurogenesis and animal performance have been investigat-

ed employing various tests of odor detection, odor discrimination,

short-term and long-term memory, and fear conditioning [19,29–

34,40,43–45]. No simple picture regarding the role of neurogen-

esis in odor discrimination and odor memory has, however,

emerged so far. This may in part be due to the fact that higher

brain areas are likely involved in many of the behavioral tasks;

they may well compensate for some changes occurring in the

olfactory bulb and therefore possibly mask certain effects of the

neurogenesis.

A behavioral task that may reflect bulbar odor representations

relatively directly is the spontaneous, non-associative odor

discrimination based on habituation, which has been shown to

result predominantly from bulbar processes [54–56]. These

experiments exploit the decreasing interest an animal typically

displays to repetitions of the same stimulus: the animal’s response

to a second stimulus after if has habituated to a first stimulus is a

measure of the degree to which the animal discriminates the two

stimuli [55]. Exposing animals to extended periods during which

their environment is enriched with additional odors enhances their

spontaneous odor discrimination [40,43–45]. This is indicative of

perceptual learning. The dominance of bulbar processing in this

task [54–56] suggests that the enrichment induces changes in the

bulbar odor representations [56]. Since the enhancement is

significantly suppressed if neurogenesis is halted pharmacologically

[40], it is likely that the changes in the odor representations reflect

a restructuring of the bulbar network. Importantly, for the

enrichment to improve the performance the odors employed have

to be related to the odors that are to be discriminated [43].

Figure 8. Young granule cells show enhanced response to novel odors. A) i) Granule cells are marked at t~100. The total number of marked
cells (black thick line) and the number of marked cells responding to one of the eight stimuli decreases with time. The stimulus ensemble consists of
S(a), a~1 . . . 7. Stimulus 8 (acetic acid) is novel (cf. Fig. 2). ii) The fraction r(t) of marked granule cells that respond to the novel stimulus decreases
with time. For the familiar stimuli it mostly increases. Parameters: c~10, R0~0:1, Gmin~1:2, Nm~424, nconnect~8, b~33, w~0:005, Msp~1,
GIEG~1:375. B) The IEG-activation threshold GIEG has to be close to the resilience threshold Gmin. Bottom panel: for GIEG well above Gmin~1:2
(dotted line) very few marked cells reach an activity above GIEG and are considered as responding to the stimuli. Top panel: For GIEGwGmin the
response fraction r decreases with time for the novel stimulus (ratio of response fractions rf =riv1, cf. panel Aii), while it tends to increase for the
familiar stimuli (rf =riw1, error bars denote standard deviation across the stimuli S(a) , a~1, . . . ,7). Parameters as in A except for the steepness c of
the survival curve (cf. Fig. 1Bi), c~5 (green, small symbols), c~10 (red, large symbols). The results represent an average across 32 runs.
doi:10.1371/journal.pcbi.1002398.g008
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The perceptual learning observed in the experiments is

captured in our minimal computational model. We use an

ensemble of background stimuli, which establishes a default

network connectivity, and test the performance of the network

with two test stimuli (z-limonene and {-limonene). They are not

included in the stimulus ensemble that drives the network

evolution. For the default network the correlation between the

representations of the test stimuli is high, consistent with the fact

that naive animals do not discriminate these odors spontaneously.

Then the stimulus ensemble is enriched with additional odors

(tw100). As the network adapts and evolves to a new steady state

characterized by different effective connectivity matrices (Fig. 9C,

right panels), the correlation between the two test stimuli evolves as

well. If the odors used for the enrichment have sufficient overlap

with the test odors the correlation between the test odors decreases

substantially (red line in Fig. 9B). However, if the enrichment

odors are only weakly related to the test odors the correlation of

the test odors does not decrease (black line in Fig. 9B). In fact, in

some cases the correlation between the test odors can even

increase. As expected, if the influx of new granule cells is stopped

with the onset of the enrichment the odor representations and

their correlations are unaffected by the enrichment, even if the

enrichment odor is close to the test odor (green line).

Effective Enrichment: Overall Overlap Is Not Sufficient
In experiments, odor enrichment enhances the ability of the

animals to discriminate similar odors only if there is sufficient

overlap between the activation patterns of the stimuli used in the

enrichment and those of the stimuli to be discriminated [43]. Our

network model allows more specific predictions for the type of

enrichment protocols that should be effective in enhancing the

ability of the animals to discriminate a given set of test odors.

We consider the decorrelation of very similar mixtures

comprised of dissimilar components. Specifically, we use as

components limonene (50% z–limonene and 50% {–limonene)

and carvone (also both enantiomers in equal proportions), whose

activation patterns have very little overlap (Fig. 2A). We employ

two different enrichment protocols. In the first one pure limonene

and pure carvone are added to a background of alcohols and

acetic acid in an alternating fashion (Fig. 10B, top panel).

Experimentally, this would correspond to presenting limonene

and carvone separately at different times. In the second protocol

an equal mixture of limonene and carvone is added to the

background ensemble (Fig. 10B, bottom panel). In both protocols

the activity-dependent removal of interneurons occurs only after

the complete set of background and enrichment stimuli has been

presented. To implement the mixtures in the model we assume

that the glomerular activation patterns for mixtures are approx-

imated sufficiently well by a linear combination of the patterns for

the individual components.

While using the pure components in the enrichment decreases

the correlation between the representations of the mixtures at all

mixture ratios (‘alternating’ in Fig. 10Di) it does so substantially

less than the network enriched with the 50:50 mixture (‘mixture’ in

Fig. 10Di). The stronger decorrelation obtained with the mixture

protocol compared to the alternating protocol can also be

recognized directly in the output patterns (Fig. 10C, bottom vs.

top panel). This substantial difference arises because the

decorrelation of the mixtures is strongly enhanced by mutual

inhibition between mitral cells that are driven by limonene as well

 

 

 

 

 

 

Figure 9. Perceptual learning. Correlation (B) of the test stimuli z-limonene and {-limonene (shown in A) as a function of time. Enrichment,
beginning at t~100, changes the connectivity. Enrichment with the related odors z-limonene and {-limonene (Cii, only z-limonene is shown)
strongly reduces the correlation, whereas enrichment with the unrelated odors z-carvone and {-carvone (Ci, only z-carvone shown) does not.
Enrichment with a related odor but without neurogenesis does not enhance the decorrelation. Parameters: c~20, R0~0:1, Gmin~1:2, Nm~424,
nconnect~8, b~33, w~0:005, Msp~1. Background stimuli: 1-butanol, 1-hexanol, 1-heptanol, and acetic acid.
doi:10.1371/journal.pcbi.1002398.g009
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as carvone. This inhibition is provided by ‘mixed’ granule cells. By

contrast, ‘pure’ granule cells are connected to mitral cells that are

activated (almost) exclusively by limonene or carvone. As discussed

in Sec. Threshold Promotes Lateral Inhibition Based on Co-Activity, in the

context of interference, in the alternating protocol the mixed

granule cells have a lower survival probability than the pure

granule cells. In the mixture protocol, however, both types of

granule cells have very similar survival probabilities. To assess the

inhibition provided by these populations we consider the sum of

the synaptic weights in the four quadrants of the effective

connectivity matrix W (cf. Fig. 3Biii). We find that the inhibition

provided by the mixed granule cells in the mixture protocol is

stronger than in the alternating protocol (see (27)). Insight into

what controls these populations can be gained by considering

again the simple caricature of Fig. 6A. Within that framework the

mixture protocol can be viewed as a stimulus set in which all four

glomeruli receive essentially equal input. Both types of granule

cells have then equal survival rates. Within that model it is easily

seen that the size of their populations falls between that of the

mixed granule cells and the pure granule cells in the alternating

protocol because the total resilience of the mixed granule cells has

to be the same in both protocols (see Sec. METHODS, Alternating vs

Mixture Protocol). Thus, compared to the alternating protocol the

mixture procotol enhances the relevant inhibition and improves

the decorrelation of the limonene-carvone mixtures.

If neurogenesis were to affect only interneurons that provide

non-topographic inhibition and no lateral inhibition [4] both

enrichment protocols would be expected to lead to the same level

of decorrelation. Specifically, if in the model each granule cell

makes only connections with a single mitral cell the alternating

protocol leads to the same decorrelation of the limonene-carvone

mixtures as the mixture protocol (Fig. 10Dii). Comparing the

influence of the two enrichment protocols on the animals’ ability to

discriminate such mixtures may therefore give insight into the type

of neurogenesis-dependent connectivity that dominates the

decorrelation mechanism.

Thus, even though in both protocols the enrichment odors -

taken together - have the same overlap with the test odors the

model predicts that enrichment with the mixture protocol achieves

substantially better decorrelation of the test stimuli than the

alternating protocol.

Discussion

To investigate the functional implications of the experimentally

observed persistent turnover of inhibitory interneurons on sensory

processing by the olfactory bulb we have used a minimal

computational network model. The experimental observations

forming the basis of our model are the reciprocity of the synapses

between the interneurons (granule cells) and the principal neurons

(mitral cells) [37] and the activity-dependent survival of adult-born

granule cells [41]. In the model we have focused on the input from

the mitral cells via the dendro-dendritic synapses as the dominant

input controlling the activity and survival of the granule cells.

Assuming in addition that the new cells connect to an essentially

random set of mitral cells allows the model to capture

parsimoniously various experimental observations and to make

specific predictions.

Novelty Detection
It has been observed that young granule cells are more likely

than mature ones to respond to odors that are novel for the animal

[20,53]. This has been interpreted as a mechanism for novelty

detection. Our model captures the enhanced response of young

cells in a natural way. Since granule cells that respond to novel

odors but not to the odors in the ongoing environment receive

 

Figure 10. Effect of enrichment protocol on the decorrelation of similar mixtures. A) Sample test stimuli: mixtures of +–limonene and +–
carvone with mixture fractions 35:65 and 65:35. B) Enrichment stimuli. i) z-limonene, {-limonene, z-carvone, and {-carvone alternating (only z-
carvone and z-limonene shown), ii) 50:50 mixture of +-limonene and +-carvone. C) Output patterns for the test stimuli shown in A. Parameters as
in Di. D) Correlations of mitral cell activities for the test stimuli as a function of the mixture fraction. i) Eight connections per granule cell. The mixture
protocol achieves substantially better decorrelation than the alternating protocol. Parameters: c~20, R0~0:1, Gmin~1:2, Nm~424, nconnect~8,
b~33, w~0:005, Msp~1. ii) One connection per granule cell. No significant difference between the protocols. Parameters: c~20, R0~0:1,
Gmin~0:1275, Nm~424, b~0:125, w~0:3, Msp~1.
doi:10.1371/journal.pcbi.1002398.g010
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only little ongoing input, they do not survive for a long time and

the fraction of granule cells responding to the novel odor decreases

with their age. Thus, the observation of an enhanced response of

young granule cells to novel odors suggests that new granule cells

do not have a strong bias towards connecting to highly active

mitral cells but connect also to mitral cells that have only been

weakly active in the past. Such a strategy enables the network to

learn to process novel odors.

Experimentally, the response of the granule cells was measured

in terms of the expression of various immediate early genes (c-fos,

c-jun, EGR-1/zif-268). The fraction of granule cells responding to

the novel odors was found to be 10–25% for young cells and lower

for older cells [20,53]. Such an intermediate response fraction is

obtained in our model if the threshold for the expression of the

immediate early genes is close to that for the survival of the

granule cells. This is suggestive of a common step in the pathways

controlling IEG-expression and cell survival.

Threshold Enhances Inhibition between Co-active Mitral
Cells and Reduces Interference

The decorrelation of highly similar stimuli like the two pairs of

enantiomers used in our computation hinges upon the presence of

an activity threshold that the granule cells have to surpass to

increase their survival probability. It enhances the connections

between mitral cells that are highly active simultaneously and

suppresses those between mitral cells that are strongly active albeit

only in response to different stimuli.

Biophysically, a threshold for the survival of the granule cells

may arise from the need to drive L-type Ca channels, which

activate the MAPK pathway that leads to the stimulation of genes

that are essential for neuronal survival [57,58].

With the strengthening of inhibition between co-active mitral

cells the mechanism underlying the adaptation in our model is

somewhat related to that underlying other adaptive networks that

have been studied previously. In an early neurogenesis model for

the olfactory bulb the evolution of the effective pairwise inhibition

between mitral cells was based directly on the scalar product of the

mitral cell activities [47]. Adaptive networks that aim to

orthogonalize the stimulus representations can do so via a

connectivity that is based on the pairwise scalar products of input

activities [48]. A somewhat different adaptive connectivity has

been suggested in a modeling study of the bee antennal lobe.

There it was found that a connectivity in which the inhibition is

proportional to the correlations between the glomerular activities

was able to match the observed output patterns better than

random or local center-surround connectivities [49]. We have

compared a few types of networks that exploit different adaptation

algorithms and find that connectivities that are based on the co-

activity of mitral cells or glomeruli achieve significantly better

decorrelation than networks based on the correlations or

covariances of the inputs. A particular problem of the latter

algorithms is that they are not sensitive to mean activities of the

cells and do not take the spontaneous activity of the mitral cells

adequately into account.

Reciprocity of Connections
An anatomically characteristic feature of the olfactory bulb is

the reciprocal nature of the dendrodendritic synapses between

mitral and granule cells. The purpose of this reciprocity is not well

understood. Our computational modeling shows that it can play

an essential role in exploiting the activity-dependent survival of the

granule cells to establish a connectivity whose lateral inhibition

reflects the co-activity of the mitral cells. This provides a

mechanism for the network to learn to decorrelate even highly

similar stimuli.

Biologically, the reciprocity may be imperfect in a number of

ways. In principle, an inhibitory synapse could connect the granule

cell to a mitral cell that is not the origin of the associated excitatory

synapse. Modeling such a situation by a random rewiring of a

fraction of inhibitory connections we find that the network

performance is reasonably robust to such perturbations. However,

when more than 50% of the synapses are rewired the performance

deteriorates significantly and without any reciprocity the stimulus

representations are not decorrelated at all.

A second type of imperfection of the reciprocity is likely to arise

if the dendrodendritic synapse is located far from the soma of the

mitral cell. In such a case the inhibition exerted by the granule cell

may not have much effect on the mitral cell firing, although the

granule cell is driven strongly by that mitral cell. This asymmetry

can arise because excitation is driven by action potentials, which

can travel long distances along the dendrite, whereas the shunting

provided by the inhibition is confined to a distance comparable to

the electrotonic length of the dendrite [59]. Thus, the effective

inhibitory strength may vary substantially between synapses

depending on their location relative to the soma. Mimicking such

a heterogeneity by random variations in the synaptic strength we

find that the network performance is only moderately affected by

such effects. Since mitral cells are connected to many granule cells

the heterogeneity of the combined synaptic strengths is likely to be

reduced compared to the heterogeneities within individual granule

cells. Such an averaging may be reduced if correlations between

the strengths of different synapses, which may arise due to

correlations in the physical distances between the cells, should be

significant.

The reciprocity may also be perturbed because the strength of

the self-inhibition that a mitral cell experiences on account of a

given granule cell may differ from that of the lateral inhibition that

said granule cell provides to other mitral cells. In fact, recent

experiments suggest that self-inhibition is significantly weaker than

lateral inhibition [52]. One cause for this difference may be the

complex physiology of granule cells, which includes local dendritic

calcium signaling, dendritic calcium spikes, and action potentials

driven by sodium conductances [51]. Our minimal single-

compartment model for the granule cell does not allow to capture

these rich dynamics. However, on a phenomenological level the

balance between self-inhibition and lateral inhibition can be

modified by rescaling the diagonal and off-diagonal terms in the

effective connectivity matrix. Our model shows that reducing the

self-inhibition while strengthening the lateral inhibition can

substantially enhance the ability of the network to decorrelate

the representations of highly similar stimuli.

Perceptual Learning
The decorrelation of similar stimulus representations that is

obtained in our model provides a natural interpretation of recent

experiments on spontaneous odor discrimination via habituation

[40]. Only with neurogenesis intact does enriching an animal’s

odor environment enhance its ability to discriminate similar odors.

Since the habituation used in these discrimination experiments

reflects predominantly changes in the olfactory bulb rather than

higher brain areas [54–56], the improvement in odor discrimina-

tion resulting from odor enrichment likely reflects modifications in

the encoding of the test stimuli in the olfactory bulb. Our modeling

shows that fundamental features underlying the neuronal turn-

over in the bulb – activity-dependent survival and reciprocal

synapses – suffice to allow perceptual learning by changing the
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odor encoding so as to decrease their similarity and enhance their

discriminability.

Repertoire of Potentially Relevant Odors
In laboratory experiments that allow many repetitions animals

can learn to discriminate highly similar odor stimuli [31], which

may have highly correlated representations in the olfactory bulb.

Outside the laboratory the animals are likely to face the challenge

to form associations with stimuli given only a few trials. This task

may be very difficult if not even impossible if the relevant odors are

represented in the bulb in a highly correlated fashion.

In line with experiments on odor enrichment [40], our

computational model shows that neurogenesis may facilitate this

task by reducing the correlation of odors in an ensemble to which

the animal is exposed. These odors could represent a repertoire of

potentially relevant odor types that the animal can easily

discriminate, should the need arise. In our model the survival of

the granule cells depends on the inputs they receive from mitral cells

via their dendro-dendritic synapses. Their relevance could be

determined by the context in which the animal is exposed to the

odor. Such contexts are likely to affect modulatory inputs to the

olfactory bulb, which can modify the excitability of granule cells

[60–62] and mitral cells [60,62] as well as mitral cell inhibition [63],

all of which will affect granule cell survival [64]. Contexts could also

induce specific, direct inputs from cortical areas like piriform cortex

to granule cells at proximal or basal synapses, both of which are

functional in young granule cells with the proximal synapses

developing even before the basal and dendro-dendritic ones [65,66].

Predictions for Effective Learning Protocols
Enrichment enhances odor discrimination only if the enrich-

ment odors overlap in their glomerular excitation patterns with

those of the test stimuli [43]. Our modeling confirms this.

Moreover, it makes specific predictions with regard to the

decorrelation of similar mixtures comprised of dissimilar compo-

nents. If neurogenesis affects predominantly granule cells that

provide lateral inhibition, our model predicts that animals will

learn to discriminate such mixtures more easily if the enrichment is

performed using the odor mixture rather than alternating its

individual components. This difference is predicted even though

both enrichment ensembles have the same overall overlap with the

test stimuli. If non-topographical self-inhibition [4] should

dominate neurogenetic restructuring, no difference between the

protocols is expected.

The change of odor representations that our neurogenesis

model predicts to arise from odor enrichment might also be

testable in reward-associated discrimination tasks by focusing on

the initial learning stages. Suitable enrichment protocols are

expected to enhance the differences in the encoding of the test

odors. Applied before the animals learn the odors that are to be

discriminated, such enrichment should lead to a shortening of the

initial learning phase if the odors are very similar. Moreover, it has

been found that animals tend to follow different strategies during

the early stages of a 2-alternative choice odor discrimination task

depending on the degree of similarity of the two odors [67]. In

fact, for very similar stimuli their early strategy suggests that they

actually can not yet tell the test odors apart. In that case suitable

prior enrichment may even allow the animals to employ their

coarse-discrimination strategy for odor pairs for which without

enrichment they would use the fine-discrimination strategy.

Decorrelation by Individual and Joint Normalization
Divisive response normalization has been discussed extensively

in sensory processing, in particular in the visual system [68]. In this

type of normalization the response of each cell, which corresponds

to a channel with given response characteristics like preferred

orientation or spatial frequency of visual grid patterns, is divided

by the sum of the activities of cells covering a wider range of

response characteristics. The gain control implemented by this

process is consistent with various experimentally observed neural

responses (e.g. contrast independence and contrast adaption) [68].

In olfaction it has been proposed that such a normalization may

arise from the lateral inhibition provided by the network of peri-

glomerular cells, short-axon cells, and external tufted cells in the

glomerular layer of the olfactory bulb [69]. Divisive normalization

has been observed in the antennal lobe, which is the insect

analogue of the olfactory bulb [70]. Implemented in simulations

by global lateral inhibition, it was found to reduce the correlation

between the different channels (activities of the principal neurons)

across a large set of odors [70,71].

Further analysis of our neurogenetic model suggests that the

olfactory bulb performs a complementary type of divisive

normalization (unpublished data). Rather than reshaping the

mitral cell activities such that their pattern average is the

essentially the same for all stimuli, the activity-dependent survival

of the granule cells tends to equalize (normalize) the activity of all

mitral cells when averaged across the stimulus set. Correspond-

ingly, it foremost contributes to a reduction of the correlations

between pairs of activity patterns rather than between pairs of

mitral cells (channels). For stimuli whose similarity is dominated by

highly co-active mitral cells the normalization of the activity of

individual mitral cells achieves, however, only quite limited

decorrelation. The joint normalization of the activities of multiple

mitral cells, which results from the lateral inhibition of granule

cells connected to multiple mitral cells, can preserve some

differences in the mitral cell activities and, as a consequence,

can achieve considerably better pattern decorrelation.

Limitations of the Model
In our minimal model we have focused on the impact of the

structural plasticity afforded by the turn-over of the granule cells.

We have therefore treated the individual mitral and granule cells

in a minimalistic fashion. In particular, we have described them in

terms of linear rate dynamics without any threshold. Previous

studies have shown that nonlinearities can induce stimulus

decorrelation even in non-adaptive networks [3,4,7]. An interest-

ing question is therefore whether neuronal nonlinearities could

further enhance the decorrelation achieved by the adaptive

networks studied here.

Moreover, we have modeled each neuron as a single

compartment. Both, mitral and granule cells, have, however,

elaborate dendrites, which most likely increase the complexity of

their interaction. Thus, while action potentials can propagate with

little attenuation along the mitral cell dendrite and can excite

granule cells even at large distances, the inhibition that a granule

cell imparts to a mitral cell is expected to depend strongly on the

distance of the GABAergic synapse from the mitral cell soma. The

mutual inhibition that a granule cell mediates between mitral cells

will then not be symmetric. We have mimicked such an

asymmetry by modifying the effective connectivity matrix and

found that the network performance is quite robust with respect to

such perturbations.

The dendritic computations in the granule cells are tied in with

their complex multi-level calcium dynamics [50,51]. Even quite

small depolarizations of a granule cell spine can induce local

GABA release, which results in graded self-inhibition of the

driving mitral cell. Stronger inputs can induce low-threshold

calcium spikes that can spread within the dendritic tree. Finally,

Neurogenesis and Decorrelation in Olfaction

PLoS Computational Biology | www.ploscompbiol.org 13 March 2012 | Volume 8 | Issue 3 | e1002398



suitable inputs can trigger somatically evoked conventional

sodium-driven action potentials that invade the whole dendrite.

This complexity may endow the granule cell with additional

computational power like a dynamically regulated range of

inhibition. Since the ability to generate sodium spikes develops

last in adult-born granule cells [13], the balance between local

signaling, calcium spikes, and sodium spikes may change with the

age of the cell. While our phenomenological modeling does not

capture this biophysical complexity, it shows that a reduction of

the self-inhibition and a concomitant enhancement of lateral

inhibition can substantially improve the decorrelation of stimulus

representations.

The mechanisms controling the survival and apoptosis of

granule cells are not understood in detail. It is known that larger

fractions of granule cells survive if the animal is kept in odor-

enriched enviroments [19] or if the excitability of the granule cells

is genetically enhanced [41]. In our minimal model we therefore

assumed that the survival of the granule cells increases with their

activity. It has been found, however, that certain associative odor

discrimination tasks can not only enhance but also reduce the

survival of the adult-borne granule cells, depending on their age

[23]. Recent experiments have also indicated that apoptosis of

specific neurons can be elevated when associative memories are

erased [72]. It would be interesting to extend our minimal model,

which aims to capture the impact of neurogenesis on non-

associative odor discrimination tasks [40,44,45], to such more

complex situations.

In conclusion, using a minimal computational model we have

shown that adult neurogenesis with activity-dependent apoptosis of

inhibitory interneurons that are reciprocally connected with the

principal neurons is sufficient to restructure a network like that of

the olfactory bulb such that it learns to decorrelate representations

of very similar stimuli. The network performance is quite robust

with respect to various types of deviations from reciprocity that are

likely to be present in the olfactory bulb. The model makes

predictions regarding the impact of different enrichment protocols

on the performance of animals in spontaneous and award-related

odor discrimination tasks. Their outcome is expected to give

insight into the type of network connectivity that is associated with

the interneuronal turn-over.

Methods

Discrete Adaptive Network Model
We consider a minimal computational network model that

focuses on the turn-over of inhibitory interneurons caused by

neurogenesis and activity-dependent apoptosis and study the

networks’ ability to learn to decorrelate similar stimulus represen-

tations. The recurrent network comprises two types of neurons,

principal neurons (mitral cells) and inhibitory interneurons

(granule cells), which are coupled through reciprocal synapses

(Fig. 1). Within the framework of threshold-linear rate equations

the activity M
(a)
i of mitral cell i in response to stimulus a with

afferent activity pattern S
(a)
i , i~1 . . . Nm, and the corresponding

activity G
(a)
j of granule cell j, j~1 . . . Ng, satisfy

dM
(a)
i

dt
~{M

(a)
i zMspzS

(a)
i {w

XNg

j~1

W
(mg)
ij G

(a)
j

h i
z

, ð3Þ

dG
(a)
j

dt
~{G

(a)
j z

XNm

k~1

W
(gm)
jk M

(a)
k

h i
z

, ð4Þ

with the rectifier defined as

½x�z~
0 for xv0

x for x§0:

�
ð5Þ

Here Msp denotes the spontaneous activity of the mitral cells

[46,73] in the absence of any odor stimulus and without any

inhibitory inputs from granule cells. The stimuli S
(a)
i are taken

from a stimulus ensemble S~fS(a)
i , a~1 . . . Nsg. Throughout this

paper we consider only the steady states that the mitral and

granule cell activities reach in response to long stimulus

presentations. The temporal evolution that we discuss is that of

the network connectivity, which has a time scale that is much

slower than that of the neuronal activities.

For strong inhibition and in particular for asymmetric

connectivity matrices (cf. RESULTS, Imperfect Reciprocity of Synapses

is Sufficient) the steady states of (3,4) may become unstable. While

we did find complex eigenvalues in the spectrum of the linear

operator of (3,4), which correspond to oscillatory modes, in none

of the cases we considered did any of the eigenvalues have positive

real parts. Thus, the steady output patterns remained stable for all

parameters values we considered.

For sufficiently large spontaneous activity Msp essentially all

mitral cell activities – and with them the granule cell activities –

are positive and the results are changed only slightly if the rectified

coupling Eq.(5) is replaced by a linear coupling. We therefore use

in the following only the linear coupling, which reduces the

computational effort substantially.

The restructuring of the network due to neurogenesis is

implemented by adding granule cells to the network at a steady

rate b and removing them with an activity-dependent probability.

No detailed information is available to what extent the formation of

synapses between granule and mitral cells depends on their activity

or the previous presence of synapses at that location. Since the

secondary dendrites of the mitral cells, onto which the granule cells

synapse, extend over large portions of the olfactory bulb we assume

in this minimal model that each granule cell has the potential to

establish a connection with any of the mitral cells. Thus, we assume

that each of the new granule cells connects to nconnect randomly

chosen mitral cells. Consistent with observations [74] we assume

that no granule cell connects to any mitral cell twice.

A characteristic feature of the dendro-dendritic synapses

connecting mitral and granule cells is the prevalent juxtaposition

of a glutamatergic synapse onto the granule cell and a GABAergic

synapse onto the mitral cell [37]. There are indications that the

glutamatergic and the GABAergic component form at very similar

times [65], with possibly the glutamatergic component formed

somehwat earlier [75]. Anatomically, the connections between

these two cell types are therefore predominantly reciprocal. This

reciprocity is important for the ability of the resulting network to

decorrelate stimulus representations. It implies

W
(mg)
ji ~W

(gm)
ij ð6Þ

with W
(gm)
ij ~1 if granule cell i is receiving input from mitral cell j

and W
(gm)
ij ~0 otherwise. Due to the linearity of the neuronal

dynamics the effective connectivity matrix is given by

W~W(mg)W(gm): ð7Þ

Focusing on the structural plasticity provided by the persistent

turn-over of granule cells rather than any plasticity of the synapses
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[76,77], we assume in most of this work that all inhibitory synapses

have fixed equal strength w and all excitatory synapses have

strength 1. To probe the role of reciprocity we consider in Sec.

RESULTS; Imperfect Reciprocity of Synapses is Sufficient also connec-

tivities violating (6) and heterogeneities in the synaptic strength w.

We model activity-dependent apoptosis of the granule cells [41]

by discrete events [78] during which the survival of any given

granule cell is assessed based on the history of its activity. The

duration of the time interval over which the activity influences cell

survival is currently not known. We assume that it is long enough for

the animal to be exposed to a number of relevant odors defining a

stimulus ensemble S. Thus, at each of these events, which we

assume for simplicity to occur regularly in time defining a time step

of length DT~1, granule cells are removed probabilistically. Their

survival probability p is taken to depend in a sigmoidal fashion on

their cumulative, thresholded activity across the stimulus ensemble

S. Introducing the resilience Ri of granule cell i via

Ri~
XNs

a~1

G
(a)
i {Gmin

h i
z

ð8Þ

with a resilience threshold Gmin, we take

p(Ri)~pminz
1

2
tanh c Ri{R0ð Þð Þz1f g pmax{pminð Þ ð9Þ

with a soft survival threshold R0. Since little is known about the

specifics of the survival probability we take here pmin~0 and

pmax~1. In this model a granule cell has to reach an activity beyond

Gmin at least for some of the stimuli in the ensemble in order to

trigger the signaling pathway that controls its survival [41,57,58].

The probabilistic network evolution eventually leads to a

statistically steady state as characterized by the output patterns and

their correlations fluctuating around constant values. The magnitude

of the fluctuations decreases with an increase in the overall number of

granule cells in the system, which can be achieved by a suitable

decrease in the synaptic weight w. Fig. 9B shows the typical size of

fluctuations in the correlation for the parameters used in our study.

The network evolution is self-regulated by the balance between

proliferation and apoptosis: with increasing granule-cell popula-

tion the overall inhibition of the mitral cells increases, leading to a

reduction in granule cell activity. This lowers the survival

probability of the granule cells and provides the saturation of

the network size. As observed experimentally, reduced odor

stimulation leads to a reduction in the size of the granule cell

population [15].

We quantify the reshaping of the stimulus representations by the

resulting network using the Pearson correlation rab of patterns M(a,b)

rab~

PNm

i~1

M
(a)
i {SM(a)T

� �
M

(b)
i {SM(b)T

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNm

i~1

M
(a)
i {SM(a)T

� �2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNm

i~1

M
(b)
i {SM(b)T

� �2

s ð10Þ

where SM(a)T~N{1
m

PNm
i~1 M

(a)
i . The average correlation �rr is given

by

�rr~
1

Ns Ns{1ð Þ
XNs

a=b

rab: ð11Þ

Population Description
To capture certain aspects of the network evolution analytically

we also consider the weak-coupling limit, w%1. The number of

granule cells is then large and the network restructuring can be

described in terms of differential equations for the mean size of the

various populations of granule cells that have established the same

connections with mitral cells. For simplicity we give here only the

equations for two-connection networks in which each granule cell

makes connections with two mitral cells. The probability P(nij ,t)
for the population of granule cells connecting mitral cells i and j to

have size nij evolves during a small time step Dt according to

P(nij ,tzDt)~P(nij ,t)z

Dt b P(nij{1,t){P(nij ,t)
� �

{d(nij)P(nij ,t)zd(nijz1)P(nijz1,t)
� 	

,
ð12Þ

where b is the fixed influx of new granule cells and d(nij) is the removal

rate. With p(Rij) giving the probability for a granule cell to survive for

the duration DT~1, the removal rate is given by

d(nij)~
1

Dt
nij 1{ p(Rij)

� � Dt
DT


 �
?{nij ln p(Rij) for Dt?0: ð13Þ

Here we have used that different cells are removed independently of

each other. The resilience Rij is given in terms of the activity of the

granule cells G
(a)
ij analogous to Eq.(8). For large mean population

size SnijT the probability distribution P(nij ,t) will be sufficiently

sharply peaked to allow to approximate the evolution equation for

SnijT,

dSnijT
dt

~b{
X?

nij~1

d(nij)P(nij ,t), ð14Þ

by

dnij

dt
~bznij ln p Rij

� 

: ð15Þ

Here and in the following we drop the brackets indicating the

mean value.

The steady-state neuronal activities are given by

M
(a)
i ~MspzS

(a)
i {w

XNm

i=j~1

nijG
(a)
ij ð16Þ

G
(a)
ij ~M

(a)
i zM

(a)
j : ð17Þ

Note that for networks with a realistic number of mitral cells the

number of possible different granule cell populations is extremely

large, much larger than the total number of granule cells in the

olfactory bulb. Thus, the size of most populations will be small and

fluctuations in the number of granule cells, which have been

neglected in the population description eqs.(15,16,17), may

become relevant. The main purpose of the population formulation

is to allow analytical approaches for simple cases, which can

provide insight that may be hard to extract from numerical

simulations of the discrete model. When interpreting the analytical

results the limitations of the formulation need to be kept in mind.
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For analytical calculations considering a steep sigmoid, c&1, for

the survival probability p(Ri) in Eq.(15) is particularly attractive.

The steady state of the population description eqs.(15,16,17) can

then be analyzed quite easily because the nullcline for the

population nij , which is defined by
dnij

dt
~0, is then very well

approximated by Rij~R0 since ln p(Rij)
� 


switches quickly from 0

to {? as Rij passes through R0.

Interference and Optimal Resilience Threshold
To obtain analytical results for the threshold G

(opt)
min that

minimizes interfering connections between mitral cells that are

strongly active but only during the presentation of different stimuli

we consider a set of four stimuli S(a) activating four glomeruli,

S(1,2)~ S+s,S+s,0,0ð Þ, ð18Þ

S(3,4)~ 0,0,S+s,S+sð Þ: ð19Þ
The symmetry of this stimulus ensemble has been chosen such that

for networks in which each granule cell connects to two mitral cells

only two granule-cell populations have to be analyzed, n12 and n13.

Independent of the values of the thresholds the remaining

populations are given by

n34~n12 and n14~n23~n24~n13:

For s%S these stimulus pairs are highly correlated. We consider

their reshaping by networks that are trained using the slightly

simplified ensemble fS(i),i~1 . . . 4g with s~0. The approximate

nullclines R12~R0 and R13~R0 for the evolution of the two

populations n12 and n13 are then given by (cf. Eq.(8))

R0~2
2

2n12z4n13z1

2n12z1z2n13

2n12z1
SzMsp

� �
{Gmin

� �
z

z2
2

2n12z4n13z1
{

2n13

2n12z1
SzMsp

� �
{Gmin

� �
z

ð20Þ

R0~4
Sz2Msp

2n12z4n13z1
{Gmin

� �
z

: ð21Þ

Without loss of generality we have absorbed w into the definition

of nij . Depending on Gmin the system has two fixed points. For

GminvG
(opt)
min one has

n
(1)
12 ~

4S{R0

2R0
n

(1)
13 ~4S

G
(opt)
min {Gmin

R0 4GminzR0ð Þ , ð22Þ

where G
(opt)
min is given by

G
(opt)
min ~

1

2

R0Msp

S
: ð23Þ

For GminwG
(opt)
min the fixed point is given by

n
(2)
12 ~

2(SzMsp)

2GminzR0
{

1

2
n

(2)
13 ~0: ð24Þ

Thus, the interference induced by population n13 vanishes for

GminwG
(opt0
min , while the inhibition of the co-active cells starts to

decrease at Gmin~G
(opt)
min : Since the correlation r decreases with

decreasing n13 but increases with decreasing n12 it is minimal for G
(opt)
min .

Two comments regarding the solution (24) with n13~0 are in

order. The nullclines are given by (20,21) only in the limit c??:
For finite values of c corrections arise that render n13 non-zero (cf.

(15)). Moreover, the description of the granule cell populations

solely in terms of their mean values requires that the means are

sufficiently large. In particular, since the population is always non-

negative its mean cannot strictly vanish. Nevertheless, for small

influx b and large c the population n13 will become very small as

Gmin is increased beyond G
(opt)
min .

Alternating vs Mixture Protocol
A simple model with four stimuli and four glomeruli can also be

used to obtain insight into the difference between the alternating

stimulus protocol and the mixture protocol of Sec. RESULTS;

Effective Enrichment: Overall Overlap is Not Sufficient. To mimic the

alternating protocol we use stimuli (18,19) with s~0 and for the

training with the mixture protocol we use S(1,2,3,4)~

(
1

2
S,

1

2
S,

1

2
S,

1

2
S). For this protocol all granule cell populations

are equal, which we denote by nm.

The nullcline determining nm is given by

R0~4
Sz2Msp

1z6nm

{Gmin

� �
z

: ð25Þ

For GminvG
(opt)
min comparison with R13 in the alternating protocol

(21) gives 3nm~n12z2n13, implying

n
(1)
13 vnmvn

(1)
12 , ð26Þ

where n
(1)
12 and n

(1)
13 are the granule cell populations given by (22).

Thus, within this simple model the mixture protocol induces

stronger inhibition than the alternating protocol between the first

and second pair of mitral cells, nmwn
(1)
13 . This inhibition enhances

the decorrelation of stimuli like (
1

2
Szs,

1

2
Szs,

1

2
S{s,

1

2
S{s)

and (
1

2
S{s,

1

2
S{s,

1

2
Szs,

1

2
Szs), which mimic the test stimuli

of Sec. RESULT; Effective Enrichment: Overall Overlap is Not Sufficient.

This relationship among the populations is also found in the

simulations of the full discrete model of Fig. 10. Excluding the

terms on the diagonal, which provide self-inhibition, the sums of

the synaptic weights in the four quadrants of the effective

connectivity matrix W are found to be

ŴWalt~ 145000

101000

zfflfflfflffl}|fflfflfflffl{^n12

101000

146000

zfflfflfflffl}|fflfflfflffl{^n13
0
B@

1
CA

ŴWmix~ 124000

119000

zfflfflfflffl}|fflfflfflffl{^nm

119000

120000

zfflfflfflffl}|fflfflfflffl{^nm
0
B@

1
CA:

ð27Þ

The terms above the braces indicate which population is

considered to correspond to which block. Note that each quadrant

contains many connections that are not specific to limonene or

carvone (cf. Fig. 9); neither will they be affected much by the
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difference in the protocol nor will they contribute substantially to

the discrimination of the test stimuli.

Natural Stimuli
To test the ability of the model network to decorrelate stimulus

representations we use an ensemble of stimuli modeled after the

activation patterns in the glomerular layer of rat that have been

obtained experimentally via ½14
C�2-deoxyglucose uptake in

response to odor exposure (published in the Glomerular Activity

Response Archive http://gara.bio.uci.edu/, cf. [42]). In these data

the individual glomeruli have not been identified. Clearly, not

each of the 357|197 pixels corresponds to a glomerulus. We have

down-sampled the experimentally determined pixel patterns to

424 input channels (or 50 channels in cases in which we illustrate

the connectivity), and take each channel as a proxy for a

glomerulus. In the down-sampling we avoid excessive smoothing

of the resulting patterns by retaining in each set of adjacent

10|10 pixels the highest value rather than their average (Fig. 2A).

The stimulus set S includes 2 pairs of enantiomers, +-limonene

and +-carvone, which are difficult to discriminate. Specifically,

without training mice do not discriminate between the two

enantiomers of limonene [40]. When addressing the ability of the

model network to learn to decorrelate highly similar stimuli we

focus on these 4 stimuli. In addition, to mimic a background odor

environment we include four additional stimuli, 1-butanol, 1-

hexanol, 1-heptanol, and acetic acid.

Supporting Information

Text S1 (with Figs.S1,S2,S3) Comparison of the decorrelation

performance of the neurogenetic network with that of other

adaptive networks.

(PDF)
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