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We describe a simple computational model, based on generic
features of cortical local circuits, that links cholinergic neuromodu-
lation, gamma rhythmicity, and attentional selection. We propose
that cholinergic modulation, by reducing adaptation currents in
principal cells, induces a transition from asynchronous spontane-
ous activity to a ‘‘background’’ gamma rhythm (resembling the
persistent gamma rhythms evoked in vitro by cholinergic agonists)
in which individual principal cells participate infrequently and
irregularly. We suggest that such rhythms accompany states of
preparatory attention or vigilance and report simulations demon-
strating that their presence can amplify stimulus-specific responses
and enhance stimulus competition within a local circuit.

acetylcholine � gamma oscillations � vigilance � stimulus competition

S tates of attention in a variety of species, modalities, and tasks
are associated with increases in electroencephalogram spec-

tral power in the gamma range (1–4) and with spike synchro-
nization or increased coherence between unit activity and
gamma-band oscillations in local field potentials (5–12). Both
attentional performance (13) and cortical gamma-frequency
activity (14–16), in turn, depend on input from the basal
forebrain corticopetal cholinergic projection. Moreover, the
direct application of muscarinic cholinergic agonists has been
shown to induce gamma oscillations in both hippocampal and
neocortical slices (17, 18). Multiple lines of evidence thus
converge to link cholinergic neuromodulation, gamma oscilla-
tions, and attention. However, a satisfactory explanation of this
linkage is still wanting. It is not yet clear how cholinergic
modulation contributes to gamma rhythmogenesis or what role
gamma rhythms may play in attentional processing.

In this article, we present a cortical local circuit model in which
cholinergic modulation, acting on adaptation currents in prin-
cipal cells (19, 20), induces a transition between asynchronous
spontaneous activity and a ‘‘background’’ gamma rhythm akin to
the persistent gamma rhythm evoked by carbachol and�or
kainate in vitro (17, 18, 21, 22). Participation of individual
principal cells in this rhythm is irregular and infrequent, but
essential for persistence of the rhythm in the presence of noise
and heterogeneity in network parameters. We hypothesize that
such rhythms are a neural correlate of states of preparatory
attention or vigilance (23–25). We show in simulations that the
presence of such rhythms can amplify the response of subsets of
principal cells receiving specific (‘‘bottom-up’’ and�or ‘‘top-
down’’) excitatory input by facilitating stronger participation of
the selected cells in the ongoing gamma oscillation. We show
further that gamma rhythmicity can enhance local stimulus
competition, a computation fundamental to attentional selection
(26–29).

Models of Gamma Rhythms
We first summarize some pertinent facts about models of gamma
rhythms in networks of E- and I-cells (excitatory and inhibitory
cells) (see ref. 30 for a review).

Interneuronal Network Gamma (ING). Gamma oscillations in the
CA1 region of the hippocampus can be induced in vitro by the
application of muscarinic agonists, even during the blockade of
ionotropic excitatory postsynaptic potentials (31). This type of
gamma rhythm, called ING (30), does not depend on the
participation of E-cells, and individual I-cells fire at or near
gamma frequency. ING has been simulated in large-scale, bio-
physically realistic computational models (see, e.g., ref. 32 for
references). It has also been simulated and analyzed in minimal
network models, with the aim of understanding the dynamical
mechanisms that generate the observed network behavior. Mod-
eling of the latter kind (33–37) has clarified the basic dynamical
properties of ING coherence. Wang and Buzsáki (36) and White
et al. (37) have shown that ING is fragile, in the sense that
coherence is usually lost when a modest amount of heterogeneity
in the drives to the I-cells is introduced. Tiesinga and José (35)
have described a more robust ING-like rhythm in which there are
stochastic f luctuations in the drive to the I-cells, and individual
I-cells do not participate on every population cycle. Although
E-cells are not needed for ING, a population of E-cells may be
entrained by a population of I-cells firing rhythmically and in
synchrony (31).

Pyramidal-Interneuronal Network Gamma (PING). Gamma oscilla-
tions in hippocampal slices can also be induced by tetanic
stimulation (38). In this form of gamma, called PING (30),
individual E-cells fire at or near gamma frequency, and their
active participation is crucial: The E-cells drive and synchronize
the I-cells, and the I-cells gate and synchronize the E-cells.
Biophysically detailed simulations of PING were presented in
ref. 39 and motivated our own recent minimal-network models
of PING (40, 41). In ref. 40, we studied how variations in external
drives can create or abolish PING rhythms. If drive to the I-cells
becomes too strong or if drive to the E-cells becomes too weak,
the PING mechanism fails: Either the I-cells synchronize at too
high a frequency to be entrained by the E-cells (phase walk-
through) or the I-cells do not synchronize, and their activity leads
to the suppression of the E-cells, thereby removing the mecha-
nism that could create a synchronous rhythm. In the parameter
regime in which phase walkthrough occurs, no PING rhythm is
possible. However, there is a region of bistability in parameter
space within which both suppression of the E-cells by asynchro-
nous activity of the I-cells and PING are possible (see figure 7C
of ref. 40).

Weak Gamma. In another type of gamma rhythm, the E-cells spike
irregularly and at a mean frequency much below that of the
population rhythm. The persistent hippocampal and neocortical
gamma oscillations described above are of this type. We call such
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gamma rhythms ‘‘weak,’’ and sometimes use the word ‘‘strong’’
to characterize gamma rhythms in which E-cells participate more
frequently. Several varieties of weak gamma are theoretically
possible (see Model Networks). We shall consider here only one
of them, a PING-like rhythm in which the E-cells receive
randomly fluctuating drive and gamma-frequency oscillations
are generated by the following mechanism: Synaptic inhibition
from a population spike of the I-cells abruptly halts spiking of the
E-cells. As the inhibition decays, the most depolarized of the
stochastically driven E-cells begin to reach threshold and spike
again. The resulting volley of E-cell spikes quickly triggers a new
I-cell population spike, which again halts E-cell spiking, initiat-
ing the next cycle.

A biophysically detailed computational model of such a
rhythm was described by Traub et al. (32). In their model, there
is a source of noisy spiking activity in the axonal compartments
of the model pyramidal cells generated by ectopic axonal spiking
and amplified by axo-axonal gap junctions (42). Brunel and
Wang (43) have investigated a simplified model of such a
network composed of integrate-and-fire neurons.

Methods
Model Neurons. The neuronal model used in this article is that
of Ermentrout and Kopell (44), a one-compartment reduction
of the model of Traub and Miles (45). The basic structure of
the model is the same for both E- and I-cells. In the absence
of synaptic currents, the equation governing the membrane
potential V takes the form of the classical Hodgkin–Huxley
equation (46):

CdV
dt

� gNam3h� VNa � V� � gKn4� VK � V�

� gL� VL � V� � I . [1]

Here, m � m�(V) � am(V)�[am(V) � bm(V)] with am(V) �
0.32(54 � V)�{1 � exp[�0.25(V � 54)]} and bm(V) � 0.28(27
� V)�{exp[0.2(V � 27)] � 1}, h � max(1 � 1.25n, 0), and the
equation for n is dn�dt � an(V)(1 � n) � bn(V)n with an(V) �
0.032(52 � V)�{1 � exp[�0.2(V � 52)]} and bn(V) � 0.5
exp[�0.025(57 � V)]. The letters C, V, t, g, and I denote
capacitance density, voltage, time, conductance density, and
current density, respectively. The units used for these quantities
are �F�cm2, ms, mV, mS�cm2, and �A�cm2, respectively. For
brevity, units will often be omitted from here on. The parameter
values of the model are C � 1, gNa � 100, VNa � 50, gK � 80, VK �
�100, gL � 0.1, and VL � �67.

To represent slow hyperpolarizing currents in the E-cells
activated by depolarization, e.g., an M current, we adopt the
model of Olufsen et al. (47), a slight variation on the model of
Crook et al. (48); the term gMw(VK � V) is added to the
right-hand side of Eq. 1, with dw�dt � [w�(V) � w]��M(V),
w�(V) � 1�{1 � exp[�(V � 35)�10]}, and �M(V) � 400�{3.3
exp[(V � 35)�20] � exp[�(V � 35)�20]}.

Model Synapses. We consider networks of NE E-cells and NI
I-cells. We assume that synaptic connectivity is all-to-all, mod-
eling synaptic connections mediated by NMDA receptors (E3
E), AMPA (�-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid) receptors (E3 E and E3 I), and GABAA receptors (I3
E and I 3 I). GABAA synapses are modeled by a term of the
form (g�NI)�sij(t) (VI � Vj) on the right-hand side of the
equation governing the membrane potential of cell j, where VI �
�80, g � gIE if cell j is excitatory, g � gII if cell j is inhibitory, and
the sum extends over the indices i of the I-cells. The gating
variables s � sij satisfy

ds
dt

�
1 � tanh(Vpre�10)

2
1�s
�R

�
s

�D
[2]

with �R � 0.5, �D � 10, and Vpre equal to the membrane potential
of the presynaptic (ith) cell. This models inhibition from fast-
spiking interneurons, believed to be important for the produc-
tion of gamma rhythms. The term (1 � tanh(Vpre�10))�2 can be
thought of as a normalized neurotransmitter concentration,
nearly equivalent to equation 5.5 of ref. 49. Following Ermen-
trout and Kopell (44), we have rewritten the equation in terms
of the hyperbolic tangent and made the very minor, aesthetically
motivated approximation of setting the half-activation voltage to
0 mV (in ref. 49, the half-activation voltage is 2 mV). Similarly,
AMPA synapses are modeled by a term of the form (g�NE)�sij(t)
(VE � Vj) on the right-hand side of the equation governing the
membrane potential of cell j, where VE � 0, g � gEE,AMPA if cell
j is excitatory, g � gEI if cell j is inhibitory, and the sum extends
over the indices i of the E-cells. The sij satisfy Eq. 2, with �R �
0.2 and �D � 2. NMDA-receptor-mediated E3 E synapses are
modeled similarly, with g � gEE,NMDA. In modeling the magne-
sium block of NMDA receptor channels, we follow Jahr and
Stevens (50, 51), assuming an external magnesium concentration
of 1 mM:

ds
dt

�
1

1 � 3.57 exp��0.062Vpost)

�
1 � tanh(Vpre�10)

2
1�S
�R

�
S
�D

with �R � 1, �D � 100, and Vpost equal to the membrane potential
of the postsynaptic (jth) cell.

Model Networks. All simulation results shown in this article are
for NE � 160 E-cells and NI � 40 I-cells. However, results for
larger or (somewhat) smaller networks are quite similar if the
synaptic strengths are scaled by NE and NI, as described under
Model Synapses. Synaptic connectivity is all-to-all, except for E
3E synapses, as described below. Each E-cell receives a baseline
current input, IE, that is constant in time. The value of IE is
chosen at random and uniformly distributed in an interval [I E

l ,
I E

u ]. In addition, each E-cell receives an independent Poisson
stream of excitatory postsynaptic potentials (EPSPs) with a
mean frequency f E

s . The associated synaptic conductance jumps
to a maximal value g� E

s instantaneously when the presynaptic
spike arrives, then decays exponentially, with a time constant of
2 ms. Similarly, the I-cells are driven by a constant current input,
II, chosen at random with uniform distribution in [I I

l , I I
u] and

independent Poisson streams of EPSPs with maximal conduc-
tance g� I

s and mean frequency f I
s. Over a wide range of parameter

values, such networks generate a PING-like weak gamma
rhythm, which we will refer to as ‘‘weak PING.’’

We note that there are alternative ways of generating weak
gamma rhythms. One possibility is an ING rhythm, with en-
trained E-cells receiving randomly fluctuating external drive.
Such rhythms can be fragile to heterogeneity and noise (but see
ref. 35). We have chosen a PING-like model rhythm here
because it appears that carbachol-induced gamma rhythms in
vitro are PING-like and not ING-like (see Discussion). Another
possibility is a network in which the E-cells receive randomly
fluctuating inhibitory input from the I-cells, rather than randomly
fluctuating external input; this can be accomplished by giving the
I-cells noisy external drive and making the I 3 E connection
sparse and random. However, our experience indicates that, for
rhythms of this kind, the mean spiking frequency of the E-cells
is highly sensitive to changes in the strengths of the I 3 E
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synapses. Analysis of an idealized network (not presented here)
confirms and explains this conclusion.

Numerics. We solve the differential equations using the midpoint
method with �t � 0.01 ms. All simulations are initialized
asynchronously in the following sense. Model neurons driven
above their spiking threshold are initialized at a random point on
their limit cycle, chosen so that the time to the first spike, in the
absence of any synaptic inputs, would be uT, where T is the
intrinsic period of the neuron and u � [0, 1] is random, with
uniform distribution. Model neurons driven below their spiking
threshold are initialized at their (uniquely determined) stable
fixed points.

Results
Background Gamma Rhythm. Fig. 1a shows spike rastergrams
obtained from a simulation of 160 E-cells and 40 I-cells with [I E

l ,
I E

u ] � [0.7, 0.9]; [I I
l , I I

u] � [0.5, 0.7]; f E
s � f I

s � 10; g� E
s � 0.05; g� I

s

� 0.02; gEI � 1.0; gIE � 0.5; gII � 0.1; and gEE,AMPA � gEE,NMDA
� gM � 0. The I-cells synchronize and spike regularly at 	37 Hz.
Individual E-cells spike irregularly and infrequently, at an
average frequency of 	3.5 Hz.

Adaptation Currents Weaken Activity of the E-Cells and, in Turn,
Reduce or Abolish Coherence of the I-Cells. When an adaptation
current with gM � 0.1 is added to the E-cells, they are largely
suppressed, and the I-cells lose coherence (see Fig. 1b). The
frequency of the I-cells is 	28 Hz in Fig. 1b. The transition from
rhythmicity to arhythmicity and suppression of the E-cells is
rapid as gM is increased; for instance, a clean rhythm, quite
similar to that of Fig. 1a, is still obtained when gM � 0.05 (data
not shown). This transition is similar to crossing the ‘‘suppression
boundary,’’ as described in ref. 40. (The two are not the same,
because raising gM is not equivalent to lowering the external drive
to the E-cells.)

Loss of Coherence Contributes to Suppression of E-Cells. In the
simulation of Fig. 1b, the E-cells are suppressed for two reasons.
First, adaptation currents make E-cells less excitable. Second,
the I-cell population is more effective when it spikes asynchro-
nously than it is when it spikes in synchrony (see appendix A of
ref. 40). To demonstrate the importance of the loss of coherence
by itself, we show in Fig. 1c the results of a simulation in which
there are no adaptation currents, but spiking of the I-cells has
been made less coherent by setting gII � 0. (As discussed in detail
in ref. 40, I 3 I synapses often stabilize PING rhythms, even
though they are not, in principle, necessary for PING.) In Fig. 1c,
the mean spiking frequency of the I-cells is 33 Hz, less than the

population frequency in Fig. 1a. However, the reduced coher-
ence of the I-cell firing makes inhibition so powerful that the
E-cells are almost entirely suppressed.

Specific Excitation Leads to Specific Strong PING. Next, we present
the results of simulations in which extra external drive was given
to a subset D of the E-cells. We think, here, of a cell ensemble
made more excitable as a result of either sensory input or
selective ‘‘top-down’’ excitation. In our experiments, we take D
to be the set of E-cells 11–30; because there is no spatial structure
in our networks, we could equally well have chosen any other set
of 20 E-cells. Fig. 2a shows the results of a simulation like that
of Fig. 1a but with the external drive to the cells in D increased
by 0.5. With the increased excitatory drive, the population
frequency rises slightly (see ref. 40), from 37 Hz in Fig. 1a to 	39
Hz. The E-cells in D participate frequently but not on every
cycle; their mean spiking frequency is 	23 Hz. The mean
frequency of the remaining E-cells is reduced to 	2 Hz, from
	3.5 Hz in Fig. 1a.

Adaptation Currents and Loss of Coherence Weaken Response to
Specific Excitation. Fig. 2b shows the result of a simulation similar
to that underlying Fig. 2a but with gM raised from 0 to 0.2. The
activity of the E-cells is weakened considerably. In Fig. 2b, the
mean spiking frequency of the I-cells is 30 Hz, lower than the 39
Hz seen in Fig. 2a. Nevertheless, the mean spiking frequency of
the E-cells in D has been reduced from 23 Hz to 4.5 Hz.

Adaptation currents lower activity in the E-cells directly, by
making the E-cells less excitable, but also indirectly, by reducing
coherence of the I-cell population and thereby making inhibition
more powerful. We present a simulation demonstrating the

Fig. 1. Adaptation currents disrupt weak PING. (a) Weak PING. (b) Adapta-
tion currents suppress E-cells and reduce coherence of I-cells. (c) Loss of
rhythmicity alone leads to suppression of the E-cells, even when there are no
adaptation currents.

Fig. 2. Weak PING facilitates response to specific input. (a) Specific excitation
leads to specific strong PING. (b) Adaptation currents weaken rhythm and
weaken response to specific excitation. (c) Loss of coherence, even in the
absence of any adaptation currents, greatly weakens response to specific
excitation. (d) In a single simulation, intervals of rhythmicity (arhythmicity) are
intervals of strong (weak) response to specific excitation.
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importance of the loss of coherence alone to the effectiveness of
specific excitation. In the simulation of Fig. 2a, we set gII � 0 and
raise g�I

s to 0.1 but introduce no adaptation currents: gM � 0. The
result is displayed in Fig. 2c. The rhythm in the I-cells is lost. The
loss of rhythm, by itself, greatly weakens response to the specific
excitation. The mean spiking frequency of the I-cells is 38 Hz,
slightly lower than the 39 Hz of Fig. 2a; however, the spiking
frequency of the cells in D is only 	7 Hz, much lower than the
23 Hz of Fig. 2a.

Fig. 2d illustrates the point in yet another way. The parameter
values in Fig. 2d are [I E

l , I E
u ] � [0.9, 1.0]; [I I

l , I I
u] � [0.5, 0.7]; f E

s

� f I
s � 10; g� E

s � 0.05; g� I
s � 0.15; gEI � 1.0; gIE � 0.8; gII � 0.3;

and gEE,AMPA � gEE,NMDA � gM � 0. These parameters are
chosen such that intervals of rhythmicity and arhythmicity
alternate intermittently. When, by chance, there is a brief surge
in the activity of the I-cells, the E-cells are partially suppressed,
thus abolishing the rhythm. A random drop in the firing fre-
quency of the I-cells allows the E-cells to recover and fire a nearly
synchronous population spike, which restores the rhythm. Inter-
vals of arhythmicity coincide with intervals of low firing in D.
This behavior is strongly reminiscent of the parameter regime
described in ref. 40, in which both PING and suppression of the
E-cells by asynchronous activity of the I-cells are stable network
states. In the simulation of Fig. 2d, random events give rise to
toggling between the two states.

Acceleration of the Inhibitory Population Rhythm Is a Mechanism for
Suppressing Distractors. We now consider a second subset of the
E-cells, denoted by L, that is excited more strongly than the cells
in D. In this context, we think of D as a distractor. We take L to
encompass E-cells 121–140. For now, we let D consist of E-cells
11–30, as before; later, we will also consider a case in which L
and D overlap. Fig. 3a shows the results of a simulation similar
to that of Fig. 2a, with the external drive to the cells of D raised
by 0.5, as in Fig. 2a, but also with the external drive to the cells
of L raised by 0.7. Activity in D is now largely suppressed; the
mean spiking frequency in D is 10 Hz (down from 23 Hz in Fig.
2a), whereas in L, it is 30 Hz. The suppression of D is accom-
plished by a very slight acceleration of the population rhythm of
the I-cells, from 39 Hz in Fig. 2a to 41 Hz in Fig. 3a. The more
rapid spiking of the I-cell population suppresses the cells of D;
this mechanism will be discussed further below. Note that the
suppression of D is instantaneous.

Recurrent Excitation Facilitates Suppression of Distractors. In Fig. 3b,
we show the results of a simulation similar to that of Fig. 3a, with
NMDA-receptor-mediated synapses added within L and D
(gEE,NMDA � 1.0) but not elsewhere. The recurrent excitation
adds drive to both assemblies. However, because the cells in L
spike more than those in D in the absence of any recurrent
excitation (Fig. 3a), L gains more drive than D when the E3 E
synapses are introduced. This effect is amplified by the depen-
dence of NMDA receptors on postsynaptic voltage and enhances
the suppression of D by L; the mean frequency of cells in L is 39
Hz in Fig. 3b (up from 30 Hz in Fig. 3a), and the mean frequency
of cells in D is 7 Hz (down from 10 Hz); the population rhythm
is slightly accelerated, to 43 Hz (from 41 Hz). Note, again, that
the suppression of D is instantaneous.

Fig. 3 c and d illustrates the same point for overlapping
competing assemblies. Here, we have redefined D as the set of
E-cells 107–126; thus, the intersection L � D consists of cells
121–125. The boundaries of L are indicated by solid horizontal
lines in Fig. 3 c and d and those of D by dash–dot lines. Fig. 3c
shows the results of a simulation without any E 3 E synapses.
The cells in L spike much more frequently than those outside L.
However, the cells in L{ D (cells belonging to L but not to D)
spike less frequently than those in the overlap L � D. Partici-
pation of the cells in L � D improves greatly when E 3 E

synapses (gEE,AMPA � 0.3 and gEE,NMDA � 1.0) are added within
L and D (see Fig. 3d).

Gamma Oscillations Facilitate Suppression of Distractors. We will
argue that the suppression of D by L is more effective in the
presence of a rhythm than in its absence. We begin with a
heuristic argument. In the presence of a rhythm, for instance, in
the simulation of Fig. 3a, population spikes of L trigger popu-
lation spikes of I-cells. When the I-cells spike, the cells of L have
just spiked and are therefore least susceptible to inhibition,
whereas the cells of D are close to spiking and are therefore most
susceptible to inhibition. Thus, the timing of the inhibition favors
L. One might think of the following simplified version of the
mechanism. Disregard all noise and suppose that the population
spikes of L were perfectly synchronous, that they triggered the
inhibitory population spikes without any delay, and that the
inhibitory population spikes instantaneously reset all E-cells to
the same point, P, in phase space. Clearly, no E-cell with
below-maximal external drive could ever spike under those
assumptions. Furthermore, if E-cells reset to the same point P
after spiking, the inhibition would not affect the cells in L at all.
Note that the conclusion that no E-cell with below-maximal
external drive could ever spike does not require the unrealistic
assumption that inhibition causes instantaneous reset of all
E-cells. One needs only the assumption that the spiking of the
E-cells after an inhibitory population spike is timed as if they had
all been reset to the same point in phase space. This assumption
is more realistic (see figure 5C of ref. 41).

By contrast, if L recruited asynchronous inhibition to suppress
D, this inhibition would strongly affect L itself, especially if L
were only slightly more excited than D. To illustrate this effect,

Fig. 3. Synchrony facilitates stimulus competition. (a) When L (E-cells 121–
140) is excited more strongly than D (E-cells 11–30), D is suppressed. (b) E3 E
synapses within assemblies improve suppression. (c) Overlapping ensembles:
L (E-cells 121–140) indicated by solid lines, D (E-cells 107–126) indicated by
dash–dots. The set of cells D { L (cells belonging to D but not to L) is
suppressed, but L{ D is partially suppressed as well. (d) Recurrent excitation
within assemblies counteracts suppression of L{ D. (e) When asynchronous,
nonrhythmic inhibition is used to suppress D, contrast is reduced.
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we show, in Fig. 3e, the results of a simulation with parameters
[I E

l , I E
u ] � [0.7, 0.9]; [I I

l , I I
u] � [0, 0]; f E

s � 10; g� E
s � 0.05; f I

s � 45;
g� I

s � 0.2; gEI � 0; gIE � 0.5; gII � 0; and gEE,AMPA � gEE,NMDA
� gM � 0. The tonic drive to the I-cells has been entirely replaced
by frequent, strong random synaptic input here, and all network-
internal synapses except the I3 E synapses have been removed.
The I-cells spike asynchronously in this simulation. The fre-
quency fI

s � 48 of the synaptic input to the I-cells has been chosen
to bring the mean frequency of the cells in D to 7 Hz, the same
value as in Fig. 3b. The mean frequency of the cells in L is now
20 Hz, much lower than the 39 Hz of Fig. 3b. Thus, if L
suppressed D by recruiting asynchronous inhibition (by a mech-
anism not modeled here) to bring the cells of D down to a mean
frequency of 7 Hz, the result would be a significant slowdown in
activity within L itself.

We use two reduced networks to further illustrate this point.
First, we consider a network of three cells: two E-cells, called ‘‘L’’
and ‘‘D,’’ analogous to our earlier notation, and a single I-cell,
reflecting the assumption of synchronization of the I-cell pop-
ulation. We assume that the two E-cells receive tonic, deter-
ministic drive only and denote their intrinsic frequencies by fL
and fD. The I-cell is driven at II � 0. We introduce E3 I synapses
with gEI � 0.9; i.e., the maximal conductance associated with
each of the two E 3 I synapses is 0.9�2 � 0.45. This value is
chosen so that a spike of one of the E-cells triggers a spike of the
I-cell rapidly (within 
1 ms), but the I-cell does not fire spike
doublets. We further introduce I 3 E synapses, with maximal
conductance set precisely large enough to suppress D but not
larger. For simplicity, we omit E 3 E and I 3 I synapses and
adaptation currents. We denote the frequency of L in the
network by f̂ L

r ; the superscript r stands for ‘‘rhythmic.’’ The
circles connected by solid line segments in Fig. 4 show f̂ L

r as a
function of fD, with fL � 75 fixed. In all cases, f̂ L

r 
 fL � 75,
reflecting that the price of suppression of D is a slowdown of L.
For values of fD close to fL, suppression of D is difficult and
requires f̂ L

r 

 fL, i.e., suppression of D requires substantial
slowdown of L.

We compare this network with a second comprising only two
uncoupled E-cells, L and D, subject to common, constant
synaptic inhibition; this is an idealization of input from a large
population of asynchronously spiking I-cells. As before, the
E-cells have intrinsic frequencies fL and fD, resulting from tonic,
deterministic external drives, and the strength of synaptic inhi-
bition is set precisely large enough to suppress D but not larger.

We denote the frequency of L in this network by f̂ L
a ; the

superscript a stands for ‘‘asynchronous.’’ The squares connected
by dashed line segments in Fig. 4 show f̂ L

a as a function of fD,
again, with fL � 75 fixed. In all cases, f̂ L

a 
 f̂ L
r . Thus, the cost of

suppressing D, measured by the required slowdown of L, is
greater when inhibition is asynchronous than when inhibition is
rhythmic. This effect is particularly significant when fD is close
to fL � 75.

Discussion
We have proposed a model linking cholinergic modulation of
adaptation currents, gamma rhythms, and attention and illus-
trated its properties in simulations of a generic E�I network that
was originally devised as a minimal model of persistent gamma
oscillations in vitro (17, 18, 21, 32). Specifically, we have shown
that reducing adaptation currents can change the state of the
network from asynchrony to weak gamma rhythmicity; that such
emergent coherence in the spiking of the interneurons enhances
input sensitivity; that specific input induces specific patterns of
strong gamma oscillations superimposed on a weak gamma
background; and that gamma oscillations enhance the suppres-
sion of less strongly excited neuronal ensembles (distractors) by
more strongly excited ones.

Several of the components of our model have appeared, in
various forms, in previous work. Below, we briefly discuss some
of this work in relation to this study.

The transition we have described from asynchrony to weak
PING depends on an increase in pyramidal cell excitability
resulting from cholinergic modulation. Tiesinga et al. (52) have
shown that transitions to gamma oscillation may also result from
raising interneuron excitability. In our simulations, the I-cells are
sufficiently depolarized that a further increase in their excitabil-
ity would lead to ING. However, fast glutamatergic transmission
is known to be required for the generation of carbachol-induced
persistent gamma rhythms in slice preparations of hippocampus
(17) and somatosensory cortex (18), suggesting that such
rhythms are PING-like. We note, also, that gamma oscillations
induced by carbachol in vitro (17, 18) or facilitated by cholinergic
modulation in vivo (16) are significantly reduced by muscarinic
antagonists, suggesting that the most important effects of ace-
tylcholine in the generation of these rhythms are mediated by
muscarinic receptors.

Tiesinga et al. (53, 54) found that increased coherence in the
spiking of interneurons leads to increased input sensitivity and
suggested synchronization of interneuron networks as a mech-
anism for attentional gain modulation. Similarly, Lumer (55)
observed that ‘‘effective connectivity, of an inhibitory nature, is
decreased in the context of synchronization.’’ For a related
analysis, see Börgers and Kopell (appendix A, theorem 2 of
ref. 40).

Fast suppression mechanisms based on oscillatory network
dynamics have been studied in networks exhibiting (strong)
PING by Olufsen et al. (47), in interneuron networks by Tiesinga
and Sejnowski (56), and in more abstract form by Jin and Seung
(57) and Wang and Slotine (58, 59). Lumer (55) found that
synchronization disrupts competition in an E�I spiking network.
However, in his model, the competing ensembles were in precise
synchrony; in our model, the suppression of one ensemble by
another relies on the fact that the cells in D are not quite ready
to spike when those in L spike. A different model of stimulus
competition based on the timing of inhibition, involving the
interaction of two pools of interneurons, has also been proposed
by Tiesinga (60).

It has been suggested (see, e.g., refs. 11 and 61) that rate and
synchrony might represent independent channels, such that
stimulus properties are rate-coded, whereas attention is encoded
by synchrony. In the model presented here, however, attentional
state is signaled by changes in both rate and synchrony: The cells

Fig. 4. Results for networks with only two E-cells, L and D. The intrinsic
frequency of L is fixed at 75 Hz. The intrinsic frequency of D is varied (hori-
zontal axis). In each case, inhibition is strong enough for D to be suppressed
but not larger. The graphs show the resulting network frequencies of L in the
cases of synchronous, rhythmic inhibition (solid) and asynchronous inhibition
(dashes).
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of selected ensembles spike at higher rates than unselected cells,
and their downstream impact is further enhanced by the syn-
chrony of their firing (see, e.g., refs. 62 and 63). Spiking in
unselected cells is also entrained to the population rhythm, but
it is the selected cells, firing more frequently and synchronizing
more precisely, that dominate the output of the local circuit.

Our generic E�I network is a highly idealized caricature of a
local circuit in the superficial layers of a single cortical column;
connectivity is all-to-all, conduction delays are neglected, and we
have modeled only one of the several effects of acetylcholine
release in neocortex (although we believe it is the effect most
important for generating the weak gamma rhythm). Larger and
less schematic models will likely be needed to address specific

experimental data (e.g., refs. 9, 64, and 65). Nevertheless, this
work demonstrates, in principle, how a cortical network sup-
porting weak gamma oscillations can implement computations
that are widely believed to underlie preparatory and selective
attention.
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