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SUMMARY

The hippocampus is critical for human episodic
memory, but its role remains controversial. One
fundamental question concerns whether the hip-
pocampus represents specific objects or assigns
context-dependent representations to objects.
Here, we used multivoxel pattern similarity analysis
of fMRI data during retrieval of learned object se-
quences to systematically investigate hippocampal
coding of object and temporal context information.
Hippocampal activity patterns carried information
about the temporal positions of objects in learned
sequences, but not about objects or temporal posi-
tions in random sequences. Hippocampal activity
patterns differentiated between overlapping object
sequences and between temporally adjacent objects
that belonged to distinct sequence contexts. Para-
hippocampal and perirhinal cortex showed different
pattern information profiles consistent with coding
of temporal position and object information, respec-
tively. These findings are consistent withmodels pro-
posing that the hippocampus represents objects
within specific temporal contexts, a capability that
might explain its critical role in episodic memory.

INTRODUCTION

Episodic memories consist of temporally organized sequences

of events that occur within a given context (Tulving, 1984). The

neural mechanisms that support the temporal organization of

episodic memories, however, remain largely unknown. Drawing

on evidence that hippocampal damage leads to severe impair-

ments in episodic memory, some models have proposed that

the hippocampus may facilitate the binding of temporally contig-

uous events such that they can be linked as parts of a larger

episodic memory (Rawlins, 1985; Levy, 1989; Wallenstein

et al., 1998; Jensen and Lisman, 2005; Howard et al., 2005;

see also Staresina and Davachi, 2009). Some of these models

posit that the internal dynamics of hippocampal activity give

rise to a temporally evolving context representation that is asso-

ciated with incoming information during the experience of an
event, thereby supporting the creation of an episodic memory

and the disambiguation of memories that share common ele-

ments (Levy, 1996; Sohal and Hasselmo, 1998).

Although temporal context models can explain a great deal of

behavioral data on temporal organization in memory (Sederberg

et al., 2008; Polyn et al., 2009), it remains unclear whether or how

these models correspond to computations carried out in the hu-

man hippocampus. Some recent studies in monkeys and rats

have indicated that individual hippocampal neurons selectively

respond at different times during repetitive event sequences

such that hippocampal ensemble firing patterns change as

time proceeds (Pastalkova et al., 2008; MacDonald et al.,

2011; Naya and Suzuki, 2011). Furthermore, single-cell record-

ings in rats have reported that hippocampal activity patterns

distinctly represent identical segments of a path common to

different trajectories (Frank et al., 2000; Wood et al., 2000; Fer-

binteanu and Shapiro, 2003; Ginther et al., 2011), indicating the

sensitivity of hippocampal spatial coding to sequence contexts.

Other models do not incorporate a special role for the hippo-

campus in context representation. Rather, these models pro-

pose a general role for the hippocampus in the representation

of stimulus attributes in declarative memory (McClelland, 1998;

Frank et al., 2003; Wixted and Squire, 2011). According to this

view, the hippocampus should represent information about spe-

cific items, such as objects, as well as other event attributes.

Support for stimulus attribute models of hippocampal function

comes from fMRI studies indicating that the hippocampus may

be involved in ‘‘pattern separation’’ processes that differentiate

between studied objects and highly similar but novel objects

(e.g., Bakker et al., 2008).

A strong version of the view that the hippocampus represents

stimulus attributes in memory would suggest that the hippocam-

pus should assign similar representations to events that include

the same objects. In contrast, a strong version of the context-

based view would suggest that the hippocampus assigns

distinct representations to multiple encounters with the same

object in different temporal contexts. Thus, a fundamental, and

currently unresolved, question is whether the hippocampus sup-

ports memory for temporal context, over and above memory for

specific objects.

Here, we used fMRI, along with an application of multivoxel

pattern similarity analysis (Kriegeskorte et al., 2008; Kriege-

skorte, 2009), to address this question by characterizing hippo-

campal coding of object and temporal context information

during retrieval of object sequences. Prior to scanning, each
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Figure 1. Object Sequences and Schematic of Sequence Retrieval

(A) Illustration of the six types of temporal sequences. On each repetition of the ‘‘Random’’ sequence, the five objects were presented in a different random order,

in contrast to other sequences in which the temporal order between objects was always fixed. Participants learned these sequences to criteria before proceeding

to sequence retrieval session (see also Supplemental Experimental Procedures for details).

(B) Schematic diagram of sequence retrieval in one fMRI run (five fMRI runs in total). Each type of temporal sequence was presented three times within an fMRI

run, with the constraint that a specific sequence was not presented consecutively and all six sequences must have been presented before the second and the

third repetitions. Although brackets are shown to denote each sequence in a run, there were no explicit cues to mark divisions between sequences and the

interval between objects was constant across all trials. Above each trial, a matrix is shown depicting a hypothetical hippocampal voxel activation pattern. These

voxel patterns were then used to estimate similarity in hippocampal ensemble activity across different pairs of trials.
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participant learned five sequences by making semantic deci-

sions about each object in the sequence (see Figure 1A). One

‘‘Fixed’’ sequence consisted of five objects that did not overlap

with objects in other sequences. Two pairs of sequences shared
1166 Neuron 81, 1165–1178, March 5, 2014 ª2014 Elsevier Inc.
common objects—‘‘X1’’ and ‘‘X2’’ sequences shared the same

objects in positions 2 and 3 and ‘‘Y1’’ and ‘‘Y2’’ sequences

shared common objects in the first three positions. These over-

lapping sequences were constructed to investigate the ability of
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Figure 2. Reaction Time Results Associated with Semantic Judg-

ments during Sequence Retrieval

Reaction times are separately plotted for each of the five temporal positions in

each sequence. Error bars denote ±1 SEM.
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the hippocampus to differentiate between occurrences of the

same object in different temporal contexts. That is, we expected

that participants could differentiate between the ‘‘X1’’ and ‘‘X2’’

sequences upon seeing the first object in the sequence, and this

could lead to the development of different, context-specific rep-

resentations of the overlapping objects. In contrast, we did not

expect participants to differentiate between the ‘‘Y1’’ and ‘‘Y2’’

sequences until the fourth object was presented and therefore

did not expect to see context-dependent representation of the

overlapping objects in these sequences. Finally, to control for

learning about specific objects, irrespective of temporal order,

we also included a ‘‘Random’’ sequence, which always con-

sisted of the same five objects presented in a random order.

Immediately after the learning session, participants completed

an MRI scan session. During scanning, they made semantic de-

cisions on a continuous stream of objects consisting of contig-

uous presentations of the five learned sequences and one

‘‘Random’’ sequence (see Figure 1B). Although there were no

obvious boundaries between the object sequences during the

scan session, we expected that participants’ semantic decisions

would be faster for objects in learned sequences than for objects

in the ‘‘Random’’ sequence.

Multivoxel pattern similarity analysis (Kriegeskorte et al., 2008;

Kriegeskorte, 2009; see also Jenkins and Ranganath, 2010; Han-

nula et al., 2013) was used to characterize the extent to which the

hippocampus codes for object and temporal information. This

technique is analogous to neural population vector analyses in

single-unit recording studies (Quian Quiroga and Panzeri,

2009; see e.g., Leutgeb et al., 2007), in that the similarity in pop-

ulation-level activity patterns is assessed across different exper-

imental conditions. Voxel pattern similarity analysis is based on

the idea that the relative pattern of activation among voxels in

a given region is informative with regard to the kind of information

that is processed by that brain region (Kriegeskorte et al., 2008).

Accordingly, if a region codes for a particular kind of information,

one should see correlations in voxel activity patterns between

pairs of trials that share this information.

Using this approach, we tested the hypothesis that hippocam-

pal activity patterns would carry information about the temporal

order of objects in learned sequences, over and above informa-

tion about objects in the ‘‘Random’’ sequence. We additionally
tested whether hippocampal activity patterns could differentiate

between processing of the same objects in distinct, but overlap-

ping, sequences and between adjacent objects in different

sequences. Finally, we investigated the roles of the parahippo-

campal and perirhinal cortex (PHc and PRc) in object and

temporal processing and compared these profiles to what was

observed for the hippocampus.

RESULTS

Behavioral Results during Sequence Retrieval
To the extent that participants utilized sequence knowledge

to facilitate semantic judgments during the scan session, we

would expect that accuracy, and especially reaction times

(RTs), would be facilitated for objects from learned sequences

(i.e., ‘‘Fixed,’’ ‘‘X1,’’ ‘‘X2,’’ ‘‘Y1,’’ and ‘‘Y2’’), compared to objects

from the ‘‘Random’’ sequence. Accuracy on semantic judg-

ments (average across all five serial positions) during sequence

retrieval indicated significant differences between the six tempo-

ral sequences (F5,90 = 2.498, p < 0.05). Follow-up analyses

determined that averaged accuracy of semantic judgments for

objects in learned sequences was significantly higher than for

objects in the ‘‘Random’’ sequence (F1,18 = 5.635, p < 0.05),

consistent with our prediction.

Consistent with the accuracy results, RTs on semantic judg-

ments (average across the five serial positions) differed between

the six temporal sequences (F2.085,37. 539 = 25.317, p < 0.001),

and this effect was mainly due to slower RTs for the ‘‘Random’’

sequence (F1,18 = 36.018, p < 0.001; Figure 2). To further

examine the extent to which sequence knowledge facilitates se-

mantic judgments as a function of serial position, a two-way

ANOVA was conducted, breaking down RT effects at each serial

position for the six temporal sequences. The analysis indicated a

main effect of serial position (F1. 338,24.084 = 40.969, p < 0.001), as

well as a significant temporal sequence by serial position interac-

tion (F9.608,172.936 = 7.450, p < 0.001). As is evident in Figure 2,

RTs were slower for the first position in each of the six temporal

sequences as compared to RTs for other serial positions (F1,18 =

46.075, p < 0.001), which reflects the fact that, during a

sequence transition, participants could not predict the first ob-

ject in an upcoming sequence.

To follow up on the temporal sequence by serial position inter-

action and to better characterize how different sequence con-

texts modulated behavioral performance, we examined RTs for

each serial position in each sequence. In the ‘‘Fixed’’ sequence,

RTs were slower for objects in the first serial position than for ob-

jects in subsequent serial positions (F1,18 = 52.014, p < 0.001),

and RTs did not significantly differ between other serial positions

(all p > 0.57). For the ‘‘Random’’ sequence, in addition to the

initial increase in RT for objects in the first serial position

(F1,18 = 45.170, p < 0.001), RTs were significantly faster for

objects in the fifth serial position, relative to objects in other

positions (F1,18 = 19.740, p < 0.001). The latter decrease in RT

suggested that participants were able to anticipate the last

object in the ‘‘Random’’ sequence.

Our next analyses turned to RTs for objects embedded in se-

quences with overlapping elements. We predicted that the over-

lap of objects across the ‘‘X1’’ and ‘‘X2’’ sequences and across
Neuron 81, 1165–1178, March 5, 2014 ª2014 Elsevier Inc. 1167
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the ‘‘Y1’’ and ‘‘Y2’’ sequences would impede the ability to pre-

dict objects that immediately followed the overlapping objects

(i.e., slower RTs for the fourth position objects). Additionally,

we predicted that the RT increment should be larger for the

‘‘Y’’ sequences than for the ‘‘X’’ sequences. This is because, in

the ‘‘Y’’ sequences, they could not differentiate whether they

were in the ‘‘Y1’’ or ‘‘Y2’’ sequence until the fourth object

appeared in the sequence. In contrast, in the ‘‘X’’ sequences,

participants could use the identity of the first object to immedi-

ately disambiguate whether they were presented with the ‘‘X1’’

or ‘‘X2’’ sequence. Consistent with our predictions, in addition

to an initial drop in RT after the first serial position (all p <

0.001), there was an RT increase at the fourth serial position

for both the ‘‘X’’ and ‘‘Y’’ sequences (all p < 0.001). Moreover,

the increase in RT at the fourth serial position was significantly

higher in the ‘‘Y’’ sequences than in the ‘‘X’’ sequences (F1,18 =

5.204, p < 0.05), indicating that the ‘‘X’’ sequences were suc-

cessfully disambiguated from each other.

The above results demonstrate that learning of the object

sequences facilitated participants’ semantic decisions during

the scan session. Because participants performed different

semantic tasks in each scanning run, the results suggest that

the learning was not at the level of motor responses or of

object-response associations, but rather driven by learning

about the temporal relationships among the objects.

Hippocampal Multivoxel Activation Patterns Are
Sensitive to Sequence Retrieval
To investigate whether hippocampal activity patterns carry infor-

mation about temporal sequences, we examined voxel pattern

similarity between repetitions of each of the five learned object

sequences. Analyses were performed separately for the right

and the left hippocampus. Additional analyses quantified pattern

similarity effects separately for posterior and anterior segments

of the left and right hippocampus, based on evidence suggesting

functional differentiation along the longitudinal axis of the

hippocampus (Fanselow and Dong, 2010; Poppenk et al.,

2013). In general, the analyses revealed highly similar results

for anterior and posterior regions of interest (ROIs), so except

where the results deviated, we will only report the results for

the aggregate ROIs.

As depicted in Figure 3A, we quantified hippocampal activa-

tion pattern similarity across serial positions within each con-

stant temporal sequence (i.e., ‘‘Fixed,’’ ‘‘X1,’’ ‘‘X2,’’ ‘‘Y1,’’ and

‘‘Y2’’), which yielded a single 53 5 similarity matrix for each tem-

poral sequence. The diagonal elements of the 5 3 5 similarity

matrix index pattern similarity between pairs of trials that share

the same object and position information. Off-diagonal ele-

ments, in turn, reflect pattern similarity between pairs of trials

that are one or more than one position apart (i.e., ‘‘lag 1’’ or

‘‘lag 2+’’ elements) and have different object information. For

both the right and the left hippocampus, similarity values were

significantly higher for the diagonal elements of the similarity

matrix than for off-diagonal elements corresponding to adjacent

pairs of trials in a sequence (right: t17 = 4.073, p < 0.001; left: t17 =

3.112, p < 0.01), or off-diagonal elements corresponding to pairs

of trials separated by two ormore positions (right: t17 = 4.131, p <

0.001; left: t17 = 2.818, p < 0.05; see Figures 4 and S1 available
1168 Neuron 81, 1165–1178, March 5, 2014 ª2014 Elsevier Inc.
online). The graded decrease in pattern similarity as a function

of lag (i.e., ‘‘same obj.+pos.,’’ ‘‘lag 1,’’ and ‘‘lag 2+’’ trial pairs)

was further confirmed by a significant linear trend for both the

right (F1,17 = 17.064, p < 0.001) and the left (F1,17 = 7.944, p <

0.05) hippocampal ROIs. These results suggest that the pattern

of activation in the hippocampus is more similar across pairs of

trials that share the same object and serial position information

(e.g., the retrieval of ‘‘banana’’ in the first and second repetition

of a constant temporal sequence illustrated in Figure 1B) than

for pairs of trials within the same sequence that did not share

the same object and serial position information (e.g., low pattern

similarity between the retrieval of ‘‘banana’’ in the first repetition

and the retrieval of ‘‘elephant’’ in the second repetition). Impor-

tantly, these effects were not seen when the same analyses

were conducted on ‘‘Random’’ sequence trials (Figure 4), indi-

cating that the hippocampal pattern similarity effects observed

for learned object sequences were not driven by artifactual tem-

poral autocorrelation.

Hippocampal Voxel Patterns Specifically Carry
Information about the Temporal Position of Objects in
Learned Sequences
The above analyses demonstrated that hippocampal activation

patterns reliably carry information about objects in learned se-

quences. Within each of the constant temporal sequences,

each object always appeared at the same serial position across

repetitions (see Figure 1B). Therefore, the increased pattern sim-

ilarity along the diagonal elements in Figure 4 (i.e., ‘‘Avg(Fixed,

X1, X2, Y1, Y2)’’ similarity matrix) could be due to the overlap

of object (e.g., ‘‘banana’’), position (e.g., the first object in the

sequence), or object-position binding (e.g., ‘‘banana’’ at the first

position) information between repetitions. To specify which of

the three processes contributed to the lag-dependent pattern

similarity effects depicted in Figure 4, we conducted a series of

pattern similarity analyses on trial pairs from the ‘‘Random’’

sequence.

First, to examine whether the enhanced hippocampal pattern

similarity along the diagonal elements were driven by objects

that shared the same serial position information, we computed

a similarity matrix across repetitions of the ‘‘Random’’ sequence

(see Figure 3B). Constructing the similarity matrix in this way

allowed us to estimate the contribution of serial position informa-

tion to hippocampal pattern similarity. This is because, across

repetitions of the ‘‘Random’’ sequence, different objects were

associated with each serial position. Thus, if the enhanced hip-

pocampal pattern similarity effects shown in Figure 4 (i.e.,

‘‘same obj.+pos.’’ > ‘‘lag 1,’’ ‘‘lag 2+’’) were solely driven by

position information, we should expect that ‘‘same obj.+pos.’’

in Figure 4 should be similar to ‘‘same pos.’’ associated with

the ‘‘Random’’ sequence after procedures illustrated in Fig-

ure 3B. In contrast, if the increased hippocampal pattern similar-

ity was driven by the processing of information other than serial

position (i.e., object or object-position binding information), then

the ‘‘same obj.+pos.’’ in Figure 4 should be significantly greater

than ‘‘same pos.’’ Results revealed a significant difference be-

tween ‘‘same obj.+pos.’’ and ‘‘same pos.’’ in the right hippocam-

pus (t17 = 4.143, p < 0.001; see Figure 4), although this effect was

not significant for the left (p > 0.24; see Figure S1), suggesting
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Figure 3. Schematic of Pattern Similarity

Analyses Associated with Learned Se-

quences and the ‘‘Random’’ Sequence

(A) Procedures on how to obtain the 5 3 5 pattern

similarity matrix for one particular learned sequence

in one fMRI run are illustrated. Pattern similarity was

computed between every possible pair of trials be-

tween repetitions of a learned object sequence, and

these data were organized into three 5 3 5 corre-

lation matrices. Colors are used to visually depict

the correlationmagnitudes (note that thesematrices

were generated for explanatory purposes and that

the real data are presented in subsequent figures).

These pattern similarity matrices were then aver-

aged into a single 53 5 pattern similarity matrix. The

diagonal of the resulting matrix (denoted by red

circles) reflected averaged pattern similarity across

repetitions of the same object in the same temporal

position, whereas the off-diagonal elements corre-

sponded to averaged pattern similarity between

adjacent objects in a sequence (yellow triangles) or

between objects that were two or more positions

apart in the same sequence (purple squares).

(B) Schematic depiction of procedures for com-

puting pattern similarity across repetitions of the

‘‘Random’’ sequence, in order to quantify shared

temporal position information.

(C) Depiction of procedures for sorting and com-

puting pattern similarity across repetitions of the

‘‘Random’’ sequence in order to quantify shared

object information. Note that data from different

repetitions of the ‘‘Random’’ sequence were re-

arranged such that pattern similarity values along

the diagonal elements were computed from repeti-

tions of the same object but in different temporal

positions. Color boxes around objects in Repetition

2 (red boxes) and 3 (green boxes) are to highlight the

fact that data were rearranged for this analysis.
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that hippocampal activation pattern similarity effects for learned

sequences were not solely driven by serial position information.

Furthermore, there was no evidence of purely temporal coding in
Neuron 81, 1165–11
the hippocampus, as pattern similarity did

not significantly differ between ‘‘same

pos.’’ pairs and either ‘‘lag 1’’ (right: p >

0.19; left: p > 0.43) or ‘‘lag 2+’’ (right: p >

0.49; left: p > 0.25) pairs in the ‘‘Random’’

sequence.

We next tested the extent to which hip-

pocampal voxel patterns carry information

about objects, irrespective of temporal

position. That is, across repetitions of the

‘‘Random’’ sequence, we correlated voxel

patterns between trials for which the same

object was presented (i.e., at different

serial positions on each repetition). As a

result, correlating the same object across

repetitions of the ‘‘Random’’ sequence

yielded an estimate of hippocampal

pattern similarity solely driven by object

information (see Figure 3C for illustration).
If pattern similarity values were higher for ‘‘same obj. + pos.’’

pairs than for ‘‘same obj.’’ pairs, it would support the hypothesis

that hippocampal activation patterns carry information about
78, March 5, 2014 ª2014 Elsevier Inc. 1169
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object-position bindings, over and above information about indi-

vidual objects. Indeed, the results showed that voxel pattern

similarity was significantly higher for ‘‘same obj.+pos.’’ than for

‘‘same obj.’’ trial pairs in the right hippocampus (t17 = 2.575,

p < 0.05; see Figure 4), although this effect was not significant

for the left (p > 0.37; see Figure S1). Moreover, there was no

evidence of any object-based information in hippocampal voxel

patterns—pattern similarity in the hippocampus did not signifi-

cantly differ between ‘‘same obj.’’ and ‘‘different obj.’’ pairs in

the ‘‘Random’’ sequence (right hippocampus: p > 0.33; left hip-

pocampus: p > 0.17). The results therefore clearly support the

hypothesis that the hippocampus is specifically involved in the

binding of object and position information during temporal

sequence retrieval.

The above analyses were based on the average of the five

constant sequences. To confirm that this effect was not driven

by only one of the learned sequences, we repeated the same

contrast separately for each of the five constant temporal se-

quences against the ‘‘Random’’ sequence. The results were

similar for all five of the constant sequences (see Figure S2), sug-

gesting that the binding of object and temporal position informa-

tion is robust in the right hippocampus.
1170 Neuron 81, 1165–1178, March 5, 2014 ª2014 Elsevier Inc.
Hippocampal Pattern Similarity Effects Are Highly
Correlated with Individual Differences in Sequence
Learning
The behavioral results described above demonstrated robust

learning of the object sequences, but there were substantial

across-participant differences in the behavioral effects. We

therefore tested whether the hippocampal pattern similarity

effects were correlated with behavioral indices of sequence

memory. Behavioral benefits of sequence learning were quanti-

fied by computing the RT difference between the average across

all five constant temporal sequences versus the ‘‘Random’’

sequence. Results showed that participants who showed more

behavioral enhancement for the learned sequences (i.e., faster

RTs for the learned sequences than the ‘‘Random’’ sequence)

also showed more of a hippocampal pattern similarity effect for

learned, relative to random, sequences (i.e., larger difference be-

tween ‘‘same obj.+pos.’’ and ‘‘same obj.’’ pattern similarity

values). The positive correlation was significant in both the left

(r = 0.51, p < 0.05) and right (r = 0.68, p < 0.01) hippocampus

(see Figures 5A and 5B). Similar results were found when RT dif-

ferences between learned and random sequences were corre-

lated with hippocampal pattern similarity differences between
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Figure 5. Hippocampal Pattern Similarity

Effects Are Highly Correlated with Behavioral

Enhancement during Sequence Retrieval

Both the left (A) and the right (B) hippocampus

showed enhanced pattern similarity effects (i.e.,

larger ‘‘same obj.+pos.’’ > ‘‘same obj.’’; shown on

the x axis) as RT enhancement increased (i.e., larger

RTRandom > RTLearned) during sequence retrieval.

Similar results were obtained when hippocampal

pattern similarity effects (C, left hippocampus; D,

right hippocampus) were quantified by comparing

‘‘same obj.+pos.’’ versus ‘‘lag 2+’’ within learned

sequences. Note that RTLearned was the average of

RTs across all five constant temporal sequences

(i.e., ‘‘Fixed,’’ ‘‘X1,’’ ‘‘X2,’’ ‘‘Y1,’’ and ‘‘Y2’’).
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‘‘same obj.+pos.’’ versus ‘‘lag 2+’’ trial pairs of learned se-

quences (left: r = 0.80, p < 0.001; right: r = 0.63, p < 0.01; see Fig-

ures 5C and 5D). These results demonstrate that information

about temporal sequences carried by hippocampal activation

patterns is highly correlated with behavioral indices of sequence

memory (accounting for�25%–65% of the behavioral variance),

regardless of which pattern similarity matrix was used to index

hippocampal object-position binding. It is also noteworthy that

the correlations were robust for the left hippocampus, despite

the fact that the group-averaged difference between ‘‘same

obj.+pos.’’ versus ‘‘same obj.’’ in the left hippocampus was not

statistically significant. This suggests that, when individual differ-

ences in sequence learning are taken into consideration, the left

hippocampus also carries information about the serial positions

associated with objects in temporal sequences.

Hippocampal Activation Patterns Disambiguate
Overlapping Sequences
If the hippocampus carries information about objects in temporal

context rather than object information, onewould expect that the

same objects, but presented in different sequence contexts,

would exhibit different activation patterns. Specifically, we hy-
Neuron 81, 1165–11
pothesized that items that are common

in both the ‘‘X1’’ and ‘‘X2’’ sequences

should be less similar to each other than

repetitions of these shared items across

repetitions of the same sequence (i.e., in

Figure 6, ‘‘truck’’ in ‘‘X1’’ should be less

similar to ‘‘truck’’ in ‘‘X2’’ as compared to

‘‘truck’’ in the first and second repetitions

of ‘‘X1’’ or ‘‘X2’’ sequence). We restricted

our analyses to objects in positions 2 and

3, as these objects were used in both the

‘‘X1’’ and ‘‘X2’’ sequences and occupied

the same serial positions. Similarity values

across repetitions of ‘‘X1’’ sequence

(‘‘X1-X1’’) were combined with similarity

values across repetitions of ‘‘X2’’ (‘‘X2-

X2’’) sequence. The combined similarity

values were then compared against

pattern similarity between ‘‘X1’’ and ‘‘X2’’

sequences (‘‘X1-X2’’). Consistent with our
predictions, pattern similarity was significantly higher for ‘‘X1-

X1’’ and ‘‘X2-X2’’ trial pairs than for ‘‘X1-X2’’ trial pairs in the

right hippocampus (t17 = 3.574, p < 0.005). Similar results were

found in the left hippocampus, but this effect did not reach sig-

nificance (p > 0.06).

We next turned to comparisons between the ‘‘X’’ and ‘‘Y’’ se-

quences. We hypothesized that items that are common in both

the ‘‘Y1’’ and ‘‘Y2’’ sequences should exhibit higher hippocam-

pal pattern similarity than items that are shared between the

‘‘X1’’ and ‘‘X2’’ sequences. This is because, in the ‘‘X’’ se-

quences, participants could use the identity of the first object

to immediately disambiguate whether they would encounter an

‘‘X1’’ or ‘‘X2’’ sequence. In contrast, for the ‘‘Y’’ sequences,

they could not differentiate whether they were in the ‘‘Y1’’ or

‘‘Y2’’ sequence until the fourth object appeared in the sequence.

We therefore predicted that the hippocampus should exhibit

more distinctive activation patterns between overlapping ob-

jects in the ‘‘X1’’ and ‘‘X2’’ sequences than between the

overlapping objects in the ‘‘Y1’’ and ‘‘Y2’’ sequences. To ensure

comparability between the ‘‘X’’ and ‘‘Y’’ sequences, pattern sim-

ilarity comparisons were restricted to objects in the second and

third serial positions in the ‘‘X’’ and ‘‘Y’’ sequences. Results did
78, March 5, 2014 ª2014 Elsevier Inc. 1171



*

“X1”

“X2”

“Y1”

“Y2”

R

AVG

AVG

corr.
with

corr.
with

corr.
with

corr.
with

0.04

0.02

0

-0.02

-0.04
S

im
ila

rit
y 

In
de

x
X1-X2 Y1-Y2

Figure 6. Right Posterior Hippocampal Acti-

vation Patterns Can Disambiguate Overlap-

ping Sequences

‘‘X1-X2’’ pattern similarity reflected the average of

pattern similarity across repetitions of the same

objects in positions 2 and 3 of the ‘‘X1’’ and ‘‘X2’’

sequences, and similar procedures were used to

obtain the value for ‘‘Y1-Y2’’ (i.e., green bar in the

bar graph) pattern similarity estimates. ‘‘Y1-Y2’’

pattern similarity was significantly higher than

‘‘X1-X2’’ in the right posterior hippocampus,

consistent with behavioral results showing that ‘‘X’’

sequences were more psychologically separable

from each other than ‘‘Y’’ sequences (i.e., slower

RTs for the fourth position objects in the ‘‘Y’’ se-

quences than in the ‘‘X’’ sequences). *p < 0.05. Error

bars denote ±1 SEM.
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not reveal significant pattern similarity differences between pairs

of overlapping objects in the ‘‘Y’’ sequences and pairs of

overlapping objects in the ‘‘X’’ sequences for either the right or

left hippocampal ROIs (all p > 0.18). Some previous findings,

however, indicate that the right posterior hippocampus might

be particularly involved in sequence disambiguation (Kumaran

and Maguire, 2006; Brown et al., 2010) and sequence learning

(Schendan et al., 2003). Accordingly, we conducted further

analyses separately for the anterior and the posterior hippo-

campus in sequence disambiguation. These analyses revealed

that overlapping objects in the ‘‘Y’’ sequences elicited higher

pattern similarity than the overlapping objects in the ‘‘X’’

sequence in the right posterior hippocampus (t17 = 2.198, p <

0.05; see Figure 6).

Hippocampal Activation Patterns Are Sensitive to
Sequence Boundaries
Previous studies have indicated hippocampal involvement in the

processing of boundaries in spatial contexts (Doeller et al.,

2008; Doeller and Burgess, 2008; Bird et al., 2010) and during

transitions between psychologically distinct events (Swallow

et al., 2011). We therefore hypothesized that hippocampal acti-

vation patterns might also be sensitive to boundaries between

temporal sequences. To test this hypothesis, we compared

pattern similarity between the first and the second position ob-

jects of each learned sequence (hereafter referred to as ‘‘Within’’

pairs) versus object pairs that bridged the fifth position of a tem-

poral sequence and the first position object of the temporal

sequence that immediately followed (hereafter referred to as

‘‘Between’’ pairs; see Figure 7). The fact that a fixed interstim-

ulus interval (ISI) was used throughout the entire sequence

retrieval phase ensured that objects within the ‘‘Between’’ and

‘‘Within’’ pairs were matched for temporal distance. Trial pairs

with ‘‘Random’’ sequence trials were excluded from this anal-

ysis, as we would not expect to see strong boundary effects

for these trials, as compared with the constant temporal se-

quences. Consistent with our predictions, pattern similarity

was higher for ‘‘Within’’ than for ‘‘Between’’ trial pairs in the

left hippocampus (t17 = 2.147, p < 0.05). A similar effect was

evident for the right hippocampus but did not reach significance

(p > 0.08).
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Position and Object Information in the PHc and PRc
Our next analyses addressed effects in other regions of the

medial temporal lobe (MTL). It is well established that, in addition

to the hippocampus, the PRc and PHc also contribute to

episodic memory (Ranganath and Ritchey, 2012). For instance,

according to the Binding of Items and Contexts (BIC) model,

the PRc would be expected to carry information about objects,

whereas the PHc would be expected to carry information about

the context in which objects are encountered (Diana et al., 2007;

Eichenbaum et al., 2007; Ranganath, 2010; see also Aminoff

et al., 2007). Based on this model, we hypothesized that activa-

tion patterns in the PRc might carry information about object

identity, whereas the PHc would carry information about tempo-

ral context. To test these hypotheses, multivoxel pattern ana-

lyses were conducted on brain voxels within the PRc and PHc

ROIs. In contrast to pattern similarity results on the hippocam-

pus, none of the comparisons between the constant sequences

versus the ‘‘Random’’ sequence (i.e., ‘‘same obj.+pos.’’ versus

‘‘same obj.’’ and ‘‘same obj.+pos.’’ versus ‘‘same pos.’’) were

significant in either the right or the left PRc and PHc (all p >

0.10; Figures 8A and 8B). Consistent with our predictions,

there was a significant effect of object coding (i.e., ‘‘same

obj.’’ > ‘‘different obj.’’) in the right PRc (t17 = 2.150, p < 0.05;

Figure 8A), but not in the right PHc (p > 0.46). Moreover,

there was a significant position coding in the right PHc

(‘‘same obj.+pos.’’ > ‘‘lag 2+,’’ t17 = 3.119, p < 0.005; ‘‘same

pos.’’ > ‘‘lag 2+,’’ t17 = 2.063, p < 0.05; Figure 8B), but this effect

was not observed in the right PRc (p > 0.38). Although object

and temporal position coding effects were also evident in the

left PRc and PHc, respectively, these effects did not reach signif-

icance (all p > 0.06).

The analyses described above demonstrated that the hippo-

campus carries information about object-position binding and

that right PHc and right PRc activation patterns are sensitive to

temporal position and object identity, respectively. To more

directly test whether the three regions process different types

of information, we conducted a two-way (33 3) ANOVA including

brain regions (i.e., the right hippocampus, right PHc, and right

PRc) as one factor, and similarity metrics that best captured

object-position binding (i.e., ‘‘same obj.+pos.’’ – ‘‘lag 2+’’ in

learned sequences), position (i.e., ‘‘same pos.’’ – ‘‘lag 2+’’ in
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Figure 7. Left Hippocampal Activation Patterns Are Sensitive to

Sequence Boundaries

Pattern similarity was computed for pairs of adjacent trials that belonged to

different object sequences (‘‘Between’’) and for pairs of adjacent trials that

belonged to the same object sequence (‘‘Within’’). The higher pattern similarity

for the ‘‘Within’’ than for the ‘‘Between’’ pairs suggest that activation patterns

in the left hippocampus are sensitive to sequence boundaries. *p < 0.05. Error

bars denote ±1 SEM.
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the ‘‘Random’’ sequence), and object coding (i.e., ‘‘same obj.’’ –

‘‘different obj.’’ in the ‘‘Random’’ sequence), respectively, as

three levels of the other factor. If the three brain structures pro-

cess qualitatively different types of information, we would expect

a significant interaction in the ANOVA analysis (i.e., each of the

three brain regions is differentially sensitive to object-position,

position, and object coding). Indeed, therewas a significant inter-

actionbetween the two factors (F3.372,53.317 = 2.798, p<0.05; Fig-

ure 8C), further demonstrating that the activation patterns in the

hippocampus, PHc, and PRc are sensitive to different types of

information.

DISCUSSION

The present study used fMRI to examine how the hippocampus

represents sequences of objects. We found that hippocampal

activation patterns specifically carried information about objects

in particular temporal positions (i.e., ‘‘object-position binding’’),

and this could not be explained by the processing of object or

temporal position information alone. Moreover, individual differ-

ences in hippocampal voxel pattern information explained over

one-third of the interindividual variance in reaction time indices

of sequence learning. Individuals who exhibitedmore robust hip-

pocampal object-position binding showedmore behavioral facil-

itation during sequence retrieval. Using overlapping sequences,

we also found that hippocampal activation patterns differentiate

between different sequence contexts, even when the object and

its temporal position within the sequence were identical. Finally,

we found that hippocampal voxel pattern similarity was higher

for pairs of adjacent trials that belonged to the same sequence

context as compared to pairs of trials that bridged between

different sequence contexts, despite identical temporal distance

between the pairs of trials. Together, these results are consistent
with the idea that the hippocampus represents information about

the temporal context associated with specific items.

The present results are pertinent to a significant debate about

the role of the hippocampus in memory. Several theories have

proposed that the hippocampus is involved in integrating stim-

ulus attributes, including object information (e.g., McClelland,

1998; Frank et al., 2003; Wixted and Squire, 2011). A strong

version of this view would suggest that the hippocampus should

assign similar mnemonic representations across multiple en-

counters with the same object. Other models propose a more

specific role for the hippocampus in associating information

about people, things, and situations to a representation of

context (Wallenstein et al., 1998; Howard et al., 2005; Davachi,

2006; Ranganath, 2010; Nadel and Hardt, 2011; Howard and

Eichenbaum, 2013). A strong version of this view would predict

that the hippocampus should assign different representations

to the same object in different contexts. Our findings are more

consistent with the context-based view.

We found no evidence to support the idea that hippocampal

activity patterns carry information about objects when the tem-

poral order was random. This finding is consistent with results

from a single-unit recording study showing minimal object cod-

ing in the monkey hippocampus (Naya and Suzuki, 2011). The

lack of object coding in the hippocampus is striking and qualita-

tively different from right PRc, which showed reliable pattern

similarity effects across repetitions of objects in random se-

quences. Additionally, right PHc showed evidence for coding

of serial position, even in random sequences, for which the

object information changed on each repetition. We also found

that the right hippocampus, PRc, and PHc exhibited distinct

pattern information profiles, confirming that these regions play

different roles in the processing of object and temporal informa-

tion (Figure 8C). The present findings fit with results from fMRI

studies that have examined coding of category-level stimulus

attributes in the MTL. These studies have generally failed to

find evidence for category-level attribute coding in the hippo-

campus, whereas activity patterns in the PRc and PHc carry

category-level information about visual stimuli (Diana et al.,

2008; LaRocque et al., 2013; but see Liang et al., 2013). How-

ever, the present results go further by demonstrating that, even

when the same object is repeated, hippocampal voxel patterns

are dissimilar unless the temporal context is reinstated.

Our results complement and add to findings from previous

fMRI studies that have examined the role of the hippocampus

in memory. Several studies have reported that the magnitude

of hippocampal activity is increased during successful encoding

(e.g., Davachi et al., 2003; Ranganath et al., 2004; Kirwan and

Stark 2004; Kensinger and Schacter, 2006; Staresina and Dava-

chi, 2006) and retrieval (e.g., Cansino et al., 2002; Yonelinas

et al., 2005; Hannula and Ranganath, 2009; Johnson et al.,

2009; Diana et al., 2010, 2013; Duarte et al., 2011) of contextual

information, including temporal context (Tubridy and Davachi,

2011; Jenkins and Ranganath, 2010; Ekstrom et al., 2011). These

findings, however, could be explained in terms of a role for the

hippocampus in encoding of very strong or detailed memories

(but see Diana and Ranganath, 2011; Montaldi and Mayes,

2011). Furthermore, studies have reported evidence indicating

that the hippocampus links successive elements of a film clip
Neuron 81, 1165–1178, March 5, 2014 ª2014 Elsevier Inc. 1173
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Figure 8. Differential Information Coding of

the Hippocampus, PHc, and PRc

(A and B) Pattern analyses were conducted on brain

voxels within the PRc and PHc ROIs following pro-

cedures illustrated in Figures 3A, 3B, and 3C. (A)

Object coding in the right PRc. Pattern similarity

was significantly higher across repetitions of the

same object (‘‘same obj.’’) than between pairs

of trials that corresponded to different objects

(‘‘different obj.’’). (B) Position coding in the right

PHc. Pattern similarity was significantly higher

across trials that shared the same temporal position

information (‘‘same obj.+pos.’’ or ‘‘same pos.’’) than

across trials that were 2 or more than 2 positions

apart (‘‘lag 2+’’).

(C) The hippocampus, PHc, and PRc encode

different types of information. Indices of object-

position binding, position coding, and object coding

are plotted for each of the right hemisphere MTL

ROIs. The three ROIs showed qualitatively different

patterns of information coding. *p < 0.05; **p < 0.01.

Error bars denote ±1 SEM.
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(Gelbard-Sagiv et al., 2008; Paz et al., 2010), sequences of

auditory stimuli (Kalm et al., 2013), or temporally paired visual

stimuli (e.g., Turk-Browne et al., 2010, 2012; Schapiro et al.,

2012). These findings demonstrate a role for the hippocampus

in linking items that are in close temporal proximity (consistent

with our finding of lag-dependent similarity effects). The present

results add to these findings by demonstrating that the hippo-

campus specifically codes for the positions of objects in learned

sequences, over and above purely temporal or object-based

coding.

We speculate that the capability of the hippocampus to

encode objects in relation to a temporal context might relate to

the ability to distinguish between temporally distinct events

that share common elements. For instance, parking a car in

the same parking structure on different days requires the forma-

tion of distinct memory representations in order to efficiently

retrieve the car at a later time. Previous studies have implicated
1174 Neuron 81, 1165–1178, March 5, 2014 ª2014 Elsevier Inc.
the hippocampus in this ability—lesions to

the hippocampus in rats impaired the

ability to disambiguate overlapping odor

sequences (Agster et al., 2002), and neuro-

imaging studies of humans have reported

stronger hippocampal activation during

processing of overlapping as compared

to nonoverlapping sequences (Kumaran

and Maguire, 2006; Brown et al., 2010;

Brown and Stern, 2013). The present re-

sults help to explain these findings by indi-

cating that the hippocampus may assign

distinct representations to overlapping

but psychologically distinct events, as

predicted by computational models of hip-

pocampal sequence representation (Levy,

1989, 1996; Wallenstein et al., 1998).

Specifically, we found that, even when

comparing pairs of trials corresponding
to the same object in the same temporal position, hippocampal

pattern similarity was higher for pairs of trials in the same learned

sequence (‘‘X1-X1’’ or ‘‘X2-X2’’ pairs) than across pairs of trials in

different sequences (‘‘X1-X2’’ pairs). Furthermore, voxel pattern

similarity in the right posterior hippocampus was lower for ‘‘X1-

X2’’ pairs than for ‘‘Y1-Y2’’ pairs. This finding is notable, given

that the ‘‘X1’’ and ‘‘X2’’ sequences could be differentiated during

processing of the overlapping objects, whereas the ‘‘Y1’’ and

‘‘Y2’’ sequences could not be differentiated until presentation

of the fourth (nonoverlapping) object. These results suggest

that the hippocampus only differentiates between overlapping

sequences that are psychologically distinct. This result parallels

findings from studies that have found differences in hippocampal

ensemble activity patterns as a rat traverses the common path of

different trajectories (Frank et al., 2000; Wood et al., 2000; Fer-

binteanu and Shapiro, 2003; Ginther et al., 2011). Taken

together, the results are consistent with the idea that temporal
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context coding in the hippocampus may help to disambiguate

overlapping events in episodic memory, thereby contributing to

‘‘pattern separation’’ (Kim and Yassa, 2013).

The present findings suggest parallels between human mem-

ory for temporal sequences and recent studies of hippocampal

‘‘time cells’’ in rats (MacDonald et al., 2011, 2013; Kraus et al.,

2013; Pastalkova et al., 2008). For instance, MacDonald et al.

(2011) conducted a study in which the rat learned object-odor

associations separated by a temporal gap. They found that

different hippocampal neurons fired at distinct segments of

time within a trial such that the serial firing of hippocampal time

cells filled the temporal gap between object sampling and pre-

sentation of the odor (see also Pastalkova et al., 2008). Addition-

ally, hippocampal time cells elicited distinct context-specific

firing patterns during identical blank intervals that corresponded

to different object-odor sequences. Other studies have shown

that ensemble activity in hippocampal subfield CA1 could sup-

port temporal coding across broader timescales, extending

across tens of seconds (Manns et al., 2007) and even across

hours and days (Mankin et al., 2012). A recent study in humans

is also consistent with these results, demonstrating hippocampal

context effects that operate across longer timescales (L.J.J. and

C.R., unpublished data). Notably, some models, such as the

model of Howard and Kahana (2002), can account for temporal

context effects across short and long timescales.

A recent study in monkeys (Naya and Suzuki, 2011) also re-

ported evidence for temporal coding in the hippocampus,

although their results were somewhat different from the find-

ings observed here. Naya and Suzuki (2011) recorded activity

from the monkey temporal lobe during a task that required

memory for the temporal order of two objects. Consistent

with MacDonald et al. (2011), they found that hippocampal neu-

rons fired at specific time points during the delay between each

object, which they termed an ‘‘incremental timing signal.’’ Naya

and Suzuki did not, however, report that the hippocampal in-

cremental timing signal was modulated by different sequence

contexts (i.e., different two-object sequences). Thus, hippo-

campal neurons encoded the temporal structure of trial events,

irrespective of the currently relevant object sequence, a finding

that contrasts with the current results and those reported in

MacDonald et al. (2011). Naya and Suzuki (2011) also found

that neurons in the PRc did not show the temporally graded

‘‘incremental timing’’ signal seen in the hippocampus, but

rather they showed object-selective responses. Some of these

cells integrated object information with information about the

ordinal position of each object (first versus second) on each

trial, however, which is seemingly at odds with the present

study, which did not find evidence for object-position binding

in the PRc.

We speculate that differences in results across studies might

have to do with differences in task requirements. In our study,

participants learned a small set of relatively unique object se-

quences, and these sequences remained consistent throughout

the experiment. InMacDonald et al. (2011), the task also required

learning of unique object-odor sequences. In Naya and Suzuki

(2011)’s study, however, a pool of eight objects was used to

generate different two-object sequences on each trial. We spec-

ulate that extensive training on the task, in which the stimulus
pairs and temporal order relationships changed across trials,

created conditions under which hippocampal neurons picked

up on the temporal structure of each test trial as the salient

contextual information remained consistent across sessions. It

is also possible that, under these conditions, the PRc encoded

serial position as a ‘‘semantic’’ feature attached to each object.

Considered collectively, the evidence is consistent with the pos-

sibility that hippocampal neurons only retain associations be-

tween objects and temporal context if they remain consistent

across learning events. If object-position associations are not

reliable across learning events, however, then hippocampal neu-

rons might show more purely temporal coding. This speculation

can be tested in a future study.

Some temporal context models explicitly predict that contex-

tual states are correlated across time (Howard and Kahana,

2002; Sederberg et al., 2008). This idea is consistent with the

graded reduction in hippocampal pattern similarity that we

observed across adjacent positions in learned sequences.

More direct evidence for this idea has come from single-unit

recording studies in rats (Manns et al., 2007) and humans

(Howard et al., 2012) demonstrating that patterns in hippo-

campal ensemble activity change gradually over time. Howard

et al. (2012) additionally found that, during memory retrieval,

the pattern of activity in ensembles of hippocampal neu-

rons resembled the activity pattern elicited before the item

was first encountered. Manning et al. (2011) reported a similar

finding, showing that recall of a previously studied item elicited

patterns of field potentials that were similar to the activity

pattern elicited during study of that item, and also similar to

the pattern elicited during processing of temporally contiguous

study items. This effect was maximal in temporal lobe elec-

trodes, although Manning et al. could not localize it to the

hippocampus.

In contrast to the graded similarity of hippocampal representa-

tions across adjacent positions within a learned sequence, we

found that the left hippocampus shows disproportionate reduc-

tions in voxel similarity across adjacent trials that are in different

sequences. It is likely that similar dynamics play a role in the

segmentation of events in episodic memory. For instance,

behavioral research indicates that, while processing continuous

narrative text or movie stimuli, people tend to segment incoming

information into distinct event representations, and this, in turn,

affects how they will be remembered (Zacks et al., 2007; Ezzyat

and Davachi, 2011). For instance, Ezzyat and Davachi (2011) re-

ported reduced recall performance for sentences that immedi-

ately followed a boundary between two events. To the extent

that the object sequences studied here are relevant to process-

ing of more complex episodic materials, we would expect that

hippocampal activity patterns should show sharp transitions

following perception of an event boundary. To our knowledge,

this prediction has not yet been tested, but, in a related study,

Swallow et al. (2011) found that, with a short 5 s retention interval,

hippocampal activation was increased during retrieval of objects

across an event boundary.

It is also possible that hippocampal processing of abstract

event boundaries is related to processing of physical bound-

aries in the environment. For instance, one study found that

left hippocampal activation is modulated by the number of
Neuron 81, 1165–1178, March 5, 2014 ª2014 Elsevier Inc. 1175
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boundaries embedded in spatial contexts (Bird et al., 2010).

Future work might therefore investigate the relationship be-

tween hippocampal coding of boundaries in spatial contexts

and event boundaries during temporally extended cognitive

processing.

In summary, the present results indicate that hippocampal

activity patterns carry information about the temporal positions

of objects in learned sequences. Although the results do not

necessitate a hippocampal representation of temporal context

that is analogous to those described in mathematical models

(Howard and Kahana, 2002; Howard et al., 2005; Sederberg

et al., 2008; Polyn et al., 2009), they do suggest that hippocam-

pal representations incorporate more than simply the attributes

of the currently processed item. The context-sensitive hippo-

campal activation patterns observed here might support a

wide range of memory capacities, including the ability to learn

spatial maps (O’Keefe and Nadel, 1978), differentiate highly

similar, yet distinct memories (Levy, 1989, 1996; Wallenstein

et al., 1998; Yassa and Stark, 2011; Kesner, 2013), and the ability

to segment continuous incoming information into distinct

episodic memories (Zacks et al., 2007; Ezzyat and Davachi,

2011). More generally, the results underscore the importance

of temporal information in understanding hippocampal function,

potentially explaining how the hippocampus supports the ability

to remember what happened when.

EXPERIMENTAL PROCEDURES

Participants

Twenty individuals participated in the experiment, but due to technical

difficulties, behavioral data from one participant and fMRI data from two par-

ticipants were excluded. Thus, the reported behavioral analyses are based on

results from 19 (10 females) participants, and group-averaged fMRI results are

based on data from 18 (9 females) and correlations between behavioral and

fMRI results are reported for 17 (8 female) participants. The study was

approved by the Institutional Review Board at the University of California at

Davis. Written informed consent was obtained from each participant before

the experiment.

Task Procedures

The experimental procedures are summarized briefly in the Introduction and

Figure 1 and are presented in detail in Supplemental Experimental Procedures.

fMRI Pattern Analysis

Analyses of fMRI data were performed by assessing patterns of activity across

voxels within anatomically defined ROIs evoked during single trials. Parameter

estimates (beta weights) indexing activity evoked by each trial were estimated

with the Least-Square2 (LS2) method as described in Turner et al. (2012) (see

also Supplemental Experimental Procedures for details). ROIs were manually

traced using each participant’s native-space MPRAGE structural image. The

left and right hippocampus, PRc, and PHc cortex were identified according

to a protocol based on structural MRI studies of the medial temporal lobe

(MTL) (Insausti et al., 1998; Pruessner et al., 2002; Frankó et al., 2014). The hip-

pocampal ROI was further segmented into the anterior and the posterior por-

tions based on uncal apex landmark (Poppenk et al., 2013).

Pattern similarity between presented objects was estimated by computing

the correlation coefficient between vectors of beta weights across pairs of

trials. The resulting correlation coefficient was then Fisher transformed and

averaged within particular bins prior to conducting parametric statistical tests.

All reported parametric statistical tests for pattern analysis are one-tailed, as

each of these tests was conducted with a clear directional prediction. None-

theless, the overall pattern of results was essentially unchanged with two-

tailed statistical tests.
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