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Neurocomputational mechanism of 
real-time distributed learning on social 
networks

Yaomin Jiang    1,2,3, Qingtian Mi1,2,3 & Lusha Zhu    1,2,3 

Social networks shape our decisions by constraining what information we 
learn and from whom. Yet, the mechanisms by which network structures 
affect individual learning and decision-making remain unclear. Here, by 
combining a real-time distributed learning task with functional magnetic 
resonance imaging, computational modeling and social network analysis, 
we studied how humans learn from observing others’ decisions on 
seven-node networks with varying topological structures. We show that 
learning on social networks can be approximated by a well-established 
error-driven process for observational learning, supported by an action 
prediction error encoded in the lateral prefrontal cortex. Importantly, 
learning is flexibly weighted toward well-connected neighbors, according 
to activity in the dorsal anterior cingulate cortex, but only insofar as social 
observations contain secondhand, potentially intertwining, information. 
These data suggest a neurocomputational mechanism of network-based 
filtering on the sources of information, which may give rise to biased 
learning and the spread of misinformation in an interconnected society.

Social networks channel communication and route information 
transmission in human society1,2. By constraining what information 
we receive and from whom, the structure of social networks has sub-
stantial impacts on how we form beliefs and make decisions, and how 
collective opinion and behavior are shaped and propagated2,3. Although 
many studies have demonstrated the influence of social networks on 
political, economic and social activities at the population level2,4, the 
underlying neural and cognitive processes by which individuals learn 
from interconnected peers remain unclear. Answers to this question 
would shed light on the neural mechanisms of social learning in wider 
and more ecologically relevant contexts, and help understand collec-
tive maladaptation—such as herding and misinformation propaga-
tion5,6—in terms of the computational challenges faced by individuals 
trying to process entangled information in an interconnected society.

A window into the internal processes of learning on social networks 
is provided by observational learning—a well-established paradigm 

whereby individuals learn about an unknown environment from the 
decisions of one or multiple observees performing the same task as 
the observer7–12. Error-guided models of reinforcement learning (RL)13 
have robustly shown that unexpected actions of the observees (that 
is, action prediction error (aPE)) drive learning and parametrically 
explain neural activity in the observer’s lateral prefrontal cortex (LPFC) 
and related brain regions in a variety of learning and choice imita-
tion tasks7–9,12. Despite its success, however, this neurocomputational 
account provides an incomplete description of learning on social 
networks. Past research of observational learning typically assumes 
that decisions of different observees constitute isolated, independent 
signals that can be integrated unbiasedly by the observer9,14. Contrary 
to this assumption, however, substantial evidence in the social network 
literature suggests that choices selected by connected peers are often 
interrelated and vary in their informativeness15,16. Blindly relying on 
the conventional observational learning strategy without considering 
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is based on where and how the interacting individuals are embedded 
on the network that channels information transmission. As a result, 
the strength of learning from a particular observation may change 
according to the structural properties associated with the observer 
and observee on the network. Previous research into RL in nonsocial 
contexts has shown that the dorsal anterior cingulate cortex (dACC), 
frontoparietal areas and other regions are involved in tracking the 
dynamic changes in the RL learning rate24,26. On the bases of these previ-
ous data, we predict that responses in some of these brain regions to a 
social observation would vary parametrically with the network features 
of the specific observer and observee in a manner consistent with how 
those features modulate the behavioral learning rate.

We formulated a simple DeGroot learning model and evaluated its 
behavioral and neural implications by combining functional magnetic 
resonance imaging (fMRI) with a distributed learning task for action 
observation learning (Fig. 1 and Supplementary Fig. 1). The task was 
adapted from economic studies of information cascade27 and housed 
in a variety of exogenously manipulated, seven-node, undirected and 
unweighted networks17,28,29. To focus on how network structures affect 
learning, the experiment used simulated networks where connections 
represent the routes of information transmission, abstracting away 
social affiliative associations that might be confounded with inter-
personal influences19.

Results
Stage-varying, degree-modulated learning on social networks
The proposed DeGroot learning model is built on the classic model of 
action observation learning, positing that learning from a neighbor’s 
action is driven by an aPE between the observed and expected action, 
weighted by a learning rate. To delineate the rich network interactions, 
our model incorporates two additional assumptions. First, motivated 
by previous data on social influence that a well-connected individual 
has greater influence on her peers and is less susceptible to others’ 
opinion19,30,31, the proposed DeGroot learning model postulates that 
the extent to which one learns from an observed action scales with the 

the underlying connections that spread social influences is essentially 
ignoring the potential variations and repetitions in social signals4,17. 
Nevertheless, extant data suggest that social animals embedded in 
complex interacting webs demonstrate some level of sensitivity to the 
topological features of their immediate social environments18,19, leaving 
open whether and how relevant structural information is incorporated 
into the learning processes.

To connect network geometries with the underlying learning 
mechanism in a quantitative and neurobiologically plausible man-
ner, we draw insights from naïve social learning theories in the social 
network literature. Central to these theories is the idea that optimally 
using network structures to filter out uninformative or correlated infor-
mation (for example, through Bayesian learning) is computationally 
demanding4,17,20. Heuristics that partially adjust for signal variations 
and repetitions save computation but sometimes lead to incorrect 
learning outcomes4,17. For instance, the canonical DeGroot learning 
model describes the dynamics of information aggregation as a simple 
Markov process that involves weighting and averaging others’ informa-
tion21. Under this heuristic, an individual exerts a constant level of influ-
ence on a particular social contact throughout the course of learning. 
This raises an intriguing question regarding the extent to which the 
between-individual differences in social influence and susceptibility 
to social influence can be linked to individuals’ structural positions 
on their interacting network at the behavioral and neural levels20,22.

Here, we propose to characterize observational learning in net-
worked environments by incorporating the DeGroot learning heuristic 
into an RL-inspired account previously established for action imitation. 
We hypothesize that, similar to learning in simple social contexts, 
learning observationally from network neighbors involves the LPFC 
encoding of the aPE between an observed action and how expected 
that action was. Importantly, to integrate and reconcile observations 
from disparate neighbors, the brain needs to evaluate the relative 
importance of each observation and adjust the strength of learning 
(that is, learning rate) accordingly23–25. A key prediction derived from 
the DeGroot learning theory is that such social information evaluation 
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Fig. 1 | Task schematic. Each game is initialized by assigning subjects randomly 
to different nodes on a new network and selecting one of two bags that contain 
yellow and blue balls with opposing ratios (5:2 versus 2:5). Each subject, who does 
not know which bag was selected, privately draws a ball from the same selected 
bag with replacement, and needs to infer whether the underlying bag contains 
more blue or yellow balls in a series of decisions. All subjects are instructed that 
the chance of drawing a blue/yellow ball is either five-sevenths or two-sevenths, 
distributed independently and identically across all members embedded on 
the same network. After initialization, subjects are presented with the structure 

of the network (Display), one’s own network location (red circle in Display), 
and the ball privately drawn from the bag (top left corner in Display). Subjects 
are then simultaneously asked to decide between two candidate bags (Initial 
guess), followed by three stages of observational learning (S1–S3). At each stage, 
a participant is presented with the most recent decisions by her immediate 
neighbors (Observations) and then provided with an opportunity to reassess 
her previous decision (Revision). During observations, neighbors’ choices are 
revealed sequentially, in a clockwise order, starting from a randomly selected 
neighbor that varies across stages and between subjects.
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observee’s network connectedness, relative to that of the observer. We 
quantify an individual’s connectedness using her degree centrality, 
which captures the number of individuals to whom one is directly con-
nected on a network; this is one of the most fundamental metrics for 
local prominence and immediate influence in social network analysis1,32. 
To reflect the mathematical requirement that a learning rate should be 
no greater than 1, our model adopts an assumption that the learning 
rate is weighted by a measure of relative degree (RD), defined as the 
observee’s degree centrality with respect to the total degree centrality 
of the observer and all her direct neighbors on the network (Fig. 2b; 
see Methods for alternative specifications).

In addition, the DeGroot learning model posits that the 
degree-modulation effect on learning varies systematically over the 
course of information circulation, contingent on whether social obser-
vations differ in their informativeness. For example, when individuals 
learn from others’ firsthand, isolated information, the DeGroot model 
may reduce to the standard observational learning algorithm, whereby 

an observer is similarly influenced by the received information regard-
less of the differences in the observees’ network locations. Conversely, 
when learning from others’ secondhand, possibly heterogeneous and 
intertwining information, the strength of learning will be modulated by 
the relative degree between the observee and observer on the network.

A real-time distributed learning game
A total of 217 unique subjects (31 fMRI participants) participated in the 
experiment in groups of seven (1 inside the fMRI scanner; 209 included 
in data analyses with 25 fMRI participants; see Methods for subject 
exclusion). The experiment consisted of 40 separate games on vary-
ing networks. The structures of the networks were preselected based 
on the separability of choice behavior simulated by different learning 
models (Extended Data Fig. 1 and Supplementary Fig. 2; Methods). In 
each game, a participant’s goal was to infer an unknown state of the 
environment, which was common to all seven participants in the game. 
At the beginning of a game, seven subjects were assigned randomly to 
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Fig. 2 | DeGroot learning model. a, Learning dynamics on an example network. 
The example also illustrates possible misinformation propagation under the 
DeGroot learning strategy. Left: the underlying bag selected by the computer 
and the private signal for each node given the selected bag. Right: simulated and 
actual choices on the network. Color in each node represents a simulated choice 
(model prediction) or the frequency of actual choices (data) over bags containing 
more blue or yellow balls. Unlike rational Bayesian learners, who gradually 
form a consensus on the correct underlying state, both the simulated DeGroot 
agents and actual participants converged toward the wrong estimation, biased 
by the inaccurate information from the central, most-connected individual on 
the network (see Supplementary Fig. 2 for model simulation on all networks 

employed by the study). b, DeGroot learning model illustration. Left: while an 
S1 observation reflects the neighbor’s private signal, an observation in S2 or S3 
additionally signals what the neighbor has learnt from her neighbors. Right: upon 
observing an action from a neighbor, the belief expectation about the unknown 
state (Eold) is updated through an aPE, defined as the discrepancy between the 
observed and expected action. Learning in S1 follows the typical setup for action 
observation learning, where the aPE signal is scaled by a baseline learning rate 
(α). In S2 and S3, aPE signals are weighted by the learning rate (β) and RD, with the 
latter being defined as the degree centrality of the observee relative to the total 
degree of the observer and all her direct neighbors on the network (Methods).
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different nodes on a new network, and a computer selected one of two 
underlying states at random. Each subject received a private signal that 
was independently and identically distributed conditional on the same 
selected state, and needed to make an initial guess about the underlying 
state (Fig. 1 and Supplementary Fig. 1; Methods). We hypothesized that 
a subject should rationally base her estimation on the private signal 
in this decision. The prediction was confirmed by our data, in which 
98.34 ± 5.12% (mean ± intersubject s.d.) initial estimations matched 
subjects’ private signals.

Critical for the purpose of this study, the participants were then 
allowed to revise their estimations in response to the choices previ-
ously selected by the neighbors to whom each was directly connected 
on the network. To allow for meaningful fMRI analyses, a subject was 
presented with her direct neighbors’ previous decisions sequentially, 
one at a time, such that her neural responses could be linked directly 
to the action and network location of a particular observee. To allow 
for examining learning effects, the process of observing neighbors’ 
actions and reassessing one’s own estimation was carried out three 
times consecutively within each game (henceforth Stages 1–3, or S1, 
S2 and S3; Fig. 1).

Seven participants played the same game simultaneously, from 
their respective network locations via an intranet. That is, the partici-
pants were facing the same underlying state, the same network struc-
ture and display, and were making decisions at the same time in each 
game. Crucially, when a participant was witnessing her neighbors’ 
choices, her neighbors were also presented with the choice informa-
tion from their respective neighborhoods. Under this setup, infor-
mation received by an observer is incorporated into this observer’s 
subsequent decision and propagated gradually from the observer 
to her direct and indirect contacts along network connections in the 
later stages of the game. Throughout the experiment, all subjects 
were financially incentivized to guess as accurately as possible in all 
four decisions in each game (that is, initial guess and three reassess-
ments) and had no incentive to mislead or collude with others. No 
feedback was provided on the accuracy of estimations during the 
experiment (Methods).

This task has two features important for evaluating the proposed 
DeGroot learning model at the neurocomputational level. First, the 
three learning stages (S1–S3) were set up identically within each game 
(Methods), allowing us to evaluate the hypothesis that learning is 
guided by aPE signals reflected by the LPFC activity in S1, S2 and S3 
nonselectively. Second, despite their identical experimental setups, 
three learning stages differ in the type of information contained in 
neighbors’ actions. Unlike S1 observations, which reflect observees’ 
independent private signals, an S2 or S3 observation would addition-
ally signal what the observee has learned from her neighbors (Fig. 2b, 
left), thereby becoming relatively more informative to the specific 
observer when the observee is better-connected and the observer is 
less-connected. Given this feature, an immediate implication of the 
proposed model is that learning from network neighbors should be 
modulated by the relative degree centralities between the observee 
and observer in S2 and S3, but not in S1 (Fig. 2b, right).

Degree modulates choices in S2 and S3, but not in S1
Behaviorally, participants adapted their decisions in response to 
neighbors’ choices, such that the level of consensus within a network 
grew from 61.21 ± 1.29% (mean ± intergroup s.d.) in the initial guess to 
88.10 ± 3.03% in the last (S3) decision (Extended Data Fig. 2). To char-
acterize the overall learning effect, we first performed mixed-effects 
logistic regression for each separate learning stage, examining the 
extent to which the likelihood of participants altering their choices 
was influenced by social observations, and whether the strength of 
influence was modulated by the degree centralities of the observees 
and observers. We hypothesized that the likelihood that a participant 
aligned her estimation to an observation would be associated positively 

with the neighbor’s degree centrality (ND) but negatively with the 
observer’s own degree centrality (OD) in S2 and S3, but not in S1.

To evaluate the impact of ND, we summarized the sequence of 
observations revealed to a subject at each stage of each game, using 
two variables: (1) sum of observations across all direct neighbors (1, if an 
observed action differs from the observer’s previous choice; otherwise, 
−1), and (2) weighted sum of observations across all direct neighbors, 
with the respective neighbor’s degree serving as the weight. The inclu-
sion of the unweighted and ND-weighted regressors helped to isolate 
the degree-modulation effect of interest from a baseline tendency of 
following the majority—a phenomenon widely reported in studies of 
group decision-making5. To remove any shared variances between the 
two regressors, we orthogonalized the ND-weighted regressor against 
the unweighted regressor, such that choices that were equally explain-
able by the two variables were attributed solely to the unweighted 
regressor. The regression coefficient for the ND-weighted sum of 
observations, therefore, served as a more stringent test on whether 
ND modulated learning.

Consistent with our hypothesis, the regression analyses showed 
that the likelihood of a participant modifying her decision was cor-
related positively with not only the unweighted sum of observations, 
but also the ND-weighted sum of observations, in both S2 and S3  
(Fig. 3a and Supplementary Table 1a). The positive effects suggested 
that, in addition to following the majority, subjects were more likely to 
be swayed toward the decisions of highly connected neighbors, rela-
tive to those of poorly connected neighbors embedded on the same 
network. In stark contrast, in S1, the ND-weighted regressor showed no 
extra explanatory power above and beyond the unweighted regressor 
in predicting observers’ subsequent choices.

To assess how learning was biased by an observer’s OD, we further 
compared the influence of the ND-weighted sum of observations on the 
observer’s subsequent decision when the observer was endowed with 
high versus low degree centrality. As predicted by our model, we found 
that the probability of an observer modifying her decision was associ-
ated negatively with the interaction between OD- and ND-weighted sum 
of observations, in both S2 and S3 (Fig. 3b and Supplementary Table 1b,c  
for regression estimates and robustness check). The negative inter-
action suggested a decreased susceptibility to social observations 
when a participant was highly relative to poorly connected. In S1, by 
comparison, no systematic variation was observed in participants’ 
susceptibility to neighbors’ actions with their OD.

DeGroot learning model explains learning behavior
To formally test the proposed model and derive latent variables that 
might reflect the underlying neurocognitive operations, we fit the 
DeGroot learning model with each participant’s choice behavior 
(Supplementary Fig. 3 and Supplementary Tables 2 and 3; Methods). 
We compared the proposed model against two benchmark models: 
a baseline action imitation model (Baseline model), which assumes 
that the network-related information is completely ignored through-
out learning, and a Bayesian learning model, which assumes that the 
information regarding the network structure is used optimally by all 
participants (Supplementary Note 2; Methods).

Using both the Bayesian information criterion (BIC) based on the 
in-sample model fit and the out-of-sample prediction accuracies based 
on a fivefold cross-validation procedure (Methods), we found that 
the proposed DeGroot model outperformed the alternative models 
(Fig. 3c, Extended Data Fig. 3 and Supplementary Fig. 4). Across sub-
jects, estimates from the DeGroot learning model were consistent with 
results of logistic regression, such that subjects whose behavior was 
better characterized by DeGroot learning showed a more pronounced 
logistic behavioral sensitivity to both ND and OD in S2 and S3 (Fig. 3d). 
In addition to the Bayesian and Baseline models, the proposed model 
outperformed a range of alternative models that could explain choice 
behavior based on assumptions differing in either which network 
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metric might modulate learning (for example, eigenvector central-
ity, betweenness, and so on) or how parameters were specified when 
formulating error-driven learning (Supplementary Table 4; Methods). 
To address the potential concern regarding the between-network 
variations in learning behavior, we estimated models for each separate 
network (pooling over subjects), and observed similar results at the 
across-network level (Extended Data Fig. 3; Methods).

Right LPFC tracks aPE estimates in S1, S2 and S3
Having established the DeGroot learning model at the behavioral level, 
we then tested whether fMRI activity reflected the model-derived aPE 
estimates, and did so consistently across three learning stages. We per-
formed event-related fMRI analyses of participants’ neural responses, 
on an observation-by-observation basis, at each time in each learning 
stage when participants were presented with a neighbor’s action (GLM1; 
Methods). Averaging the regression coefficients of aPE estimates across 

three learning stages (Methods), we observed significant aPE-related 
signals in the right LPFC (rLPFC), which has been implicated in rep-
resenting notions of prediction error signals in action observation 
learning7–9 and as part of the ‘mirror’ system encoding the executed 
and observed actions in a range of interpersonal scenarios33 (Fig. 4a, 
Extended Data Fig. 4 and Supplementary Table 5). The rLPFC encod-
ing reflects the observation-by-observation changes in aPE estimates 
and could not be attributed to the correlation between the rLPFC 
activity and the aPE estimate associated with a single observee (for 
example, one’s most-connected (MC) neighbor) across learning stages 
(Extended Data Figs. 5 and 6). The rLPFC encoding remained significant 
after controlling for a range of decision variables (GLM2; cluster-wise 
family-wise-error (FWE)-corrected P < 0.05, with cluster-forming 
threshold uncorrected P (Punc.) < 0.001; Methods).

Importantly, and consistent with our model prediction, the rLPFC 
cluster tracked the aPE estimates stably in S1, S2 and S3, such that 
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Fig. 3 | Behavioral evidence. a, Mixed-effects logistic regression analyses show 
that ND modulates learning in S2 and S3, but not in S1. (i) The probability of an 
observer changing her previous decision as predicted by the estimated logistic 
regression model at each separate stage. (ii) Fixed-effects regression coefficients 
and the corresponding s.e., overlaid by the random effects coefficient associated 
with each observer (see Supplementary Table 1 for statistics). b, Observer’s 
OD is associated negatively with the susceptibility to observations in S2 and 
S3, but not in S1. For illustration purposes, large (gray) and small (orange) ODs 
were defined by median splits on OD across networks for each participant. c, 
Comparisons of in-sample model fits using the BIC of each participant show that 
the DeGroot model explains behavioral choices better than the Bayesian and 
Baseline models (aggregated BIC, DeGroot = 20,407.41; Baseline = 22,827.97; 
Bayesian = 23,755.10). Inset: out-of-sample prediction accuracy is superior for  
the DeGroot model compared with Bayesian and Baseline models in S2 and S3.  

d, Consistent results between logistic regression and model estimation. 
Individual BIC differences between the DeGroot and Baseline models are plotted 
against the individual logistic regression estimates for ND (left) and OD (right) 
effects, respectively, exploiting the fact that the DeGroot model differs from the 
Baseline model only in the assumption regarding the degree-modulation effect 
in S2 and S3 (Methods). The model-free ND (or OD) effect is captured by the 
coefficient of individual random effects with respect to the ND-weighted sum 
of observations (or OD × ND-weighted sum of observations), averaged across 
S2 and S3 within each subject. Each dark/light dot represents an fMRI/behavior 
participant. Error bars in a and b represent the s.e. of fixed-effect estimates in 
the logistic regression, in c represent intersubject s.e.m., both based on N = 209 
behavioral participants. ***P < 0.001; NS, not significant; z tests in a and b; t tests 
in c, all two-sided, Bonferroni-corrected when appropriate.

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-023-01258-y

within-subject comparisons found no systematic difference across 
learning stages in the neural responses to aPE estimates, both within 
the identified rLPFC cluster (Fig. 4b) and at the whole-brain level 
(cluster-wise FWE-corrected P < 0.05, with cluster-forming threshold 
Punc. < 0.001).

In addition to aPE signals at observation onsets, we also observed—
at the choice time—classic neural correlates of computational signals 
implicated by the temporal difference form of learning34. This included 
the value estimates of reward expectation associated with the observ-
er’s decision in the orbitofrontal cortex (OFC) and the model-derived 
probability of modifying previous decisions in the anterior cingulate 
cortex (Extended Data Fig. 7). Findings at the choice time, together 
with the aPE signals at the observation time, indicated that action 

observation learning on complex social networks may be supported 
by an error-driven process reminiscent of those seen in non-networked 
environments.

dACC represents RD-related signals in S2 and S3
Using similar analyses, we looked for brain regions tracking the changes 
in relative degree centralities between the observee and the observer 
(that is, RD), and did so consistently in S2 and S3 (GLM1; Methods). 
Averaging the regression coefficients of RD values across S2 and S3, 
we found a strong correlation in a network of brain regions, including 
the dACC extending to the adjacent presupplementary motor area 
(preSMA), precuneus, bilateral anterior insula, visual cortex and other 
areas (Fig. 5a and Supplementary Table 5). The loci of activation in 
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b, rLPFC cluster demonstrates similar effect sizes for individual aPE estimates 
across stages. Left: violin plots for the distribution of individual rLPFC β values 

of aPE estimates, extracted separately for each stage from the significant rLPFC 
cluster as identified in Fig. 4a (one-way repeated-measures ANOVA, F(2,48) 
= 0.55, P = 0.582). Right: mean fMRI activity extracted from the same rLPFC 
cluster and binned by aPE estimates in each separate stage. Each dot represents 
an fMRI subject. Each circle represents a group mean. Error bars represent 
intersubject s.e.m. in the fMRI sample (N = 25).

x = 6

y = 5

RD: S2 – S3RD: S2 + S3

a b c

x = 6

RD: S2 + S3
Conjunction: neighbor degree
∩ total local degree, S2 + S3

dACC
Precuneus

dA
C

C
 β

dA
C

C
 β

Time (s)

(i) Correlates of RD values (ii) Correlates of RD components

Independent ROI
(6, 22, 36)

S1 S2 S3

S1 S2 S3

RD bins

M
ea

n 
dA

C
C

 a
ct

iv
ity

NS

NS

***

***

**

*

Neighbor degree
Total local degree

RD =

0 6 12 0 6 12 0 6 12

0.1

0

–0.1

–5 0
T

0

5

–5

0.2

–0.2

0
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with RD values at observation onsets in S2 and S3, calculated by averaging the 
regression coefficients for RD across S2 and S3 within each participant (cluster-
wise FWE-corrected P < 0.05, with cluster-forming threshold Punc. < 0.001). 
Regions shaded in red indicate clusters scaling both positively with neighborʼs 
degree and negatively with total local degree at observation onsets in S2 and S3, 
as revealed by a whole-brain conjunction analysis (cluster-wise FWE-corrected 
P < 0.05, with cluster-forming threshold Punc. < 0.001). b, Paired comparison of RD 
correlates between S2 and S3. The only significant cluster locates in the middle 
frontal gyrus (MNI, x, y and z = 30, 5 and 47; cluster-wise FWE-corrected P < 0.05, 

with cluster-forming threshold Punc. < 0.001). c, dACC ROI, independently defined 
by Neurosynth39 using the topic term ‘cognitive control’. (i) Top: β values with 
respect to RD extracted at observation onsets of separate learning stages from 
the same independent ROI (S1: β = −0.43 ± 0.44, two-sided t test, t24 = −0.99, 
P = 0.332; S2, β = 2.41 ± 0.50, t24 = 4.85, P = 6.05 × 10−5; S3, β = 1.64 ± 0.56, t24 = 2.91, 
P = 0.008; across-stage, one-way repeated-measures ANOVA, F(2,48) = 10.65, 
P = 1.48 × 10−4). Bottom: mean dACC activity binned by RD values in each stage. (ii) 
Timecourse analyses with respect to the neighbor’s degree and total local degree 
at each stage in the same dACC ROI. Vertical dashed lines indicate the observation 
onset. Error bars in i and ii indicate intersubject s.e.m. in the fMRI sample (N = 25). 
*P < 0.05, **P < 0.01, ***P < 0.001, two-sided t tests, Bonferroni-corrected.
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the dACC/preSMA were similar to those seen in the past experiments 
where subjects adjusted behavioral strategies, such as learning rate, 
in response to environmental changes24,26,35–38.

In support of the observation-by-observation representation 
of RD, the correlation between the dACC activity and RD values was 
seen robustly in the first, second, odd-numbered, even-numbered, 
early and late observations in S2 and S3, with no systematic difference 
in the correlation effect sizes across observations (Extended Data  
Fig. 6). The dACC encoding remained significant after controlling for a 
wide variety of decision-related and unrelated variables, including the 
visual properties of the network layout, general cognitive functions of 
learning and decision-making previously associated with the dACC, 
and other nuisance effects (GLM3; Extended Data Fig. 8; Methods). 
Moreover, activity in the dACC was correlated simultaneously with the 
neighbor’s degree (numerator in RD) and total local degree (denomina-
tor in RD), with opposing signs, at observation onsets in both S2 and S3. 
The effect was seen not only in a region of interest (ROI) in the dACC, 
defined independently using an automated online meta-analysis39  
(Fig. 5c, right), but also in a conjunction analysis at the whole-brain 
level (GLM4; Fig. 5a; Methods).

Consistent with the DeGroot model prediction, activity in the 
dACC demonstrated similar response patterns to RD values in S2 and 
S3. Neural β values extracted separately for S2 and S3 from the same 
independent dACC ROI were both highly significant and showed no 
systematic difference in their effect sizes (Fig. 5c). A whole-brain 
within-subject comparison of RD correlates further confirmed that, 
except for a cluster confined to the middle frontal gyrus (Fig. 5b), no 
other cluster responded differently to RD values in S2 versus S3 at 
cluster-wise FWE-corrected P < 0.05.

dACC does not respond to RD values in S1
By contrast, in S1, the same analysis revealed no significant correla-
tion with RD values at observation onsets in the dACC or other frontal 
regions, in either positive or negative direction (Fig. 6a; GLM1; Meth-
ods). Instead, we observed positive correlations with RD values in a 
circumscribed cluster in the posterior cingulate cortex (PCC), and 
negative correlations restricted to the precuneus and visual cortex 
(Fig. 6a and Extended Data Fig. 9). The identified regions in the PCC 
and precuneus have been implicated recently in encoding features 
of real-world social networks, even when such network features were 
task-irrelevant40–42.

To more formally examine the spatial expression of the RD corre-
lates and test the stage-varying involvement of the dACC, we searched 
the whole brain for voxels that responded similarly (conjunction 

analyses) or differently (analysis of variance (ANOVA)) to RD values 
across stages. Conjunction analyses showed substantial overlapping 
responses to RD values between S2 and S3 in regions including the 
dACC, but no significant overlap among S1, S2 and S3 for either positive 
or negative activation to RD values (Extended Data Fig. 8). Moreover, 
using a whole-brain ANOVA, we compared the RD correlates directly 
across stages within subjects, and identified a significant stage effect 
in several brain regions including the dACC (Fig. 6b). According to the 
post hoc paired comparison, this stage difference was attributable to 
the increased correlation between dACC signals and RD values in S2 
versus S1, and S3 versus S1 (Fig. 6b), but not between S2 and S3, in either 
positive or negative direction (Fig. 5b; see also Fig. 5c for ROI analyses). 
Together, these data provide consistent evidence suggesting that the 
neural correlates of RD in S1 were segregated spatially from those in S2 
and S3 in a manner consistent with the DeGroot prediction.

dACC sensitivity to RD predicts choice sensitivity to RD
To relate the dACC encoding of RD values to choice behavior, we tested 
whether, across subjects, the extent to which dACC activity reflected 
RD values was predictive of the behavioral effects of RD on learning. 
We used the individual value estimate of learning rate in S2 and S3 (that 
is, β as in Fig. 2b) as a measure of how strongly RD affected learning 
at these stages (zero effects on learning when β = 0). We plotted the 
individual behavioral estimate of β against the dACC beta of RD that 
was averaged from S2 and S3 in each subject, controlling for the respec-
tive baseline effects in S1 (Fig. 6c). The data showed that subjects with 
higher learning rates in S2 and S3 than in S1 exhibited greater dACC 
sensitivity to RD values at observation onsets in S2 and S3 than in S1. The 
between-subject association was also highly significant and denoted 
similar effect sizes when tested separately in S2 and S3 (S2: Pearson’s 
r = 0.52, P = 0.008; S3: r = 0.56, P = 0.004; S2 versus S3: β = −0.13 ± 0.25, 
P = 0.593). Of note, this neural-behavioral association was not a spuri-
ous effect arising from the double dipping of data43. This is because 
the dACC beta with respect to RD reflects the neural responses to the 
exogenously manipulated network features, which are independent of 
participants’ choice behavior, model specification or data estimation.

VMPFC encodes updated belief expectation in S1, S2 and S3
The above results thus raised the question of how social observations 
from disparate neighbors were integrated in the brain to inform the 
subsequent decision. Unlike previous learning experiments, where 
subjects typically make a choice immediately after an observation, 
our experiment required participants to cache a sequence of social 
information until they were asked to make a decision. Thus, a sensible 
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strategy based on our model would be to maintain an expectation about 
the unknown state and sequentially update the expectation using either 
the unweighted (in S1) or RD-weighted (in S2 and S3) prediction error 
signals each time an observation is witnessed.

This hypothesis immediately led to two neural predictions. First, 
signals reflecting the value estimate for updated belief expectation 
(Enew; Fig. 2b) might be represented in brain regions previously impli-
cated in tracking expectations, like the OFC or ventromedial prefrontal 
cortex (VMPFC)34. That is, in addition to the classic learning signals for 
belief expectations of the currently chosen option at the choice time 
(Extended Data Fig. 7a), we would also expect—at observation times—
the neural representation of the value estimate for the updated Enew 
associated with the option previously selected by the observer. Similar 
to aPE signals, we hypothesized that signals related to Enew estimates 
would be seen on an observation-by-observation basis and across three 
stages nonselectively. The second prediction was motivated by the 
DeGroot model that, compared with S1, incorporating an aPE signal into 
belief expectation in S2 and S3 would involve additional modulatory 
inputs. Thus, regions representing Enew estimates might demonstrate 
increased functional connectivity in S2 and S3 compared with S1, with 
regions related to tracking, representing or implementing modulatory 
signals in service of learning, such as the dACC.

In line with the first prediction, we found a strong positive correla-
tion between Enew estimates and activity in a number of brain regions 
including the VMPFC, even after controlling for the potentially con-
founding variables such as aPE estimates and RD (Fig. 7a and Supple-
mentary Table 5; GLM5; Methods) and other nuisance effects in the 
same regression model (cluster-wise FWE-corrected P < 0.05, with 
cluster-forming threshold Punc. < 0.001; GLM6; Methods). As predicted, 
we observed stable neural representation of Enew estimates across S1, 
S2 and S3, such that within-subject comparisons identified no sig-
nificant difference in neural responses to Enew estimates across stages 
either within the VMPFC cluster (Fig. 7b) or at the whole-brain level 
(cluster-wise FWE-corrected P < 0.05, with cluster-forming threshold 
Punc. < 0.001).

To test the second prediction, we performed an ROI-based psy-
chophysiological interaction (PPI) analysis to investigate whether the 
dACC would show differential functional coupling with the VMPFC 
when RD was versus was not needed for scaling aPE signals. The PPI 
analysis was performed between the identified VMPFC region and 
the independently defined ROI of dACC as used in the RD analyses 
(Methods). By comparing the connectivity strength averaged over S2 
and S3 against that in S1, we observed increased coupling between the 
VMPFC and dACC, with no significant difference in the coupling effect 
sizes between S2 and S3 (Fig. 7c). These findings were further supported 
by an exploratory whole-brain PPI analysis (Extended Data Fig. 10).

Discussion
Information flowing in a large-scale, interconnected society is often 
entangled, conflated and sometimes superfluous6,16. This poses a com-
putational challenge for social learning, during which agents need to 
reconcile disparate sources of signals based on their informativeness. 
Previous RL research on individual learning in nonsocial contexts has 
shown that humans can accurately estimate how relevant a learning 
signal is in predicting the future and use this estimate to adjust RL 
learning rates23–25. On social networks, however, optimally evaluating 
the predictive value of each observation is cognitively demanding, 
sometimes even prohibitive4,17. Indeed, failure to effectively aggregate 
information from connected peers has long been hypothesized to 
underlie herding, social influence biases, misinformation propagation 
and other forms of collective maladaptation.

Combining fMRI, formal theories of social and observational 
learning and social network analysis, we explored the possibility that, 
to balance computational costs, the brain approximates the relative 
informativeness of a social signal based on the structural properties 

of the network that routes information transmission. Grounding the 
DeGroot learning heuristic into an RL-inspired account used previously 
for action observational learning, the study provided behavioral and 
neural evidence that learning in complex, interconnected environ-
ments can be realized by an error-driven process reminiscent of those 
seen in non-networked environments. Importantly, the learning rate 
fluctuated according to a signal related to network degree central-
ity, indexed by the dACC activity at the time of witnessing others’ 
actions, but only insofar as the social observations varied in their 
informativeness.

The observed dACC response to the degree centrality of the 
observee relative to that of the observer in S2 and S3 is consistent with 
past evidence showing a key role of this region in facilitating behavioral 
flexibility and adjusting RL learning rates24,26,35–38. Importantly, our data 
emphasized the absence of a dACC response to the same RD signal in 
S1, when the network structure was irrelevant to learning. This absence 
argues against the possibility that the dACC engagement identified in 
S2 and S3 was due to some low-level visual processing of the network 
displays, or due to other more general dACC functions—such as detect-
ing errors or monitoring social conflicts35,44—that would be involved 
across all learning stages nonselectively. Alternatively, the selective 
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dACC encoding is consistent with a broader proposal regarding this 
region, suggested by past neurophysiological and neuroimaging evi-
dence, as representing task-relevant (but not irrelevant) information 
for supporting behavioral changes and guiding appropriate action 
selection35. Our data thus implicate the involvement of a high-level, con-
trolled process in evaluating the sources of social information in service 
of learning, and argue against a model of blind, automatic discrimina-
tion among social contacts in explaining social information aggrega-
tion. More broadly, the observed adjustment between the initial and 
latter stages of learning echoes previous studies of news circulation 
on social media, which have emphasized the importance of separating 
the spread of first- versus secondhand information in understanding 
phenomena such as rumor dissemination and amplification16,45.

While our findings highlighted a role of the dACC specific to S2 
and S3, we also observed that, in S1, activity in the PCC, precuneus 
and visual cortex correlated with measures of degree centralities. 
One possibility is that the observed S1 activation is associated with the 
recognition or representation of network features, which facilitates 
the flexible usage of those features in the latter stages. Indeed, the loci 
of S1 activation were similar to those implicated in encoding the cen-
tralities and other characters of one’s acquaintances on the real-world 
network, when the individual was required to view pictures or videos 
of those acquaintances40–42. Alternatively, it is also possible that the S1 
activation reflects some low-level processing of the network stimuli (for 
example, visual processing), which typically shows a more pronounced 
activation when the stimulus is new (as in S1) than when the stimulus 
has been recently processed (as in S2 and S3)46. Future studies need 
to clarify these possibilities by using more naturalistic experimental 
approaches that eliminate the visual display of network geometries 
from the behavioral learning task.

Degree centrality has long been hypothesized to have a close rela-
tionship with social influence in small group interaction1,32. Our finding 
of degree-modulated learning is consistent with two broad accounts 
previously proposed for how network centrality affects learning. The 
first has its basis in human and nonhuman studies that emphasize the 
role of the structural position in social behavior, suggesting that struc-
turally comparable individuals are facing similar interacting environ-
ments, therefore exhibiting similar behavior toward one another15,18. In 
the context of learning, network positions constrain the opportunities 
to obtain information from peers and the degree centrality quantifies 
such network-based individual differences. A second, but not mutually 
exclusive, possibility has its basis in the dynamic nature of network 
topology: knowledgeable or successful individuals tend to become 
highly connected, thus one’s degree centrality may serve to signal an 
individual’s capability or social status to other individuals18,47. Under 
this possibility, social animals may have evolved to preferentially fol-
low the more ‘connected’ or ‘prestigious’ cospecies, even in controlled 
experiments where the network structure is fixed and locations are 
randomized. Compatible with these proposals, our data additionally 
highlighted a dual effect of centrality on learning: a higher degree 
centrality not only amplified one’s social influence, but also reduced 
one’s susceptibility to others’ influence. This duality corroborates evi-
dence from popular social media, demonstrating that more influential 
individuals are usually less susceptible to peers’ influence, compared 
with their less influential counterparts48. The results further point to a 
possibility that, while social influence and susceptibility to social influ-
ence are often considered as distinct personal attributes44, they may be 
jointly affected by an internal learning system, which approximates the 
predictive value of others’ information relative to one’s own, to cope 
with the complexity of the social environment.

Previous research on the neurocomputation of social learning 
has typically focused on highly simplified social settings, leaving open 
whether and how putative mechanisms identified in simplistic setups 
can support behavior in more complex, ecologically relevant environ-
ments. As an initial step toward addressing this issue, our study raises 

key questions for future research. First, owing to the fundamental role 
of degree centrality in network analyses and its close connections with 
a range of network characteristics, we cannot rule out the possibility 
that alternative network features may also affect learning. In addition 
to the degree centrality, which parameterizes the immediate effect of 
social influence, learning may be affected by, for example, measures 
proposed to capture the long-term (eigenvector centrality), sequential 
(closeness), circular (clustering coefficient), global or local mediation 
(betweenness or constraint coefficient) effects seen in information 
transmission1. Our focus on degree centrality reflects the assumption 
that the brain may be more sensitive to simple, straightforward topo-
logical features, especially in complex decisions. Indeed, across analy-
ses, there was no evidence that alternative metrics outperformed RD in 
explaining behavioral data (Supplementary Table 4). Future investiga-
tion is needed to more firmly isolate and compare the potential influ-
ences of various network features at the behavioral and neural levels.

Second, across network structures, we found no systematic differ-
ences in how well the DeGroot learning model explained data (Supple-
mentary Fig. 5). Yet, the network geometries included in the study were 
but a sample of immense possibilities in the real world, leaving open the 
generality and scalability of the proposed model. It is possible that the 
brain may follow other learning algorithms when facing a different set 
of networks—for example, deploying Bayesian strategies when mak-
ing decisions in a line, one of the simplest forms of directed network27. 
Hybrid learning is also possible according to a recent behavioral study 
suggesting a mixture of Bayesian and DeGroot learning in a relatively 
more educated (but not less educated) sample29. Also, our experiment 
focuses on relatively small, seven-node networks, and does not directly 
speak to larger, more naturalistic settings. We speculate that, by relying 
merely on local information, the proposed model may be particularly 
suitable for scaling up, as individuals in large social groups typically 
have access only to local information, but not global knowledge about 
the entire network. A deeper investigation of the tradeoff between 
learning complexity and effectiveness49 will be valuable for understand-
ing whether, and under what circumstances, the current findings can 
be extended to greater varieties of network structures.

Another possible issue arises concerning the explicit display of 
sociograms in the behavioral task. Social animals normally do not have 
the graph visualization of social relationships during decision-making 
and usually acquire such information through a slow learning process. 
We examined this more naturalistic setup in a follow-up behavioral 
study (N = 91), where subjects first learned network structures and then 
played the same distributed learning game but with no ostensive net-
work display throughout the experiment. The choice data were largely 
consistent with those seen in the original experiment and were also best 
explained by the DeGroot learning model (Supplementary Note 3).  
It remains to be explored how the brain learns and represents the struc-
ture of social connections and how such representations support the 
dACC signaling in service of information integration.

Finally, our experiment employed simulated networks, where con-
nections represent routes of information transmission. This stylized 
setup allows for isolating observability—a basic determinant of social 
information transmission—from other factors that are implied by 
interpersonal connections and might also affect learning. For example, 
in real-life situations, social connections reflect not just observability, 
but also social bonds, affiliation and other interpersonal ties19. Also, 
individuals’ network locations are not completely random, but tend 
to signal certain characteristics of the individuals (for example, extra-
version, social economic status, and so on)18,47. These differences raise 
questions for future research regarding whether and how the current 
findings can be extended to capture perceivers’ intuitions about the 
functional consequences and correlates of centrality in the contexts 
where social connections imply more than just observability.

Social networks have been widely hypothesized to play a key role 
in many large-scale social phenomena, including vaccine hesitancy, 
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voting behavior and fake news proliferation, yet the exact mechanism 
by which social connections contribute to these phenomena remains 
unclear. The current study sheds light on this topic from a unique 
neurocognitive perspective, by elucidating how individuals experience 
and interact with a networked environment. Our data provide neural 
evidence for a bounded rational, network-dependent filtering of social 
information, which may result in the spread of misinformation and 
biased consensus among connected peers. More broadly, this work 
demonstrates the possibility of developing computationally tractable 
and neurobiologically plausible tools for investigating the complex 
interplay between social behavior and social embedding at the neural 
level, which may have the potential to translate upward for tackling 
phenomena in wider society.
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Methods
Participants
A total of 217 healthy volunteers (127 females; mean age ± s.d. = 20.25 ± 2.68 
years) were recruited from Peking University, China. Of these participants, 
31 completed the distributed learning experiment inside an fMRI scanner 
(14 females; age = 20.16 ± 1.97 years), while the remaining 186 subjects 
performed the same experiment outside the scanner. All participants 
reported having normal or corrected-to-normal eye vision, no color 
blindness, and no history of neurological or psychiatric illnesses. All fMRI 
participants were right-handed. All subjects provided informed consent, 
and the study was approved by the Committee for Protection of Human 
Subjects at Peking University, China.

A total of 209 subjects were included in the behavioral analyses, 
and 25 of these participants were also used for the fMRI data analyses. 
Specifically, 6 out of 186 behavioral subjects were excluded from analy-
ses due to insufficient variations in choice behavior (N = 4; repeating 
the same decision based on their private signals in 95% of decisions), 
abnormal reaction time (N = 1; 5 s.d. above the group mean), or report-
ing strong disbelief in the experimental setting in the postexperiment 
survey (N = 1). Of 31 fMRI participants, 4 were excluded from neuroim-
aging analyses but included in behavioral analyses due to excessive 
motion, and 2 were excluded from both neural and behavioral analyses 
due to scanning issues that did not interfere with their group members’ 
experiment (flickering display, N = 1; unable to finish scanning but able 
to complete the experiment outside the scanner, N = 1).

Procedure
Participants were assigned randomly into groups of seven for the 
experiment. Upon arrival, seven participants received instructions 
together to ensure that the instructions were identical and known to 
be identical by all group members. The instructions explained the task 
and the graph display of social networks, including what a node and a 
link represent on a graph (Supplementary Note 1). Subjects were truth-
fully instructed that (1) an individual on a network can see the decisions 
made by all her immediate connections, (2) an individual’s decision 
will be seen by all her immediate connections and (3) an individual’s 
decision is not directly observable beyond her immediate connections. 
To ensure comprehension, subjects were required to complete a quiz 
and three practice games on networks whose structures were different 
from those used in the actual experiment.

At the beginning of the distributed learning experiment, one 
subject within a group was moved into the scanning room, while the 
remaining six subjects were seated in an adjacent computer room with 
dividers to prevent communication and seeing each other’s computer 
screen. All seven participants were connected via an intranet. Subjects 
played 40 separate games, divided into three (scanning) sessions with 
short breaks in between. The order of the games was randomized across 
subject groups. As a game can proceed to the next stage only after all 
seven group members have submitted their decisions, the participants 
were encouraged (but not mandated) to select their choices within 5 s, 
so that the total scanning time could be reasonably constrained. To 
incentivize subjects to guess as accurately as possible in all decisions 
during the experiment, subjects were informed truthfully and identi-
cally that each participant would be rewarded based on the accuracy of 
30 randomly selected decisions from all her decisions (that is, four deci-
sions in each of 40 games), plus a show-up fee (60 CNY for behavioral 
participants and 150 CNY for fMRI participants). To prevent intergame 
learning, no feedback on choice accuracy was provided to subjects 
during the experiment. A schematic representation of the distributed 
learning game and the timeline of the experiment are shown in Supple-
mentary Fig. 1 and dynamically illustrated in Supplementary Video 1.

Networks and private signals
Each distributed learning game entailed a predetermined combination 
of a network structure and private signal for every node on the network. 

Extended Data Fig. 1a shows all 40 sets of experimental stimuli used in 
the experiment. These stimuli were selected based on an exhaustive 
simulation over all possible seven-node, connected, unweighted and 
undirected networks (853 nonisomorphic networks in total) and all pos-
sible combinations of private signals (27 = 128 possibilities) on each of 
853 networks. The stimuli were chosen with the goal of (1) ensuring the 
dissociation power in simulated choices across three learning models 
(DeGroot, Bayesian, and Baseline learning models), while (2) maintain-
ing reasonable variations across selected networks in the topological 
characteristics relevant for learning and information propagation.

To quantify these objectives, we computed the following nine 
indices for each of 128 × 853 candidate stimuli. The first three were 
discriminability indices for simulated choices between any two basic 
learning models (Bayesian versus DeGroot, Bayesian versus Baseline 
and DeGroot versus Baseline). These metrics were defined as the pro-
portion of choices simulated by one model, given a network structure 
and private signals on the network, that disagreed with the simulation 
from the other model. The metrics were averaged over decisions in S2 
and S3 and across seven decision-makers simulated from their respec-
tive network locations. The initial guess and S1 decision were excluded 
from the discriminability indices because three models make same 
predictions in those choices. We ensured that, for the selected stimuli, 
the average discriminability between any two models was as high as the 
top 3% according to the empirical distribution of each discriminability 
index over all candidate stimuli (Extended Data Fig. 1b).

The second category included six widely used network-level 
parameters relevant for information transmission50–53. They are (1) 
average degree centrality across all nodes on a network, (2) standard 
deviation of degree centrality across all nodes on a network, (3) Free-
man centralization, (4) diameter, (5) average path length and (6) the 
overall clustering coefficient. For each of these indices, we ensured 
there was no systematic mismatch in the distribution range between 
the selected networks and the pool of all possible candidate networks 
(Extended Data Fig. 1c).

Network locations for fMRI/behavioral participants were deter-
mined pseudorandomly on each network structure. A post hoc check 
on the locations of fMRI subjects was performed to ensure sufficient 
variations in the RD values of the fMRI participants’ direct neighbors. 
Notably, we observed no systematic difference in the choice behavior 
between the fMRI and behavioral participants in the experiment (Sup-
plementary Table 3).

To allow for evaluating how node properties affect learning while 
controlling for the potential influence of the overall network topology, 
five network structures were used twice in the experiment (last ten 
stimuli in Extended Data Fig. 1a). Each structure was associated with 
a reallocation of participants and private signals on the network (see 
Supplementary Fig. 6 for within-network comparisons). Unless other-
wise specified, all analyses in the current study were carried out on all 
40 games. Behavioral and neural results remained unchanged in the 
analyses of 35 games, excluding the data from five games containing 
the network structures with which the participants interacted for the 
second time during the experiment.

DeGroot learning model
In each game, a DeGroot learner is assumed to form a private belief 
about the underlying state based on the private signal she received at 
the beginning of the game, and then update this belief continuously in 
an error-driven manner, every time she witnesses an observation from 
the social network. The model assumes differential updating rules in 
S2 (S3) versus S1. In S1, the update follows:

Eki,1 (B) = E
k−1
i,1 (B) + α [Bki,1 − E

k−1
i,1 (B)] ,

Eki,1 (Y) = E
k−1
i,1 (Y) + α [Yki,1 − E

k−1
i,1 (Y)] ,
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where Eki,1 (B) (E
k
i,1 (Y)) is agent i’s belief that the underlying state of the 

game is blue (yellow) after witnessing the kth observation in S1, α is the 
learning rate in S1, and Bki,1 (Y

k
i,1) is the kth observation of agent i at S1, 

which, without loss of generality, is set to be 1, if the observee selects 
blue (yellow), and −1 otherwise. Under the experimental setting, 
Eki,s (B) = −Eki,s (Y). Agent i’s belief at the beginning of S1 is determined by 
a free parameter (γ), and her belief at the end of S1 is denoted as Ekmaxi,1 (B) 
and Ekmaxi,1 (Y), where kmax refers to the last observation in the  
given stage.

In S2 and S3, the update is assumed to follow:

Eki,s (B) = E
k−1
i,s (B) + β × RDki,s × [Bki,s − E

k−1
i,s (B)] ,

Eki,s (Y) = E
k−1
i,s (Y) + β × RDki,s × [Yki,s − E

k−1
i,s (Y)] ,

where s = 2 or 3 (that is, S2 or S3), β is the learning rate shared by S2 and 
S3 (see Alternative models in Methods and Supplementary Table 4 for 
evidence supporting this specification), and RDki,s represents the relative 
degree, defined as the degree centrality of the observee k relative to 
the total local degree of agent i (see Fig. 2b for illustration). Learning 
in S2 and S3 runs continuously from that of the previous stage, such 
that E0i,s (B) = E

kmax
i,s−1 (B) and E0i,s (Y) = E

kmax
i,s−1 (Y) for each stage s.

To convert agent i’s belief into choice probabilities, the model 
assumes that the agent’s choices follow a standard softmax function 
used widely in learning and decision-making research:

P (Ai,s = B) =
1

1 + exp (−λEkmaxi,s (B))
,

where Ai,s is agent i’s choice at stage s, s = 1,2,3, and λ is a free parameter 
for the inverse temperature capturing choice randomness. Altogether 
the model contains four free parameters: learning rates α and β, initial 
belief parameter γ and inverse temperature λ.

For fMRI analyses, we focused on the aPE estimate associated with 
the observer’s previous decision in a game. For example, if a participant 
selected blue in the previous stage of a game, then, upon witnessing 
the kth observation in current stage s, we looked for the neural corre-
lates of aPE defined as Bki,s − E

k−1
i,s (B) (Fig. 2b).

Model estimation
We calibrated the DeGroot learning model with participants’ behavior 
by maximizing the log-likelihood of the model prediction at both 
individual and network levels. For individual estimation, we assumed 
that a subject’s choices across games were generated by the same set 
of DeGroot learning parameters, and applied the maximum likelihood 
estimation with a grid search for each parameter. Specifically, we fit 
the model for each subject by maximizing the log of choice probability 
of observed data, ∑

g
[log (P (Ai,ini|g)) + ∑

s=1,2,3
log (P (Ai,s|g))], pooled over 

game g given a subject i.
To account for the potential variations in learning parameters 

across networks, we calibrated the model by pooling data over all 
subject groups given each game. That is, we assumed that each game 
was associated with a set of DeGroot learning parameters shared by all 
subjects regardless of their groups and network locations. We fit the 
model by maximizing the log of choice probability of the observed 
data, ∑

i
[log (P (Ai,ini|g)) + ∑

s=1,2,3
log (P (Ai,s|g))], pooled over subject i given 

a game g.
Unless otherwise stated, behavioral and neuroimaging analyses 

presented in the current study were based on results derived from 
individual-level estimations. Best-fitting parameters from both 
individual- and network-level estimations are summarized in Sup-
plementary Table 2.

Model evaluation
For in-sample model comparison, we computed the standard BIC 
based on the in-sample model fits, estimated at either the individual 
(Extended Data Fig. 3a, left) or network level (Extended Data Fig. 3b, 
left). For out-of-sample comparison, we evaluated the between-subject 
out-of-sample prediction accuracy for candidate models (Extended 
Data Fig. 3a, middle). This involved dividing participants randomly 
into five groups, and predicting the choice behavior of one group of 
participants using the median of the parameters computed from the 
participants in the other four groups. We computed the mean predic-
tion accuracy based on 1,000 random groupings (to guard against the 
potential biases in assigning subjects into groups) and, within each 
grouping, five times of leaving one group out (to guard against the 
potential biases in assigning hold-out samples). Finally, we performed 
Bayesian model selection among the proposed and competing models, 
assuming that there is a fixed but unknown distribution of different 
underlying models across individuals. We first inverted models using 
a variational Bayes approach implemented in the VBA toolbox54. The 
model log-evidence estimated for each participant and each model 
was then submitted to a group-level random effects analysis, assum-
ing the occurrence of the model for each participant as a multinomial 
random variable with a Dirichlet conjugate prior (Extended Data Fig. 3a, 
right). This analysis generated exceedance probability that measures 
the plausibility that a given model is more frequently implemented by 
participants than any other model in the comparison set. Similar pro-
cedures were also used for network-level estimation results (Extended 
Data Fig. 3b, middle and right).

Alternative models
The proposed DeGroot learning model was compared against two sets 
of competing models. First, to evaluate how sophisticated participants 
are in integrating networked information, we compared the DeGroot 
learning model against the Baseline and Bayesian learning models, 
which either completely ignores or makes rational use of the network 
structure during learning. Second, to validate the specific algorithmic 
configuration under the DeGroot learning hypotheses, we compared 
the proposed model against 18 competing models, all maintaining 
the main DeGroot learning assumptions but differing in the specific 
implementations (see model comparison in Fig. 3, Extended Data  
Fig. 3 and Supplementary Table 4).

Baseline learning model. The Baseline learning model entails an 
error-driven process with no degree-modulation effect:

Eki,s (B) = E
k−1
i,s (B) + α [Bki,s − E

k−1
i,s (B)] ,

Eki,s (Y) = E
k−1
i,s (Y) + α [Yki,s − E

k−1
i,s (Y)] ,

where notations are the same as those in the DeGroot learning model. 
The model contains three free parameters, a learning rate α that is 
constant across stages, an initial belief parameter γ and inverse tem-
perature λ.

Bayesian learning. A key difference between the Bayesian and DeGroot 
(Baseline) learning models is that Bayesian learning is not a Markovian 
process, and a Bayesian learner updates her belief based on all the 
information available to her at the decision time, which includes her 
private signal, all her past actions and observations in a game. The study 
examines two variants of Bayesian learning models: the baseline and 
noisy Bayesian learning. The baseline Bayesian model demonstrates 
theoretically appealing properties (Supplementary Fig. 2), whereas 
the noisy Bayesian model provides better fit to the experimental data 
(Extended Data Fig. 3). These models are built on a recursive algo-
rithm28,55 under the assumption that all agents on the network are 
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Bayesian learners, and know that others are Bayesian (and know that 
others know about this, and so on)56,57.

Intuitively, a Bayesian learner needs to infer the private signal 
received by each of seven agents on the network, or to infer 
ddd = (d1,… ,d7), where di represents agent i’s private signal (blue or yellow 
ball). The agent starts with a set of all possible d vectors, denoted as D, 
which contains 27 possible combinations of private signals on a specific 
seven-node network, and gradually eliminates the d vectors that are 
inconsistent with the information history of the agent in the game. At 
the initial guess of a game (t = 0), an agent i’s information history con-
tains only her private signal, Ii,0 = {ωi}, where Ii,0 denotes i’s information 
history at t = 0, and ωi denotes i’s actual private signal. Based on this 
information, agent i will reduce D to Di,0 by deleting d vectors with di ≠ ωi 
(that is, removing half of the space in D that contains the opposite color 
of ωi). Given Di,0, agent i computes her posterior belief about the under-
lying state θ using the Bayes’ rule: Qi,0 (Ii,0,θ) =

∑ddd∈Di,0
P(ddd|θ)P(θ)

∑θ ′∈{B,Y} ∑ddd∈Di,0
P(ddd|θ ′)P(θ ′)

, 

where P(θ) = 0.5 is the prior belief in support of a possible state θ. A 
standard softmax function is used for mapping an agent’s posterior 
belief into decisions.

In S1 (t = 1), agent i’s information history becomes Ii,1 = {ωi,Ai,0,Aj,0} , 
where Ai,0 and Aj,0 are the initial guesses selected by i and i’s direct 
neighbor j, respectively. Without loss of generality, here we assume 
that i has only one direct neighbor on the network, but the same algo-
rithm will apply when i has multiple network neighbors. Starting from 
Di,0, agent i eliminates the d vectors that are incompatible with her 
observation Aj,0, by simulating what j would have selected in the initial 
guess given each possible d in Di,0. Algorithmically, this can be achieved 
by carrying out the same computational procedure as that in t = 0, but 
from j’s perspective, conditional on each d in Di,0. To map others’ pos-
terior belief to others’ possible decisions, the baseline Bayesian model 
assumes that an agent believes that others will always select the option 
with the highest posterior probability, a deterministic assumption that 
is relaxed in the noisy Bayesian model.

In S2 (t = 2) and S3 (t = 3), the computational procedure is essen-
tially the same as that in t = 1, but with more iterations. For example, in 
S2, agent i needs to simulate neighbor j’s choice in t = 1 conditional on 
each possible d in Di,1, which further involves the recursive computation 
of actions that would have been selected by neighbor j’s neighbors in 
t = 0. By gradually taking into account the topological structure of the 
network, the algorithm allows an agent to infer the choices of others 
locating further and further away from her on the network. Impor-
tantly, by conditioning on each possible initial state, ddd = (d1,… ,d7), the 
algorithm allows for predicting the decision by each network agent in 
each stage using the Bayes’ rule, circumventing complex computations 
of correlated choices on networks when d is unknown (see Supplemen-
tary Note 2 for formal modeling).

The noisy Bayesian model differs from the baseline Bayesian model 
in assuming that the probability of a neighbor choosing a particular 
action is proportional to this neighbor’s posterior probability in sup-
port of that action (that is, P(Aj,t = θ) ∝ Qj,t(Ij,t,θ)). The baseline Bayesian 
model was used for designing and selecting the experimental stimuli 
(Fig. 2a and Extended Data Fig. 1). Both models were used in behavioral 
data estimation. Due to the superior explanatory power of the noisy 
Bayesian model relative to the baseline variant, we presented the results 
from the noisy Bayesian model in behavioral data analyses in main texts 
(Fig. 3c, Supplementary Fig. 4 and 5 and Supplementary Tables 2 and 
3), supplemented by the comparison of estimation results between 
the baseline Bayesian and other models (Extended Data Fig. 3).

DeGroot learning with alternative node parameters. To evaluate the 
assumption that DeGroot learning is modulated by the degree centrali-
ties of the observee relative to the observer, we replaced the value of RD 
in the proposed model with the following alternative node properties 
used widely in social network analysis1,4,58: (1.1) eigenvector centrality, 

(1.2) betweenness centrality, (1.3) closeness centrality, (1.4) constraint 
(an inverse measure of network brokerage, 1 – constraint was used in 
the model) and (1.5) node-level clustering coefficient (Supplementary 
Table 4). Similar to RD, we calculated the relative value for each of these 
measures, by normalizing each measure associated with the observee 
with respect to that of the observer and the observer’s direct neighbors 
on a network. The resulting ratio was then used in a new learning model 
as the modulator for the learning rate in S2 and S3 (but not in S1), in the 
same way as in our proposed DeGroot learning model.

DeGroot learning with alternative degree normalization. To evalu-
ate whether and how the observee’s degree centrality was normal-
ized when being incorporated in the learning process, we replaced 
RD in the proposed model with (2.1) the non-normalized degree cen-
trality of the observee, (2.2) the ratio of degree centrality between 
the observee and the observer, (2.3) the ratio of degree centrality 
between the observee and the observer’s direct neighbors (excluding 
the observer’s own degree from the denominator of RD) and (2.4) the 
ratio of degree between the observee and the total number of unique 
connections within the observer’s local neighborhood (which avoids 
double-counting connections shared between two individuals within 
the neighborhood in the normalization term).

DeGroot learning with alternative stage dependency. To evaluate 
the assumption concerning the stage-varying modulation effects, we 
constructed alternative models positing that the learning rate was 
scaled by the value of RD in either (3.1) all three stages, (3.2) S2 only 
or (3.3) S3 only.

DeGroot learning with alternative learning rate specification. To 
evaluate whether learning across S1, S2 and S3 was associated with the 
same or different learning rates, we examined alternative specifications 
in which learning was either associated with a common learning rate 
across all stages (4.1), or a unique learning rate for each learning stage 
(4.2). These alternative models maintained the assumption that the 
learning rate in S2 and S3 (but not S1) was additionally scaled by the 
respective value of RD, as in the proposed model.

DeGroot learning with alternative observational learning strategy. 
The last set of models test an alternative possibility that an individual 
learns only from her MC neighbor within her neighborhood, but not 
from the other direct neighbors (non-MC neighbors). We formulated 
models assuming that an individual learns from the MC neighbor only 
when the MC neighbor has more connections than the observer (5.1), 
or regardless of how connected the MC neighbor is (5.2). We assume 
learning is weighted by either the ratio between the MC observee’s 
degree centrality and the total local degree (in 5.1 and 5.2) or the ratio 
between the MC observee’s degree centrality and the observer’s own 
degree centrality (5.3). Finally, rather than assuming zero influence 
by non-MC neighbors, we tested whether neighbors affect learning 
with differential strength, by incorporating separate learning rate 
parameters for the MC and non-MC neighbors (5.4).

fMRI data acquisition and preprocessing
We collected fMRI images using a 3 T Siemens Prisma scanner equipped 
with a 32-channel head coil at the Center for MRI Research of Peking Uni-
versity. Before the task, high-resolution structural T1-weighted scans 
were acquired using a magnetization-prepared rapid gradient echo 
sequence with the following parameters: repetition time = 2,530 ms, 
echo time = 2.98 ms, flip angle = 7°, field of view (FoV) = 224 × 256 mm2, 
inter-slice gap = 0.5 mm, voxel size = 0.5 × 0.5 × 1 mm3 and number 
of slices = 192. During the task, functional images were acquired 
using echo-planar T2* images with BOLD contrast, and angled 30° 
with respect to the anterior commissure–posterior commissure 
line to minimize susceptibility artifacts in the orbitofrontal area.  
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The scanning parameters were as follows: repetition time = 2,000 
ms, echo time = 30 ms, flip angle = 90°, field of view = 224 × 224 mm2, 
voxel size = 3.5 × 3.5 × 3.5 mm3, inter-slice gap = 0.7 mm and number 
of slices = 33. Visual stimuli were presented using a mirror mounted 
on the MRI head coil, and responses were acquired via an MRI-safe 
button response pad.

Image preprocessing and analyses were performed in SPM12 (Well-
come Trust Center for Neuroimaging, Institute of Neurology, UCL; www.
fil.ion.ucl.ac.uk/spm/software/spm12/). For each fMRI session, the pre-
processing of neuroimaging data included, in order: slice time correction, 
motion correction (aligning to the mean image), coregistration, spatial 
normalization to the Montreal Neurological Institute (MNI) template 
(final image resolution of 3 × 3 × 3 mm3) and spatial smoothing using a 
Gaussian kernel of 6-mm full width at half maximum. All images were 
high-pass filtered in the temporal domain (width 128 s), and autocorrela-
tion of the hemodynamic responses was modeled as an AR(1) process.

fMRI data analysis
We implemented six GLMs for model-based fMRI analysis59,60 used 
widely in neuroimaging studies of learning and decision-making. In all 
GLMs, a distributed learning game was modeled as a series of discrete 
events using stick functions. These included fixation onset, network 
display, initial guess onset, initial guess submission and—for each 
learning stage—the display onset of one’s own choice, the onset of each 
and every observation, the onset of the reassessment decision and the 
submission of the reassessment. Parametric modulators such as the 
value estimates for aPE and belief expectation were derived using each 
fMRI participant’s best-fitting parameters from the individual-level 
estimation of the DeGroot learning model. The parametric modula-
tor of RD was calculated based on the locations of the observee and 
observer on the given network, independent of participants’ behavior 
and model estimation.

We made the following assumptions in all GLM models. First, 
rather than modeling each observation onset as a separate GLM regres-
sor, we entered the onsets of all observations of an fMRI participant 
within a learning stage into one GLM condition (regressor), with the 
across-observation variations in aPE, RD or other decision-related 
variables being captured by the respective parametric modulators. 
This allowed us to flexibly account for the varying numbers of observa-
tions of a subject across networks (that is, the inevitable variations in 
an observer’s own degree centrality in the experiment) and boost the 
statistical power for detecting the observation-by-observation changes 
in fMRI signals within each stage. Second, to facilitate the between-stage 
comparison, we assumed three separate GLM conditions (regressors) for 
S1, S2 and S3, each including the onsets of all observations in the respec-
tive learning stage. Moreover, as the DeGroot learning model assumes 
all decisions (initial guess and three reassessments in a game) are made 
in the same way based on belief expectation, we evaluated the neural 
correlates of belief expectation estimates at the choice time assuming 
a shared condition (regressor) for choice submission within each game.

Specifically, GLM1 served to identify the neural correlate of the aPE 
estimates and RD values. Each game was modeled as having the follow-
ing eight conditions (regressors): (1) fixation onset, (2) network display, 
(3) S1 observation onsets (including all events of observation onsets in 
S1, same below), (4) S2 observation onsets, (5) S3 observation onsets, 
(6) choice onsets (including all events of decision onsets, same below), 
(7) choice submission and (8) onsets of one’s own choice display. We 
entered the aPE estimate associated with the observed action and the 
value of RD between the observee and the observer’s neighborhood as 
the parametric modulators for the onset of the specific observation at 
the corresponding learning stage. For each decision submission, we 
entered the value estimate of belief expectation for the chosen option 
as well as the button pressed (left/right) as the parametric modulators 
for the respective decision. In all GLMs in the current study, paramet-
ric modulators associated with the same event were orthogonalized 

against one another to remove any shared variances, such that the 
regression coefficient reflected the unique contribution of each regres-
sor in explaining the variances in neural signals. These regressors were 
convolved with the canonical hemodynamic response function and 
entered into a regression analysis against each fMRI subject’s BOLD 
signals. The six vectors of head motion parameters derived from pre-
processing were also included as nuisance regressors in all GLM analy-
ses. Regression maps for aPE (RD) of each fMRI participant were first 
computed between learning stages based on the specific hypothesis 
derived from the DeGroot learning model (for example, aPE maps were 
averaged over S1, S2 and S3 within participants), and then taken into the 
standard random effects group-level analyses. All whole-brain analyses 
were thresholded and displayed at the cluster-wise FWE-corrected 
P < 0.05, with cluster-forming threshold Punc. < 0.001, as reported by 
SPM12. Unless otherwise specified, all GLMs were structured in the 
same way (but with varying parametric modulators) and corrected for 
multiple comparisons using the same statistical procedure.

GLM2 served to examine the robustness of aPE encoding by con-
trolling for nuisance effects related to action observation. This model 
was identical to GLM1 except that it included the following variables as 
additional parametric modulators for each observation onset in each 
learning stage: the order of observation display, the color selected by 
the observee (yellow/blue) and the consensus level among choices by 
all network members at the beginning of the particular learning stage 
(the proportion of the dominant choice on the network).

GLM3 served to test for brain activity whose variance was 
explained uniquely by RD values, while controlling simultaneously 
for potentially confounding variables as regressors of no interest. 
The regression model was identical to GLM1 except that it contained 
additional parametric modulators for all observation onsets at all 
learning stages, reflecting either the visual properties of the network 
layouts, nuisance effects related to action observation or variables 
previously associated with dACC functioning. These included the 
Euclidean distance between the observee’s network position and the 
centroid of the network, the Euclidean distance between the observer’s 
and observee’s locations on the network display, order of observation 
display, color selected by the observee (yellow/blue), aPE magnitude, 
variance in attained observations within the learning stage, level of con-
flict between social observations and observer’s own belief (proportion 
of attained observations within the learning stage that were different 
from the observer’s previous decision), updated belief expectation 
estimate with respect to the observer’s previous decision and choice 
difficulty reflected by the distance in the value estimates of belief 
expectation between two choice options.

GLM4 served to evaluate whether and how fMRI signals reflected 
the numerator and denominator in RD, by replacing the parametric 
modulator of RD in GLM1 with two variables—the observee’s degree 
and the total degree centrality within the observer’s local neighbor-
hood—for all observation onsets at all learning stages in GLM1.

GLM5 served to identify brain regions responding to the belief 
expectation estimates, on an observation-by-observation basis, while 
controlling for potentially confounding variables. We entered the 
model-derived value estimates of belief expectation with respect to the 
observer’s previous decision as the parametric modulator for observa-
tion onsets in each learning stage. To control for the correlation of belief 
expectation with the aPE and RD signals, as well as the potential effect of 
belief accumulation resulting from the sequential update by subjects, 
we also included the following variables of no interest as parametric 
modulators for observation onsets in all learning stages: aPE estimate 
for the observed action, RD value between the observee and observer 
and the order of observation display in the particular learning stage.

GLM6 served to examine the robustness of the belief expecta-
tion signals at observation onsets. We added to GLM5 the following 
decision-related variables as parametric modulators for all observation 
onsets in all learning stages: the product of RD and aPE estimates, the 
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color selected by the neighbor, the Euclidean distance between the 
observee’s network position and the centroid of the network display, 
the Euclidean distance between the observer’s and observee’s locations 
on the network display, and the consensus level among choices by all 
network members at the beginning of the particular learning stage.

PPI analysis
We performed PPI analyses at both the ROI and whole-brain levels 
using SPM12. The ROI-based PPI analysis tested functional coupling 
between the VMPFC and the dACC at observation onsets in S1 versus 
S2/S3. We used the same ROI of the dACC defined independently by an 
online meta-analysis of 598 studies using the term ‘cognitive control’ 
in Neurosynth39 (peak voxel MNI coordinates: x, y and z = 6, 22 and 
36; Fig. 5c). The VMPFC cluster was defined by a sphere with a 6-mm 
radius centered at the peak VMPFC activation for belief expectation 
estimates as in Fig. 7a (MNI coordinates: x, y and z = −9, 44 and −10). The 
PPI model contained the following regressors for observation onsets: 
(1) BOLD timeseries extracted from the VMPFC cluster, (2) the dummy 
variable indicating S2 and S3 against S1 and (3) the product of the above 
two regressors. We also performed an exploratory PPI analysis at the 
whole-brain level, seeded in the same VMPFC cluster with the identical 
sets of regressors (Extended Data Fig. 10).

Conjunction analyses
Conjunction analyses were performed based on the minimum T-statistics 
in SPM12 testing for a logical AND (against the conjunction null) 
between group-level T-maps61. For all analyses, conjunction maps were 
thresholded at a conjunction P value corresponding to a whole-brain 
cluster-level PFWE < 0.05, with cluster-forming threshold Punc. < 0.001.

To evaluate whether there existed overlapping encoding of neigh-
bors’ degree (numerator of RD) and total local degree (denominator of 
RD), with opposing signs, at the observation onsets in S2 and S3, we first 
averaged each regression fit of interest from GLM4 for each participant 
across S2 and S3 (that is, the average of neighbor’s degree across S2 and 
S3 and that of total local degree), and separately took them into the 
standard random effects analyses. The resulting second-level T-maps 
were then used for two separate conjunction analyses testing the over-
lap between (1) the positive encoding of neighbors’ degree and negative 
encoding of total local degree (Fig. 5a) and (2) the negative encoding 
of neighbors’ degree and positive encoding of total local degree (no 
significant overlap at cluster-level PFWE < 0.05, with cluster-forming 
threshold Punc. < 0.001).

To evaluate whether overlapping activation to RD existed at obser-
vation onsets across S1, S2 and S3, we first computed, for each learning 
stage, the second-level T-map for RD based on GLM1 regression fits. The 
resulting maps were then used in two conjunction analyses that tested 
the overlap in (1) the positive and (2) negative encoding of RD (both were 
not significant at cluster-level PFWE < 0.05, with cluster-forming threshold 
Punc. < 0.001). To evaluate whether the lack of overlap among S1, S2 and S3 
was due to effects in S2 and S3, we performed similar analyses by combin-
ing the second-level T-maps of RD in S2 and S3, and evaluating the overlap 
in (1) the positive RD encoding between S2 and S3 (Extended Data Fig. 8) 
and (2) negative RD encoding between S2 and S3 (no significant overlap 
at cluster-level PFWE < 0.05, with cluster-forming threshold Punc. < 0.001).

fMRI timecourse analyses
We extracted the preprocessed BOLD timeseries as the average of 
voxels within the independent dACC ROI (as shown in Fig. 5c). The 
extracted BOLD series were further regressed out the head motion to 
control for potential motion-related artifacts, applied a high-pass filter 
(cutoff, 128 s) to remove low-frequency drifts and oversampled by a 
factor of 20 to obtain a time resolution of 0.1 s. For each observation, 
an 18-s window (180 timepoints) time locked to observation onsets 
(2 s before the onset) was applied. To obtain the parameter estimate 
timecourse for each learning stage, we performed linear regression 

for each time point, separately for S1, S2 and S3, to estimate the effects 
of variables of interest on the extracted brain activity and then con-
catenated the regression β values across timepoints. Standardized 
regression coefficients are shown in Fig. 5c.

Statistical analyses
No statistical methods were used for determining sample sizes. The 
size of the fMRI sample is comparable with those reported in previous 
research of RL and social learning26,62,63. Blinding is irrelevant in this 
study since the experiment did not involve multiple conditions. Statis-
tical comparisons were performed using with appropriate inferential 
methods, as indicated in the figure captions. For parametric statisti-
cal tests that require normality assumptions, data distribution was 
assumed to be normal, but this was not formally tested. Behavioral data 
were collected using a custom-written Python (v.2.7) program. Statis-
tical analyses were conducted using R (v.3.3) and Matlab (v.R2017a). 
SPM12 was used for analyzing neuroimaging data, and the VBA toolbox 
was used for Bayesian model selection.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data underlying the findings of this study are available at Open Science 
Framework: https://osf.io/8rbs4/.

Code availability
Code supporting the findings of this study is available at Open Science 
Framework: https://osf.io/8rbs4/.
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Extended Data Fig. 1 | Stimuli. (a) Network structures and private signals. 
Blue/yellow represents the color of the private signal at a specific node. Circle/
square represents the location of a behavioral/fMRI participant, which was 
assigned pseudo-randomly (Methods). Network structures were displayed 
using the ‘force-directed’ algorithm implemented in MATLAB (R2017a), with 
minor adjustments to node coordinates for avoiding overlapping edges. During 
the experiment, the network structure was presented to all participants, but 
one’s private signal was only known to the particular subject. (b) The empirical 
distribution of discriminability indices calculated from the pre-experiment 
simulation based on the DeGroot, Baseline, and Bayesian learning models 
(Methods). The radar plot illustrates the level of discriminability between any 
two candidate models. Each axis represents a model pair. For any point on an 
axis, the distance from the center of the plot corresponds to the discriminability 

of the given model pair (ranging from 0 to 1). The dotted, dashed, and solid 
lines in black represent, respectively, the 99th, 95th, and 90th percentiles of 
discriminability indices computed from all 128 × 853 candidate stimuli. The red 
line represents the discriminability averaged over 40 sets of stimuli employed 
in the experiment. The discriminability index is defined as the proportion of 
choices simulated by one model, given a network structure and private signals 
on the network, that disagree with the simulation from the other model, and is 
averaged over decisions in S2 and S3 and across 7 agents simulated from different 
network locations (Methods). (c) Selected networks demonstrate reasonable 
distribution ranges in the topological features relevant for information 
transmission (Methods). Each gray/red histogram depicts the distribution of the 
network parameter computed by pooling candidate/selected stimuli.
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Extended Data Fig. 2 | The DeGroot learning model explains multiple aspects 
of behavior across stages. The actual vs. model-predicted choice consensus 
(a) and choice accuracy (b). Choice consensus is defined as the proportion of 
participants embedded on the same network who choose the same (dominant) 
option at a given stage in a game. Choice accuracy is defined as the proportion 
of participants on the same network whose choices are consistent with the most 
likely underlying state given the distribution of private signals in the game. (c) 
Model-predicted choice difficulty vs. reaction time (RT), a widely used empirical 

measure for choice difficulty. Model-derived choice difficulty is defined as the 
entropy of the softmax action probability calculated from the DeGroot learning 
model (that is, more difficult when the model-derived action probability is closer 
to 0.5). To control for the influences of the initial guesses (which are affected by 
the distribution of private signals), effects of initial guesses (S0) are subtracted 
from all the above measures. Each dot represents the average value across all 
subject groups given a stage and a game, colored by the stage (N = 40 games).
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Extended Data Fig. 3 | Model comparisons based on (a) individual-level and 
(b) network-level estimations. Goodness-of-fit comparisons are based on the 
in-sample BIC scores (left), out-of-sample prediction power based on a five-fold 
cross-validation procedure (middle), and model frequencies and exceedance 
probability (Pexc) calculated by Bayesian model selection (right; Methods). Two 
variants of the Bayesian learning models (Noisy-Bayes and Baseline-Bayes) 

are considered (see Methods and Supplementary Note 2). Error bars in the 
middle panels of (a) represent mean ± intersubject SEM, of (b) represents mean 
± intergame SEM, and in the right panels of (a, b) represent estimated model 
frequencies ± SD of the Dirichlet distribution. Individual-level analysis are based 
on N = 209 behavioral subjects, and network-level analysis are based on N = 40 
games. *** P < 0.001, two-sided paired t-tests, all Bonferroni-corrected.
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Extended Data Fig. 4 | Activity in the right LPFC is correlated with the 
observed action and belief expectation estimate, with opposing signs. 
(a) Neural betas with respect to two components in an action prediction error 
(aPE) signal, the observed actions (1 if observation matches the observer’s prior 
choice; otherwise, −1) and belief expectation estimates (Eold) associated with the 
observer’s prior decision. The beta values were separately extracted from the 
rLPFC cluster as identified by aPE estimates in Fig. 4a. (b) Visualization of rLPFC 
responses to observed actions and belief expectation estimates. Consistent 

with the aPE assumption, the mean rLPFC activity is higher when an observation 
is consistent with the observer’s prior decision (observation = 1) than when 
the observation differs from the observer’s prior decision (observation = −1). 
Also, the mean rLPFC activity demonstrates a negative main effect for high- 
vs. low-value estimates of belief expectation (Eold), based on median splits on 
belief expectation estimates for each fMRI participant. Each dot in violin plots 
represents a subject. Error bars represent intersubject SEM in the fMRI sample 
(N = 25). * P < 0.05, *** P < 0.001, two-sided t-tests.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Behavioral and neural evidence that learning is 
not limited to the most-connected (MC) neighbor but also to the other 
(non-MC) neighbors. (a) Mixed-effects logistic regression for each separate 
learning stage. The regression analyses are similar to those in Fig. 3a but with 
the following 3 regressors, serially orthogonalized: (i) the unweighted sum 
of observations of all neighbors, (ii) action by the MC neighbor scaled by her 
degree centrality, and (iii) the ND-weighted sum of observations for all non-MC 
neighbors. Serial orthogonalization ensures the regression coefficient for the 
third regressor reflects only the variances in choice behavior that can be uniquely 
explained by this last regressor (see also Methods and Supplementary Table 4 for 

corresponding model-based analyses). (b) Whole-brain analyses show significant 
neural responses at the onsets of observations from non-MC neighbors (all 
thresholded at cluster-wise FWE-corrected P < 0.05, with cluster-forming 
threshold Punc. < 0.001). (c) ROI analyses comparing effects between the MC 
and non-MC neighbors. Mean fMRI activity are separately extracted for the MC 
and non-MC neighbors from respective ROIs and binned by the corresponding 
estimate values. *** P < 0.001, two-sided z-tests. Error bars in (a) represent the 
SE of fixed-effect estimates in the logistic regression of the behavioral sample 
(N = 209), error bars in (c) represent the intersubject SEM of the fMRI sample 
(N = 25).
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Extended Data Fig. 6 | Evidence for neighbor-by-neighbor neural 
representations. (a) ROI analyses comparing neural responses between the 1st 
vs. 2nd, odd- vs. even-numbered, 1st half vs. 2nd half observations within a learning 
stage. The violin plots in the upper panels show the effect sizes within each 
corresponding ROI (two-sided t-tests, all P < 0.05, uncorrected). The lower panels 
visualize the effects by plotting the mean BOLD activity extracted from each 
ROI against bins of ascending values. (b) Whole-brain analyses demonstrating 
that the observed neural activation could not be entirely attributed to the 
game-to-game variations. Statistical parametric maps show neural responses 
at observation onsets to learning variables demeaned within each game 

(clusters in red), overlaid with the activation with respect to the original values 
(clusters in yellow). All thresholded at cluster-wise FWE-corrected P < 0.05, with 
cluster-forming threshold Punc. < 0.001, except for RD-related activation in S2 
and S3, which is thresholded at Punc. < 0.001 with cluster size K > 20. The reduced 
RD-related activation following the removing of between-game variations is 
consistent with the definition of RD, as it contains both neighbor-by-neighbor 
(neighbor degree) and game-by-game (total local degree) variances. Error bars 
represent intersubject SEM in the fMRI sample (N = 25). n.s., not significant; * 
P < 0.05; all two-sided paired t-tests, uncorrected.
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Extended Data Fig. 7 | Choice-related neural activity at decision time. (a) 
BOLD activity in the orbitofrontal cortex (OFC) is positively correlated with 
the value estimate of belief expectation for the chosen option at the time of 
decision submission (cluster-wise FWE-corrected P < 0.05, with cluster-forming 
threshold Punc. < 0.001). (b) BOLD activity in the anterior cingulate cortex (ACC) 
and neighboring medial prefrontal cortex (MPFC) at decision submission reflects 
the model-derived tendency of modifying one’s prior estimation. Left: BOLD 
activity at decision time in the ACC/MPFC, precuneus, and inferior parietal lobule 
(not shown) is higher when a subject revises her previous decision than when the 
subject sticks to the same decision (cluster-wise FWE-corrected P < 0.05, with 

cluster-forming threshold Punc. < 0.001). No region shows a decreased response 
to switch vs. stay at choice time at the same statistical threshold. Right: Results of 
mixed-effects linear regression show that the mean fMRI signal extracted from 
the identified ACC/MPFC cluster (peak voxel MNI coordinates: x, y, z = −6, 44, 17; 
as shown in the left panel) at the decision time is negatively correlated with the 
amount of change in the model-derived belief expectation from the beginning 
to the end of the corresponding learning stage (that is, belief change estimates). 
The x-axis represents the model-derived belief change within a learning stage, 
rounded to the nearest integer for illustration. Error bars represent intersubject 
SEM in the fMRI sample (N = 25).

http://www.nature.com/natureneuroscience
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Extended Data Fig. 8 | Robustness and specificity of the encoding of RD 
values in the dACC in S2 and S3. (a) Extent of the dACC responses to RD values in 
S2 and S3. Yellow clusters reflect the maximal extent of activation to RD, without 
controlling for any decision variables. Red clusters reflect the activation to the 
residuals of RD, after being orthogonalized against 10 variables-of-no-interest as 
parametric modulators (GLM3, Methods). All thresholded at cluster-wise FWE-
corrected P < 0.05, with cluster-forming threshold Punc. < 0.001. (b–c) The visual 
cortex, but not the dACC, tracks the observees’ visual centralities in the network 
display (b) and the visual distance between the observer and observee’s locations 
(c). Visual centrality is defined as the Euclidean distance between the observee’s 
network position and the centroid of the network display. All thresholded at 
cluster-wise FWE-corrected P < 0.05, with cluster-forming threshold Punc. < 0.001. 
(d) Example networks where the observees are associated with the same visual 

centralities (left) or the same visual distance between the observer and observee 
(right), yet the dACC activity varies with the RD values. (e) Overlay of RD-related 
activation in S1, S2, and S3 in a single map. For illustration purpose, all maps are 
shown at Punc. < 0.001 with K > 10. (f ) Whole-brain conjunction analyses for RD 
correlates. Left: A three-way conjunction on RD correlates among S1, S2, and 
S3 identified no significant overlap in either the positive or negative responses 
to RD (Methods). Right: A two-way conjunction analysis between S2 and S3 on 
RD correlates identified a significant overlap for the positive correlations with 
RD in the dACC between S2 and S3. No overlap was identified in the whole-brain 
conjunction analysis for the negative correlation with RD between S2 and S3 at 
the same threshold. All thresholded at cluster-wise FWE-corrected P < 0.05, with 
cluster-forming threshold Punc. < 0.001. Error bars represent intersubject SEM in 
the fMRI sample (N = 25).

http://www.nature.com/natureneuroscience
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Extended Data Fig. 9 | Whole-brain and ROI analyses for RD correlates at 
observation onsets in S1. Brain regions where BOLD activity correlates with 
RD values at observation onsets in S1 (cluster-wise FWE-corrected P < 0.05, with 
cluster-forming threshold Punc. < 0.001; same as Fig. 6a but shown in different 
cuts; GLM1, Methods). (b–c) ROI analyses of each region in (a), with respect to 
neighbor’s degree (numerator of RD) and total local degree (TLD; denominator 
of RD), respectively. Unlike the dACC, where fMRI signals correlated with both 

neighbor degree and TLD in S2 and S3, the neural encoding of RD identified in 
S1 is driven by one of the two components in an RD signal. That is, a cluster in the 
visual cortex tracks only neighbor degree, whereas clusters in the precuneus, 
posterior cingulate cortex (PCC), and visual cortex track only TLD. Effect sizes 
in these regions in S2 and S3 are also included for completeness. Violin plot with 
color represents significant effects. Each dot represents a subject (N = 25). * 
P < 0.05, ** P < 0.05, *** P < 0.001, two-sided t-tests, Bonferroni-corrected.

http://www.nature.com/natureneuroscience
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Extended Data Fig. 10 | Whole-brain psychophysiological interaction (PPI) 
analysis testing differential functional connectivity with the VMPFC in 
S2 and S3 vs. S1. (a) Left: Increased functional connectivity between the seed 
region in the VMPFC (6-mm sphere around the peak activation as identified in 
Fig. 7a) and a cluster in the anterior cingulate cortex (ACC) at observation onsets 
in S2 and S3, relative to S1 (cluster-wise FWE-corrected P < 0.05, with cluster-
forming threshold Punc. < 0.001; Methods). Right: No systematic difference in 
the effect sizes of functional coupling between S2 and S3 (two-sided paired 
t-test, t24 = −1.20, P = 0.242), as revealed by the PPI betas extracted from the 

significant cluster in the ACC as identified in the left panel. Each dot represents 
a subject (N = 25). (b) Overlay of the whole-brain PPI activation (green; as in 
(a)), RD correlates in S2 and S3 (blue; as in Fig. 5a), the overlap between the first 
two activation maps (red), and the result of a formal whole-brain conjunction 
analysis between regions correlating with RD values in S2 and S3 and regions 
demonstrating differential functional connectivity with the VMPFC seed region 
in S2 and S3 vs. S1 (yellow; cluster-wise FWE-corrected Pconj < 0.05, with cluster-
forming threshold Punc. < 0.001).

http://www.nature.com/natureneuroscience
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Python (2.7)

Data analysis R (3.3), Matlab (R2017a), SPM (12), VBA toolbox

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The data that support the findings of this study are available at Open Science Framework: https://osf.io/8rbs4/.
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Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Two independent samples were recruited. The first one consisted of 186 behavioral participants and 31 fMRI participants. These subjects 

participated in the experiment in groups of 7, with one fMRI subject being randomly paired with six behavioral participants in each group. No 

statistical methods were used for determining this sample size. The size of the fMRI sample is comparable to those reported in previous 

publications on RL or social learning (ref 26,62,63).  

 

The second one consisted of 91 behavioral participants. They also participated in the experiment in groups of 7. The sample size was 

predetermined based on a power analysis, assuming the same effect size as in our first sample, the alpha level 0.05, and the power 85%. 

Data exclusions For the first sample, six out of 186 behavioral subjects were excluded from analyses due to insufficient variations in choice behavior (N=4; 

repeating the same decision based on their private signals in 95% of decisions), abnormal reaction time (N=1; five standard deviations above 

group mean), or demonstrating strong disbelief of the experimental setting in the post-experiment survey (N=1). Of 31 fMRI participants, four 

were excluded from neuroimaging analyses but included in behavioral analyses due to excessive motion, and two were excluded from both 

neural and behavioral analyses due to scanning issues that did not interfere with their group members’ experiment (unstable stimuli display 

N=1; unable to finish scanning but completed the task outside the scanner N=1). For the second sample, no participants were excluded from 

analyses.

Replication We conducted two independent experiments in total. Main behavioral results in our first experiment were replicated in our second 

experiment, using a different experimental design (Supplementary Note 3). We also provided all information needed to conduct replication 

experiment in the manuscript.

Randomization Participants were randomly assigned to groups of seven. The order of games were randomized across groups. Choice positions (left/right) 

were also randomized across subjects.

Blinding Blinding is irrelevant in this study since the experiment did not involve multiple conditions. All participants experienced all games in random 

orders predetermined by the computer program with no interaction with the experimenter. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants

Policy information about studies involving human research participants

Population characteristics We recruited two independent samples of healthy volunteers from Peking University, China. The first one consisted of 217 

participants including 127 females; mean age ± S.D. = 20.25 ± 2.68 years. Of these participants, 31 completed the experiment 

inside a fMRI scanner including 14 females; age = 20.16 ± 1.97 years. The second one consisted of 91 participants including 

49 females; mean age ± S.D. = 22.29 ± 2.38 years.  

 

All participants reported having normal or corrected-to-normal eye vision, no color blindness, and no history of neurological 

or psychiatric illnesses. All fMRI participants were right-handed. 
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Recruitment All participants were recruited from Peking University, China, via an online recruitment system of the Neuroeconomics Lab. 

There was no potential self-selection bias, and we made every reasonable effort to minimize the potential for other biases in 

subjects recruitments that could impact results.

Ethics oversight The study was approved by the Committee for Protection of Human Subjects at Peking University, China. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Magnetic resonance imaging

Experimental design

Design type Task fMRI; event-related design

Design specifications Each fMRI participant played 40 separate distributed learning games, divided into three scanning sessions (13 or 14 

games per session) with short breaks in between. 

Behavioral performance measures We recorded participants' decisions in each game (including one initial guess and three reassessments) as well as their 

response time. 

Acquisition

Imaging type(s) Functional and structural fMRI images

Field strength 3 Tesla

Sequence & imaging parameters Prior to the task, high-resolution structural T1-weighted scans were acquired using a magnetization-prepared rapid 

gradient echo sequence with the following parameters: repetition time (TR) = 2530 ms, echo time (TE) = 2.98 ms, flip 

angle = 7,̊ field of view (FoV) = 224 mm × 256 mm, inter-slice gap = 0.5 mm, voxel size = 0.5 mm × 0.5 mm × 1 mm, 

number of slices = 192. During the task, functional images were acquired using echo-planar T2* images with blood-

oxygenation-level-dependent (BOLD) contrast, and angled 30 degrees with respect to the anterior commissure-

posterior commissure (AC-PC) line to minimize susceptibility artifacts in the orbitofrontal area. The scanning parameters 

were as follows: TR = 2000 ms, TE = 30 ms, flip angle = 90,̊ FoV = 224 mm × 224 mm, voxel size = 3.5 mm × 3.5 mm × 3.5 

mm, inter-slice gap = 0.7 mm, number of slices = 33. 

Area of acquisition Whole-brain

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Image preprocessing and analyses were performed in SPM12 (Wellcome Trust Centre for Neuroimaging Institute of 

Neurology, UCL). For each fMRI session, the preprocessing of neuroimaging data included, in order: slice time correction, 

motion correction (aligning to the mean image), coregistration, spatial normalization to the Montreal Neurological Institute 

(MNI) template (final image resolution of 3 mm × 3 mm × 3 mm), and spatial smoothing using a Gaussian kernel of 6-mm full 

width at half maximum. All images were high-pass filtered in the temporal domain (width 128 s) and autocorrelation of the 

hemodynamic responses was modeled as an AR(1) process.

Normalization Functional and structural images were spatially normalized by warping subject-specific images to the reference brain in MNI 

coordinate space (final image resolution of 3 mm × 3 mm × 3 mm).

Normalization template MNI template

Noise and artifact removal The head motion was corrected in each session by using the alignment procedure in SPM12, and the resulting 6 vectors of 

head motion parameters were included as nuisance regressors in all GLM analyses.

Volume censoring No volume censoring was performed.

Statistical modeling & inference

Model type and settings We implemented standard general linear models (GLMs) for model-based univariate fMRI analysis. First-level analyses were 

conducted using fixed-effect models. In all GLMs, a distributed learning game was modeled as a series of discrete events 

using stick functions. This included fixation onset, network display, initial guess onset, initial guess submission, and––for each 

learning stage––the display of own guess, the onset of each and every observation, the onset of revision, and the submission 

of revision. These events were then grouped into regressors, which were modulated by variables of interest(see below). 

Second-level analyses were conducted using random-effect models.

Effect(s) tested Our main GLM served to identify the neural correlate of action prediction error(aPE) and relative degree (RD) estimates, on 

an observation-by-observation basis, separately for each learning stage. The model included the following regressors:  

fixation onset, network display, S1 observation onsets (including separate events of all observation onsets in S1), S2 

observation onsets, and S3 observation onsets, decision onsets (including separate events of all decision onsets of a game), 

decision submission (all decision submission), and display of own choices. We entered aPE estimate associated with the 
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observed action and RD between the observee and the observer’s neighborhood as parametric modulators for observation 

onset at each learning stage, and the value estimate of belief expectation for the chosen option and button pressed (left/

right) as parametric modulators for each respective choice submission. aPE and belief expectation were derived using each 

fMRI participant’s best fitting parameters from the DeGroot-RL model. RD was calculated based on the structure of the 

network in each respective game, independent of participants’ behavior and model estimation.   

 

For all GLMs in the current study, parametric modulators associated with the same event were orthogonalized against one 

another to remove any shared variances, such that the regression coefficient reflected the unique contribution of each 

regressor in explaining the variances in neural signals. These regressors were convolved with the canonical hemodynamic 

response function and entered into a regression analysis against each fMRI subject’s BOLD signals. The six vectors of head 

motion parameters derived from preprocessing were also included as nuisance regressors in all GLM analyses. Regression 

map for aPE (RD) of each fMRI participant were first computed across learning stages (e.g., averaged over S2 and S3 within 

participant) based on the specific hypothesis derived from the DeGroot-RL model, and then taken into random-effects group-

level analyses. The group-level effects were tested against zero with one-sample t-tests.

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s)

The ROI in the dorsal anterior cingulate cortex was independently defined from Neurosynth (http://

neurosynth.org), with peak voxel MNI coordinates: x, y, z = 6, 22, 36 (as shown in Fig. 5c). Other 

functional ROIs were defined by activated clusters in whole-brain GLM analyses. The ROI in the right 

lateral prefrontal cortex (rLPFC, Fig. 4b) was defined as the significant rLPFC cluster identified in Fig. 4a 

(peak x, y, z = 60, 11, 23). The ROI in the ventromedial prefrontal cortex (VMPFC, Fig. 7b) was defined as 

the significant VMPFC cluster identified in Fig. 7a (peak x, y, z = -9, 44, -10).

Statistic type for inference
(See Eklund et al. 2016)

All reported effects are whole brain family-wise error (FWE) cluster level P < 0.05 corrected, after thresholding at P < .001 

uncorrected.

Correction P < 0.05 cluster-wise FWE corrected, with cluster-forming threshold P < 0.001 uncorrected.

Models & analysis

n/a Involved in the study

Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity We performed the psychophysiological interaction (PPI)  analyses at both the ROI and whole-brain levels 

using SPM 12. In the ROI-based PPI analysis, we analyzed functional connectivity between the VMPFC and 

the dACC ROI that was independently defined by an online meta-analysis of 598 studies using the term 

“cognitive control” in Neurosynth (peak voxel MNI coordinates: x, y, z = 6, 22, 36; as in Fig. 5c). The VMPFC 

cluster was defined by a sphere with a 6-mm radius centered at the peak VMPFC activation for belief 

expectation estimates as in Fig. 7a (MNI coordinates: x, y, z = -9, 44, -10). The PPI model contained the 

following regressors for observation onsets: (i) BOLD time-series extracted from the VMPFC cluster, (ii) the 

dummy variable indicating S2 and S3 against S1, and (iii) the product of the above two regressors. We also 

performed an exploratory PPI analysis at the whole-brain level, seeded in the same VMPFC cluster with the 

identical sets of regressors (Extended Data Fig. 10).
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