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a b s t r a c t

Long lasting forms of synaptic plasticity and long-term memory formation require new mRNA and pro-
tein synthesis. While activity-dependent expression of immediate-early genes has long been thought
to account for such critical de novo macromolecular synthesis, experimental proof has been scarce until
recently. During the past few decades, a growing number of genetic and molecular biological studies have
started to elucidate essential roles of immediate-early genes in synaptic plasticity and cognitive func-
tions. I here present an overview of the history and recent work on regulation and function of neuronal
immediate-early genes, including Arc/arg3.1. This review provides a conceptual framework in which var-
mmediate-early gene
rc
ynaptic activity
ong-term memory
ynaptic plasticity
REB

ious immediate-early genes underlie several distinct processes required for long-term synaptic changes
and memory formation.
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. Introduction

The brain stores information extracted from experiences and
tilizes it to modify behaviors throughout the life span of an organ-
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ism. This large mnemonic capacity is thought to depend on intrinsic
neural networks whose synaptic connectivity and strength can be
modulated by specific patterns of neuronal activity. Early behav-

ioral studies using protein synthesis inhibitors indicated that newly
synthesized protein is required for long-term memory but not
for short-term memory (Davis and Squire, 1984). This conceptual
framework has been expanded to synaptic plasticity; long-lasting
forms of synaptic plasticity, such as long-term potentiation (LTP),
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equire newly synthesized mRNA and proteins, while short-term
lasticity does not (Bliss and Collingridge, 1993; Goelet et al.,
986; Kandel, 2001). This requirement has critical time windows
or both memory formation and synaptic plasticity. Administra-
ion of protein synthesis inhibitors to animals just after learning
ffectively blocks long-term memory formation, while adminis-
ration several hours later has little effect (Freeman et al., 1995;
ader et al., 2000; Rosenblum et al., 1993; Squire and Barondes,
972; Suzuki et al., 2004). Similarly, LTP is prevented only when
RNA or protein synthesis is blocked immediately after LTP-

nducing stimulation (Frey et al., 1988; Nguyen et al., 1994; Otani
t al., 1989). Thus, gene expression occurring immediately after the
vents to be memorized appears to play critical roles for establish-
ent and/or maintenance of long-lasting neuronal changes. Such

nducible genes are mostly classified as a subset of genes called
mmediate-early genes (IEGs) (Lanahan and Worley, 1998; Morgan
nd Curran, 1991).

The term “immediate-early gene” originated from virology.
hen viruses infect a host cell, several viral genes are rapidly

ranscribed. This process requires only pre-existing transcription
actors of the host cell and occurs in the absence of de novo protein
ynthesis (Watson and Clements, 1980). Through tremendous work
n cellular differentiation and proliferation during the 1980s, it has
ecome evident that various stimuli, such as growth/differentiation
actors, hormones or cytokines, induce rapid and transient mRNA
ynthesis in fibroblasts and other cell lines even in the presence of
rotein synthesis inhibitors (Almendral et al., 1988; Curran et al.,
985; Greenberg and Ziff, 1984; Kelly et al., 1983; Kruijer et al.,
984; Lau and Nathans, 1985). By analogy to the viral IEGs, these
ellular genes that are responsive to extracellular stimuli are called
cellular” IEGs. The cellular IEGs, simply referred to as IEGs, encode
any functionally distinct proteins, including structural proteins,

ignaling molecules, and transcription factors.
In this review, I summarize recent expansion of our understand-

ng of neuronal IEGs regarding their regulation and functions for
euronal plasticity and cognitive functions. In particular, I will focus
n the neuron-specific IEG Arc (also known as arg3.1) (Link et al.,
995; Lyford et al., 1995) because recent studies on this gene have
ighlighted many characteristic and intriguing regulatory aspects
f neuronal IEGs, although the biological function of these remains
nigmatic.

. Neuronal activity-dependent expression of IEGs

.1. IEG expression in the brain

As in the case of intracellular responses to growth factors in
itotic cells, synaptic transmission and/or action potentials also

nitiate several intracellular signaling cascades, particularly those
elated to intracellular Ca2+ changes, in postmitotic neuronal cells
Morgan and Curran, 1991; Sheng and Greenberg, 1990). In the late
980s, it was determined that the IEG encoded transcription factor
-Fos is rapidly induced in specific brain nuclei after pharmacolog-
cal convulsive stimulation and physiological contexts (Morgan et
l., 1987; Saffen et al., 1988; Sagar et al., 1988). As a consequence
f these groundbreaking findings, two types of studies have been
onducted on neuronal IEGs. One type is aimed at isolating and
haracterizing novel neuronal IEGs. Because many IEGs are impli-
ated in neuronal plasticity and cognitive functions (discussed in
ection 4), much effort has been invested to isolate novel IEGs,

robably with the hope of finding “master genes” for learning and
emory. The other type of study applies IEG expression as a tool to

isualize neuronal activity in the brain. Because IEG expression in a
euron reflects the neuron’s recent activity, detection of IEG mRNA
r protein products in the brain provides information regarding
rch 69 (2011) 175–186

where and when neurons were activated. A brief overview of both
lines of work is described below.

2.2. Isolation of neuronal IEGs

Early following studies revealed that several IEGs that were ini-
tially identified in fibroblasts and cell lines are in fact also expressed
and activity-regulated in neurons in the brain (Dragunow et al.,
1992; Herdegen et al., 1991; Morgan et al., 1987; Saffen et al., 1988;
Worley et al., 1991). Thus, it is reasonable to expect that there might
be more dynamically regulated and more neuron-specific IEGs that
could be relevant to synaptic plasticity and memory formation. In
the early 1990s, several laboratories extensively explored new IEGs
that could be induced by neuronal activity (Table 1). A group led by
Paul Worley at the Johns Hopkins University isolated IEGs from
a subtraction cDNA library made from control and electroconvul-
sive shock-treated hippocampi. Through this strategy, they isolated
more than 10 novel IEGs; the clones encode transcription factors
(egr-3) (Yamagata et al., 1994a), signaling molecules (rheb, rsg2,
cox-2) (Ingi et al., 1998; Yamagata et al., 1993, 1994b), and several
functionally unknown proteins at that time (Arc, homer1a, narp,
etc.) (Brakeman et al., 1997; Lyford et al., 1995; Tsui et al., 1996).
Dietmar Kuhl and colleagues at Columbia University and later in
Germany isolated several IEGs using a similar differential screening
strategy. Their identified clones include tPA (Qian et al., 1993), SNK
(Kauselmann et al., 1999) and arg3.1 (Link et al., 1995). Inokuchi’s
group in Japan independently started to search for activity-induced
IEGs through a PCR-based differential cloning strategy and isolated
several novel neuronal IEGs, including vesl-1s (Kato et al., 1997)
and activin-� (Inokuchi et al., 1996). Elly Nedivi and colleagues
isolated multiple candidate-plasticity genes (CPGs), some of which
were shown to be IEGs (Fujino et al., 2003; Nedivi et al., 1993,
1996). These studies used the protein synthesis inhibitor cyclohex-
imide to stabilize or enrich activity-induced mRNAs, which also
ensured the definition of IEGs, i.e., de novo protein-synthesis inde-
pendent expression of transcripts. Some of these genes have turned
out to be identical. Table 1 presents a list of representative neu-
ronal IEGs with a brief descriptions of structures and function of
their products; neuronal IEG products can be classified into several
categories including transcription factors, postsynaptic proteins,
signaling molecules, secretory factors, and membrane proteins. It
is noteworthy that most of the IEGs that were reported by earlier
studies encoded transcription factors, while many of those reported
more recently encoded non-transcription factor proteins whose
function might be directly associated with synaptic properties. The
roles and functions of these IEGs in vitro and in vivo remain central
topics in the field (see Section 4).

2.3. Mapping IEG expression in the brain

IEG expression mapping is a powerful method to visualize acti-
vated neuronal populations in the brain of animals. Importantly,
this technique has been applied to the identification of brain loci
related to learning and memory. Historically, c-Fos immunohisto-
chemistry (IHC) and c-fos mRNA in situ hybridization (ISH) have
been used (Brennan et al., 1992; Rosen et al., 1992, 1998; Vann
et al., 2000; Wisden et al., 1990; Zhu et al., 1995). However, because
the induction threshold of c-fos appears to be rather high com-
pared to those of other IEGs (Waltereit et al., 2001; Wisden et al.,
1990; Worley et al., 1993), c-fos mapping tends to be applied to
behavioral paradigms with a relatively strong cognitive or emo-

tional burden. Expression of zif268 is more responsive to synaptic
activities at physiological levels (Cole et al., 1990; Worley et al.,
1993). Both contextual and cued fear conditioning evoke zif268
induction in the amygdala, the center of emotional memory, as
well as in the CA1 region of the hippocampus in rodents (Hall
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Table 1
Summary of activity-regulated, neuronal immediate-early genes.

Category Gene Structure/function of gene product Reference

Transcription factors c-fos A bZIP protein; a component of AP-1
complex

Greenberg and Ziff (1984); Morgan et
al. (1987)

fos B A bZIP protein; a component of AP-1
complex

Hope et al. (1992); Dragunow et al.
(1992)

c-jun A bZIP protein; a component of AP-1
complex

Saffen et al. (1988); Cole et al. (1990)

junB A bZIP protein; a component of AP-1
complex

Saffen et al. (1988); Cole et al. (1990)

zif268/egr1/krox24/NGFI-A A zinc finger protein Cole et al. (1989); Worley et al. (1993)
egr2/krox20 A zinc finger protein Bhat et al. (1992)
egr3/pilot A zinc finger protein Yamagata et al. (1994a)
nur-77/NGFI-B An orphan hormone receptor Watson and Milbrandt (1989); Wisden

et al. (1990)
Postsynaptic proteins Arc/arg3.1 A regulator of AMPAR trafficking Lyford et al. (1995); Link et al. (1995)

homer1a/vesl1s An inducible form of EVH proteins Brakeman et al. (1997); Kato et al.
(1997)

Intracellular signaling Rheb A Ras homolog protein: regulating
mTOR pathway

Yamagata et al. (1994b)

RSG2 A regulator of heteromeric G-protein
signaling

Ingi et al. (1998)

SNK/Plk2 A polo-like kinase Kauselmann et al. (1999)
Cox-2 An inducible cyclooxygenase Yamagata et al. (1993)

Secretory factors BDNF A member of neurotrophin family Hughes et al. (1993); Lauterborn et al.
(1996)

Activin � A A member of the TGF-� superfamily Andreasson and Worley (1995);
Inokuchi et al. (1996)

Narp A neuronal pentraxin: presynaptically
released

Tsui et al. (1996)

Tissue-plasminogen activator (tPA) An extracellular serine protease Qian et al. (1993)
Membrane proteins Arcadin A protocadherin family protein Yamagata et al. (1999)
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nly a subset of immediate-early genes are listed.

t al., 2001; Reijmers et al., 2007). Interestingly, such memory-
elated expression of zif268 is temporal- and region-specific; zif268
n the CA1 region is induced more efficiently by a memory test per-
ormed at one day post training (recent memory test) compared
o by the test done one month later (remote memory test), while
if268 expression is more upregulated in several association cor-
ices including the anterior cingulate cortex, the medial prefrontal
ortex, and the temporal cortex, during the remote memory test
han during the recent memory test (Frankland et al., 2004; Sacco
nd Sacchetti, 2010). In song birds, associative learning of songs and
hocks robustly induces the zif268 homolog ZENK in brain regions
elated to song memories (Jarvis et al., 1995).

Recently, Arc ISH and IHC have become more frequently used
ecause Arc expression is highly dynamic and correlated with neu-
onal activity (Guzowski et al., 1999, 2000; Link et al., 1995; Lyford
t al., 1995; Ramirez-Amaya et al., 2005). Exploration of new envi-
onments strongly induces Arc expression in the hippocampus
s well as related neocortical areas in rats and mice (Guzowski
t al., 1999; Ramirez-Amaya et al., 2005). Arc mRNA and protein
nduction are also observed in specific brain areas during perfor-

ance of behavioral tasks that test spatial memory (Fletcher et al.,
006; Gusev et al., 2005; Gusev and Gubin, 2010; Guzowski et al.,
001), fear-conditioning memory (Barot et al., 2009; Mamiya et al.,
009; Ploski et al., 2008), olfactory memory (Desgranges et al.,
010; Saddoris et al., 2009), and several types of operant learn-

ng (Carpenter-Hyland et al., 2010; Kelly and Deadwyler, 2003;
apanelli et al., 2010). Furthermore, taking advantage of rapid Arc
RNA synthesis, a sensitive fluorescence ISH method called cat-
ISH was developed to discriminate neuronal activation history at
wo different time points (Guzowski et al., 1999).

As alternatives to detect endogenous IEG mRNA and proteins,
everal transgenic (Tg) mouse approaches have been reported.
enetically encoded markers such as green fluorescent protein
chored protein: promoting
enesis

Nedivi et al. (1993); Naeve et al. (1997)

(GFP) and �-galactosidase (LacZ) under the control of the c-fos
promoter were used to effectively visualize neuronal populations
activated under both physiological and pathological conditions
(Barth et al., 2004; Dai et al., 2009; Robertson et al., 1995; Smeyne
et al., 1992). Furthermore, an enduring labeling method specific
for neurons activated in a given time window has been developed
using c-fos promoter Tg mice (Reijmers et al., 2007). Recently, sev-
eral lines of Arc-promoter reporter mice have also been generated
(Eguchi and Yamaguchi, 2009; Grinevich et al., 2009; Wang et al.,
2006) (Okuno et al., in preparation). With advances in imaging
techniques, these Tg mice now open the door for in vivo real-time
imaging of IEG expression (Eguchi and Yamaguchi, 2009; Wang
et al., 2006).

As described above, most IEG mapping studies have been con-
ducted in rodents and other small vertebrates. However, it is
noteworthy that there are several studies using larger animals
including primates. zif268 and c-fos mapping effectively visualizes
functional architecture in the brain such as the ocular dominance
columns in the monkey visual cortex, which could previously only
be visualized by radioisotope labeling methods (Chaudhuri and
Cynader, 1993; Chaudhuri et al., 1997; Takahata et al., 2009). In
an attempt to map memory-related activity, I initiated a series
of studies in which declarative memory paradigms were com-
bined with IEG mapping in macaque monkeys, while working with
Professor Yasushi Miyashita and colleagues (Fig. 1) (Okuno and
Miyashita, 1996; Tokuyama et al., 2000, 2002). In these studies,
monkeys were trained to perform a visual long-term memory task,
termed the pair-association task, in which a set of two geomet-

rically unrelated pictures had to be memorized for a reward to
be given. During the learning period, a couple of IEGs including
zif268 (Okuno and Miyashita, 1996; Tokuyama et al., 2002) and
brain-derived neurotrophic factor (bdnf) (Tokuyama et al., 2000)
were selectively induced in patch-like patterns in a specific region
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Fig. 1. Induction of zif268 in monkey brain during formation of declarative long-term memory. (A) Line drawings of the ventral view of the macaque brain (left) and of a
coronal section of the temporal lobe (right). Orientation is indicated by arrows: a, anterior; p. posterior: d, dorsal, v, ventral; m, medial; l, lateral. rs, rhinal sulcus; amts,
anterior middle temporal sulcus; sts, superior temporal sulcus. (B) A set of stimulus pictures used in the visual memory tasks. These paired computer-generated pictures
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eprinted from Okuno and Miyashita (1996) and Tokuyama et al. (2000, 2002).

area 36) of the inferior temporal cortex, a presumed storehouse
f visual long-term memory (Miyashita, 1993). Parallel electro-
hysiological studies have demonstrated the existence of clusters
f cells that specifically respond to the paired associates within
rea 36 (Higuchi and Miyashita, 1996; Naya et al., 2001; Sakai and
iyashita, 1991). The size and location of electrophysiologically

dentified clusters are very much consistent with the IEG patches,
uggesting functional relevance of IEG expression in shaping the
ask-specific responses of neurons (Okuno and Miyashita, 1996;
okuyama et al., 2000, 2002). Selective induction of bdnf mRNA
n the parietal association cortex related to tool-use learning in

onkeys has also been reported by another group (Ishibashi et al.,
002).

. Molecular basis of dynamic IEG regulation

.1. Transcriptional regulation of IEGs

Accumulating evidence from mapping studies indicates a strong
orrelation between IEG expression and neuronal activity in
he brain. As such, questions about the molecular regulation of
ctivity-dependent expression of IEGs have arisen. Traditional
nd straightforward approaches include evaluation of genomic

equences in the promoter regions of IEGs and identification of the
ranscription factors involved in their regulation. In this section, I
riefly describe molecular aspects of activity-dependent regulation
f the c-fos and bdnf genes, followed by a more detailed description
f the molecular regulation of the Arc gene.
-rewarded stimuli in discrimination learning. (C) Representative IEG expression in
iscrimination learning. Transcripts of zif268 accumulated in a few patches in Area

l discrimination (right). Scale bars, 1 mm.

The first IEG whose regulatory mechanisms were studied in
detail in neurons is c-fos (Schilling et al., 1991; Sheng et al., 1990).
The activity-dependent regulation of the c-fos gene can be recapit-
ulated with a relatively simple regulatory structure; most of the
essential cis-acting regulatory elements seem to be located within
a 600-bp proximal promoter sequence (Robertson et al., 1995;
Smeyne et al., 1992). In neurons, c-fos expression is induced by both
cAMP and Ca2+ signaling. One of the genomic elements responsible
for this regulation is the Ca2+/cAMP responsive element (Ca/CRE),
which is located close to the transcription start site (TSS) of the
c-fos gene (Sheng and Greenberg, 1990). The activity-dependent
transcriptional regulator CREB (c-AMP responsive element binding
protein) mediates the Ca/CRE-dependent transcriptional acti-
vation. Another essential regulatory element within the c-fos
promoter is the serum response element (SRE), which resides
250 bp upstream from the Ca/CRE (Schilling et al., 1991). Serum
response factor (SRF), which is also a major activity-dependent
transcriptional regulator, binds to SRE and mediates transcription
(Johnson et al., 1997). Tg mice with point mutations in either SRE
or Ca/CRE of the c-fos promoter showed greatly reduced transgene
expression in the brain (Robertson et al., 1995).

The bdnf gene is another well-studied activity-dependent gene.
The bdnf gene has at least 8 distinct promoters, and each has differ-

ent activity dependencies (Aid et al., 2007; Pruunsild et al., 2007).
Transcripts from some of the promoters fulfill the criteria for IEGs
(Hughes et al., 1993; Lauterborn et al., 1996). Promoter IV, which
exhibits the most dynamic activity dependency, has three distinct
calcium response elements, CaRE-1 (calcium response element-1),
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aRE-2 and CaRE-3, which bind CaRF (calcium-response factor),
SF (upstream stimulatory factor) and CREB, respectively [for com-
rehensive reviews, see (Greer and Greenberg, 2008; West et al.,
001)]. Promoter I of bdnf also contains a CRE and a USF-binding
ite (Tabuchi et al., 2002).

These pieces of evidence indicate that several well known tran-
cription factors play essential roles in neuronal activity-dependent
EG transcription. In particular, CREs exist in the promoter regions
f almost all neuronal IEGs examined, including c-fos, bdnf, zif268
Changelian et al., 1989), homer1a/vesl1s (Bottai et al., 2002), cpg15
Fujino et al., 2003), and Arc (see below). Therefore, CREB is believed
o be one of the key players in the control of IEG expression.
dditionally, its critical roles in cognitive functions and neuronal
lasticity have been repeatedly reported (Bito and Takemoto-
imura, 2003; Carlezon et al., 2005; Lonze and Ginty, 2002; Silva
t al., 1998). For such reasons, understanding of the molecular
echanisms that regulate transcriptional activity of CREB and other

ranscription factors is of particular importance. A comprehensive
escription of the activity-driven regulation of these transcription
actors is beyond the scope of this review, but it should be noted that
hosphorylation/dephosphorylation is a major regulatory switch
or CREB and other transcription factors (Bito et al., 1996, 1997;
eisseroth et al., 1996; Mayr and Montminy, 2001; Shaywitz and
reenberg, 1999; Takemoto-Kimura et al., 2010) (see also below).

.2. Regulation of Arc expression through the synaptic-activity
esponsive element (SARE)

As described above, Arc expression is highly dynamic and cor-
elates with neuronal activity related to cognitive processes in the
rain. Thus, many efforts have been invested to dissect signaling
ascades and molecular determinants that control the expression of
rc transcripts. Similar to many other IEGs, Arc expression depends
n NMDA receptor activation in the brain (Link et al., 1995; Lyford
t al., 1995). However, until recently, it remained unclear as to what
ntracellular signaling was involved and what types of transcription
actors were crucial for Arc induction.

Waltereit et al. analyzed an approximately 2-kb sequence
pstream from the Arc TSS (Waltereit et al., 2001). The 2-kb Arc
romoter sequence has little ability to respond to cAMP elevation
y forskolin treatment, while endogenous Arc mRNA is effec-
ively induced with the same treatment, suggesting that upstream
equences are critical for Arc regulation. Within the 2-kb sequence,
hey identified a couple of SREs and AP-1 (the binding motif for
os/Jun complex) sites, but no CRE sites (Waltereit et al., 2001). They
lso showed involvement of the MAPK pathway in endogenous Arc
nduction. Minimal progress had been made on understanding the

olecular basis of Arc transcriptional regulation; however, due to
ecent advances in available genomic information and molecular
iological techniques, a genomic locus that dominantly controls
ynaptic activity-dependent expression of Arc has been identified.
awashima et al. extended the analysis of Arc promoter sequences
p to 10 kb upstream of TSS (Kawashima et al., 2009). They ini-
ially found that the 7-kb upstream sequence of Arc replicated the
ynamic expression of the endogenous Arc gene. Further exten-
ive analyses revealed that an approximately 100-bp sequence,
ocated at the most distal region of the 7-kb Arc promoter, is
he critical element for dynamic Arc expression. This element
s highly responsive to synaptic activity and is thus named the
ynaptic activity-responsive element (SARE) (Inoue et al., 2010;
awashima et al., 2009). SARE has a unique structure consisting

f a CREB-binding site (half CRE) and an SRF-binding site that flank
MEF2-binding site (MRE) (Fig. 2). MEF2 is another major player in
ctivity-dependent transcription (Flavell et al., 2006). Cooperativ-
ty of CREB, MEF2 and SRF appears to be critical for SARE activation
ecause the integrity of all 3 transcription factor binding sites is
rch 69 (2011) 175–186 179

required for full activity dependency (Kawashima et al., 2009).
Interestingly, these 3 transcription binding sites are evolutionally
well conserved across placental mammals, while the CRE site is
missing in some non-placental mammals such as the platypus,
perhaps suggesting that evolutionary selection might be achieved
through SARE-dependent gene regulation of Arc (Kawashima et al.,
2009). Both CaMK- and MAPK-dependent pathways are involved
in SARE activation (Kawashima et al., 2009). The importance of the
SRF-binding site in SARE was also reported independently by two
groups (Pintchovski et al., 2009; Smith-Hicks et al., 2010).

In addition to the pre-existing transcription factors mentioned
above, lines of evidence from recent studies indicate that several
transcriptional coactivators that interact with specific transcrip-
tion factors may also impact activity-dependent gene expression.
CBP (CREB binding protein) and its paralogue p300 are well-known
coactivators that regulate gene expression in a manner dependent
on Ser133-phosphorylation of CREB (Chrivia et al., 1993). CRTCs
(CREB-regulated transcription coactivators, also known as TORCs)
may also regulate CREB-dependent gene expression (Conkright
et al., 2003). CRTC1, a brain-enriched isoform of CRTC, regulates
dendritic morphology in developing cortical neurons (Li et al., 2009)
and IEG expression in mature hippocampal neurons (Espana et al.,
2010; Nonaka et al., personal communication). Two different fam-
ilies of coactivators, TCF (ternary complex factor) (Treisman, 1994)
and MKL (megakaryoblastic leukemia or megakaryocytic acute
leukemia, MAL) (Miralles et al., 2003; Selvaraj and Prywes, 2003),
are known as SRF cofactors. Phosphorylation of TCF is correlated
with c-fos expression in the brain (Vanhoutte et al., 1999) and MKL
cofactors have been shown to be involved in actin-regulated den-
dritic morphology and IEG-mediated synaptic plasticity (Ishikawa
et al., 2010; Smith-Hicks et al., 2010; Tabuchi et al., personal com-
munication). These findings indicate the critical importance of
coactivators in transcriptional regulation of IEGs. Fig. 2 illustrates
a model of Arc regulation via SARE, although identity of the con-
stituents in the SARE–protein complex must be confirmed through
further experiments.

4. Function of IEG products

In this section, I first review molecular functions of represen-
tative IEG products and then summarize recent knock-out (KO)
mouse studies investigating physiological roles of IEGs in synaptic
plasticity and memory formation.

4.1. Biological and cellular functions

4.1.1. IEG transcription factors
As shown in Table 1, one category of products encoded by IEGs

is transcription factors. In vitro experiments have revealed that
most of these inducible transcription factors can work as activa-
tors, and their DNA binding sequences have been characterized.
However, genes that are regulated by the IEG-encoded transcrip-
tion factors (i.e., target genes) under physiological conditions or
in vivo have not been well characterized yet. For example, c-Fos
and other Fos-related proteins heterodimerize with Jun family pro-
teins and bind to the AP-1 site during transcriptional regulation
(Curran and Franza, 1988; Karin et al., 1997). The AP-1 sites are fre-
quently found in the promoter regions of many genes, but only a
few have been actually shown to be regulated by the Fos/Jun family
in the brain (Zhang et al., 2002, 2006). Similarly, several putative
target genes of Zif268 have been proposed, but their dependency

in vivo still needs to be confirmed (James et al., 2005). Recent “deep
sequencing” technologies (e.g., ChIP-seq and RNA-seq) combined
with genetically modified animal resources (see below) may greatly
facilitate the identification of genuine targets of IEG transcription
factors.
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Fig. 2. Putative molecular mechanisms of synaptic activity-dependent expression of Arc. Upon strong synaptic activation, a transient increase in intracellular Ca2+ concen-
trations by Ca2+ influx through NMDA-type glutamate receptors (NMDA-R) initiates several intracellular kinase and phosphatase pathways. Voltage-dependent calcium
channels (VDCC) and IP3 receptors (IP3-R) may also contribute to the intracellular Ca2+ rise. The synaptic signaling converges on the distally located key regulatory element
SARE by forming a complex consisting of the critical activity-dependent transcription factors, CREB, MEF2 and SRF as well as their coactivators such as TCF, MKL, CBP,
p300 and CRTC. The putative SARE complex recruits the preinitiation complex close to transcription start site (TSS) and initiates transcription of Arc. Only direct phos-
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alcium/calmodulin kinase IV; CaMKK, calcium/calmodulin kinase kinase; CaN, calc
ein; CRTC, CREB-regulated transcription co-activator; ERK, extracellular signal-regu

KL, megakaryoblastic leukemia; SARE, synaptic-activity responsive element; SRF,

.1.2. Effector IEG proteins
Functions of other categories of IEG-encoded products such as

ytosolic and synaptic proteins have been extensively investigated
n this decade, and some of these IEGs have attracted a great amount
f attention because of their direct involvement in synaptic func-
ions (Table 1). For example, molecular and biological functions of
rc, homer1a/vesl-1s and narp have been uncovered during the past
everal years. Arc protein is enriched in the postsynaptic density.
howdhury et al. reported the first critical clue of the biological
nd cellular function of Arc in neurons (Chowdhury et al., 2006).
hey demonstrated that Arc interacted with specific isoforms of
ndophlins and dynamins to enhance membrane receptor endocy-
osis (Chowdhury et al., 2006). Consistent with this finding, forced
xpression of Arc reduces surface expression of AMPA receptors
n wild-type neurons, while surface expression of AMPA recep-
ors is enhanced in cultured neurons prepared from Arc-KO mice
Chowdhury et al., 2006). Consistently, electrophysiological analy-
es revealed reduced AMPA currents under the condition in which
rc was virally over-expressed in hippocampal slice cultures (Rial
erde et al., 2006). Because Arc expression is activity-regulated,

t is proposed that Arc is involved in synaptic scaling, a form of
omeostatic synaptic plasticity (Gao et al., 2010b; Shepherd et al.,
006). In addition to rapid induction, Arc mRNA is known to have an

nteresting property involving dendritic mRNA targeting (Steward
t al., 1998; Wallace et al., 1998) and local translation of Arc in
he dendrites is implicated in synaptic long-term depression (Park
t al., 2008; Waung et al., 2008). Although these studies demon-
trate roles of Arc protein in regulating AMPA-Rs at synapses, it is
till currently unknown how synaptic delivery of Arc is achieved
nd what regulates Arc-mediated AMPA-receptor endocytosis.

Homer1a/vesl-1s is the IEG isoform of the homer gene family.

he activity-dependent alternative splicing mechanism results in
omer1a/Vesl-1s protein having the N-terminal EVH domain but

acking the C-terminal coiled-coil domain (thus called the short-
orm Homer). In contrast, the long-form Homer proteins, which are
ncoded by the non-IEG-isoforms, have both the EVH domain and
ed for simplicity, but more complex cross-talks are very likely to occur. CaMKIV,
in/PP2B; CREB, cAMP-responsive element binding protein; CBP, CREB-binding pro-
kinase; MEF2, myocyte enhancer factor-2; MEK, mitogen-activated protein kinase;
-response element; TCF, ternary complex factor.

the coiled-coil domain, both of which are critical for orchestrat-
ing a large Homer-mediated protein–protein network consisting
of mGluRs, IP3 receptors and Shank in the postsynapse (Hayashi
et al., 2006, 2009; Sala et al., 2003, 2005; Tu et al., 1999; Xiao
et al., 1998; Yuan et al., 2003). Therefore, it is assumed that the
activity-dependent expression of Homer1a/Vesl-1s triggers disrup-
tion and reorganization of the Homer-mediated network (Sala et al.,
2003, 2005; Tu et al., 1999; Xiao et al., 1998; Yuan et al., 2003).
Furthermore, Homer1a/Vesl-1s protein is the first experimentally
qualified candidate for putative plasticity-related proteins in the
synaptic tagging and capture hypothesis (see below) (Okada et al.,
2009).

Narp (neuronal activity-regulated pentraxin) is a secreted lectin
protein (Tsui et al., 1996). Together with other pentraxin proteins,
Narp makes a complex that has the ability to induce clustering of
AMPA-Rs on the cell surface (O’Brien et al., 1999; Xu et al., 2003).
Recently, a cell-type specific effect of Narp on AMPA-R cluster-
ing was found in paravalbumin-positive interneurons (Chang et al.,
2010). This function of Narp supposedly contributes to homeostatic
maintenance of the excitatory/inhibitory balance at the network
level (Chang et al., 2010).

4.2. KO mouse model: memory and synaptic plasticity

Physiological roles of IEG expression on synaptic and cognitive
functions have been mainly evaluated using genetically modified
mice. To this date, various behavioral phenotypes in individual
IEG-disrupted mice have been reported (Table 2). Below, I review
several representative animal studies.

Arc-KO mice show augmentation of early-phase LTP with loss
of late-phase LTP and a wide range of deficits in long-term spatial

memory, fear memory, taste aversion, and object recognition (Plath
et al., 2006). Short-term memories are not impaired. Also, Arc-KO
mice showed reduced orientation tuning in the visual cortex (Wang
et al., 2006) and impaired experience-dependent cortical plasticity
such as ocular-dominance shifts following monocular deprivation
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Table 2
A limited list of IEG mutant mice that exhibit abnormality in neuronal plasticity and cognitive functions.

Gene Type of knockout Phenotypes (impairments otherwise
mentioned)

Reference

Arc/arg3.1 Conventional full knock-out (KO) Hippocampal late-LTP/LTD; spatial and fear
memory; taste aversion

Plath et al. (2006)

GFP knock-in (KI) full KO Orientation selectivity in visual cortex Wang et al. (2006)
GFP-KI full KO Ocular-dominance plasticity in visual cortex McCurry et al. (2010)
Conventional full KO Experience-dependent synaptic scaling in

visual cortex
Gao et al. (2010b)

bdnf Promoter IV-specific mutation KI Inhibitory circuit development in neocortex Hong et al. (2008)
GFP-STOP KI in Exon IV Aberrant spike-timing-dependent plasticity in

prefrontal cortex
Sakata et al. (2009)

c-fos CNS-specific KO Hippocampal LTP; spatial and contextual fear
memory

Fleischmann et al. (2003)

D1R-expressing cell-specific KO Cocaine-induced dendritic morphological and
behavioral changes

Zhang et al. (2006)

fosB Conventional full KO Enhanced cocaine sensitivity Hiroi et al. (1997)
homer1a/Vesl1s IEG-subtype specific KO Long-term fear memory formation; remote

memory transition
Inoue et al. (2009)

Tissue plasminogen activator (t-PA) Conventional full KO Hippocampal late-LTP with
GABA-transmission inhibition

Frey et al. (1996)

Conventional full KO Striatal LTD; hippocampal late-LTP; active
avoidance task

Huang et al. (1996)
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zif268 (egr1, krox24, NGFI-A) LacZ-KI full KO

LacZ-KI full KO

Gao et al., 2010b; McCurry et al., 2010). Consistently, infusion of
rc-specific antisense oligonucleotides into the brain resulted in

mpaired late-phase LTP and memory formation in rats (Guzowski
t al., 2000; Messaoudi et al., 2007; Ploski et al., 2008).

Similarly, zif268-KO mice showed impaired in vivo late-phase
TP and wide-spectrum deficits in long-term memory forma-
ion in water maze, taste aversion, and object recognition tasks
Jones et al., 2001). Furthermore, zif268-KO mice exhibited spe-
ific impairment of recognition memory in a reactivation paradigm
Bozon et al., 2003). These deficits were reproduced in rats infused
ith zif268 antisense oligonucleotides into the brain (Lee et al.,

004, 2005).
Conventional KO of c-fos resulted in severe developmental

bnormality (Johnson et al., 1992); thus the roles of c-fos in
ehavioral and synaptic functions have been examined using CNS-
pecific KO mice (Fleischmann et al., 2003; Zhang et al., 2006).
hese mice exhibited normal emotional behaviors, but had specific
mpairments in hippocampal-dependent spatial and fear memory
Fleischmann et al., 2003). Electrophysiology using hippocampal
lices from c-fos CNS-KO mice showed reduced LTP (Fleischmann
t al., 2003).

Tissue plasminogen activator (tPA) is a serine protease that
ay contribute to the reconstruction of the extracellular matrix

Table 1). This protease also plays a role in the cleavage of precur-
or forms of growth factors (Pang et al., 2004). Hippocampal slices
rom tPA-KO mice showed deficits in late-phase LTP (Huang et al.,
996) and exhibited atypical GABA-transmission dependent LTP
Frey et al., 1996). The tPA-KO mice also showed deficits in learn-
ng active avoidance and contextual fear memory (Calabresi et al.,
000; Huang et al., 1996).

Establishment of splicing-specific KO mice is a challenging
ask. However, Inoue et al. successfully generated homer1a/vesl-
s-specific KO mice in which the expression of the IEG isoform
f homer/vesl was specifically disrupted (Inoue et al., 2009). These
ice exhibited impairment in formation of long-term and remote
emory of fear (Inoue et al., 2009).

BDNF has pleiotropic effects on neuronal differentiation, sur-

ival, dendritic growth, and synaptic plasticity (Bramham and
essaoudi, 2005; Lu, 2003; McAllister, 2002; Stoop and Poo, 1996).

ecause conventional KO mice show severe developmental abnor-
alities, mnemonic functions in these animals have not been
n vivo dentate gyrus late-LTP; spatial memory;
aste aversion

Jones et al. (2001)

econsolidation of object recognition memory Bozon et al. (2003)

successfully evaluated (Conover et al., 1995; Liu et al., 1995). In
addition, existence of multiple promoters has prevented the dissec-
tion of activity-dependent and activity-independent components
of BDNF expression. Recently, promoter IV-specific disrupted mice
have been developed (Hong et al., 2008; Sakata et al., 2009); reports
of behavioral analyses are awaited.

In addition to the above IEG KO mice studies, it is worth
noting that many genetically modified mice with mutations
in transcription factors that regulate IEG expression exhibit
abnormal synaptic plasticity and memory formation that are
similar to IEG KO mice. For examples, CREB-KO mice and
dominant-negative CREB Tg mice exhibit impaired long-term
memory formation and hippocampal LTP (Bourtchuladze et al.,
1994; Kida et al., 2002). Similarly, hippocampus-specific deletion
of SRF showed abolishment of SRE-dependent IEG expres-
sion and attenuated LTP (Ramanan et al., 2005). Furthermore,
impairment of hippocampus-dependent learning in mice with
brain-specific deletion of MEF2C has been reported (Barbosa et al.,
2008).

4.3. Functional significance of IEG expression

The above-mentioned studies demonstrate that many IEG KO
mice share similar behavioral and synaptic abnormalities. This
may indicate that individual IEGs are necessary, but not sufficient,
for neural processes to consolidate long-term synaptic plasticity
and memory formation. Questions then arise about when and in
what processes individual IEG expression is required, i.e., whether
the timing of IEG expression is critical for memory formation or
whether IEG expression before or after memory tasks has any
impacts. Although the answers are not yet known, some clues can
be garnered from brain slice electrophysiology and behavioral stud-
ies.

The synaptic tagging and capture of long-term synaptic plastic-
ity may explain how short-lasting synaptic potentiation induced
by weak stimuli can be converted into a long-lasting form when

plasticity-related proteins (PRPs) are induced via application of
strong stimuli to different sets of synapses (Frey and Morris, 1997).
This hypothesis adopts a conceptual framework in which activity-
triggered local changes at synaptic sites, i.e., synaptic tagging,
permit the use of activity-induced PRPs at the cell body and den-
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rites, i.e., PRP capture, to stabilize changes in synaptic efficacy
Frey and Morris, 1997; Martin et al., 2000; Redondo et al., 2010).
everal expanded versions of this hypothesis have been proposed
nd are experimentally supported (Fonseca et al., 2004; Sajikumar
t al., 2005, 2007). Provided that most PRPs are encoded by IEGs, it
s reasonable to postulate that insufficient IEG expression would
esult in instability of long-lasting forms of synaptic plasticity,
hich might be the case in many IEG KO mice.

The in vivo relevance of this synaptic tagging and capture could
e embodied in “behavioral tagging”, in which a weak training pro-
ocol that normally only produces short-term memory can elicit
ong-term memory if the training is combined with a novel expe-
ience during a critical time window around the training (Ballarini
t al., 2009; Moncada and Viola, 2007; Wang et al., 2010). Because
he enhancement of memory by this paradigm depends on de novo
rotein synthesis, the novel experience-induced gene expression
ay serve to replenish molecules that are needed to strengthen
emories, as in the synaptic tagging and capture in brain slices.

ndeed, novel experiences such as exploration of a new environ-
ent are known to strongly induce several IEGs including zif268,

rc, and homer1a/vesl-1s in the hippocampus and related areas
Guzowski et al., 1999; Ramirez-Amaya et al., 2005; Vazdarjanova
t al., 2002). It would be intriguing to test whether or not artifi-
ially manipulated IEG expression, i.e., without any experiences,
an affect on memory formation.

As described above, IEG expression reflects recent neuronal
ctivity. Some IEGs, especially Arc or zif268, appear to be highly cor-
elated with sensory and behaviorally evoked neuronal activities.
owever, some studies suggest that, in certain circumstances, neu-

onal activity is not always sufficient for IEG expression. Rats with
ornix legions maintained place-field activity in the hippocampus
Shapiro et al., 1989) while the lesions disrupted novelty-induced
rc expression (Fletcher et al., 2006). Repeated exposure to the
ame environment within a single day reduced novelty-induced
rc expression in the rat hippocampus while electrophysiologi-
al activity was unaffected (Guzowski et al., 2006). Furthermore,
dissociation between neuronal activity and Arc expression was

ound in the auditory cortex during the learning of a tone-detection
ask in rats (Carpenter-Hyland et al., 2010). Then, the question
emains as to what actually regulates IEG expression in vivo.
elated questions arise about “basal” IEG expression in the brain;
oes it reflect spontaneous activity or is it related to on-going
lasticity? These open questions should be addressed in future
tudies.

. Concluding remarks and perspectives

As described in this review, many IEGs are crucial for long-
asting changes in synaptic function, as well as consolidation and/or
etention of memory. Our current knowledge of IEGs, however,
eeds to be expanded further for a more comprehensive under-
tanding of IEG function in the brain. Future research directions, for
xample, should include the following topics. (1) Where and When:
ecent rapid increases in the availability of conditional IEG KO mice
ill greatly help dissection of the roles of IEG expression in specific

rain areas and cell types for memory formation. (2) Isolation of
ew IEG members: many neuronal IEGs have been characterized
o far, but most of them were initially isolated from brain tissues
hat received pathological levels of stimuli. It would be intriguing
o search for additional IEGs that are induced only under physio-

ogical conditions and/or only in a specific population of neurons.
3) Target genes: characterization and identification of target genes
f IEG transcription factors such as c-Fos or Zif268 in physiologi-
al contexts are of importance because many “delayed-response”
enes are also likely involved in synaptic plasticity and mem-
rch 69 (2011) 175–186

ory formation. (4) Non-coding RNAs: recent studies have revealed
many non-coding RNAs, such as microRNA (miRNA), to be activity-
dependent molecules; some have been shown to possess the ability
to modify neuronal morphology and function (Gao et al., 2010a;
Schratt et al., 2006). Of particular interest may be the newly iden-
tified non-coding RNA species, enhancer RNA (eRNA), which is
transcribed from IEG enhancers such as SARE (Kim et al., 2010).
Although the biological functions of this new non-coding RNA are
not yet known, eRNA and miRNA, together with activity-regulated
mRNAs, may orchestrate activity-dependent mechanisms for IEG
expression.

In summary, current lines of evidence now clearly establish
fundamental roles of IEGs in synaptic plasticity and cognitive
processes, notably learning and memory. Future studies on the
regulation and function of IEGs should help our further understand-
ing of the multi-layer, activity-dependent processes distributed
throughout the brain, i.e., the synapses, neurons, and circuits, which
underlie the flexible adaptive behaviors of animals in response to
environmental changes.
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