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Oxytocin Treatment, Circuitry, and Autism:
A Critical Review of the Literature Placing
Oxytocin Into the Autism Context
Adam J. Guastella and Ian B. Hickie
ABSTRACT
Observed impairment in reciprocal social interaction is a diagnostic hallmark of autism spectrum disorders. There is
no effective medical treatment for these problems. Psychological treatments remain costly, time intensive, and
developmentally sensitive for efficacy. In this review, we explore the potential of oxytocin-based therapies for social
impairments in autism. Evidence shows that acute oxytocin administration improves numerous markers critical to the
social circuitry underlying social deficits in autism. Oxytocin may optimize these circuits and enhance reward,
motivation, and learning to improve therapeutic outcomes. Despite this, the current evidence of therapeutic benefit
from extended oxytocin treatment remains very limited. We highlight complexity in crossing from the laboratory to
the autism clinical setting in evaluation of this therapeutic. We discuss a clinical trial approach that provides optimal
opportunity for therapeutic response by using personalized methods that better target specific circuitry to define who
will obtain benefit, at what stage of development, and the optimal delivery approach for circuitry manipulation. For
the autism field, the therapeutic challenges will be resolved by a range of treatment strategies, including greater
focus on specific interventions, such as oxytocin, that have a strong basis in the fundamental neurobiology of social
behavior. More sophisticated and targeted clinical trials utilizing such approaches are now required, placing oxytocin
into the autism context.
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Autism spectrum disorder is the collective term for multiple
neurodevelopmental conditions characterized by qualitative
impairments in social interaction and communication and
restricted range of activities and interests (1). Many countries
have reported increases in diagnosed prevalence over the past
three decades, with recent estimates at 1 in every 68
individuals (2). Impairment in reciprocal social interaction can
manifest as a failure to develop peer relationships, atypical
responses to others’ emotions, and/or lack of capacity to
share enjoyment or interests with others (1). Autism is also
frequently associated with behavioral difficulties such as
hyperactivity, irritability, and aggression (3) and comorbidities
with developmental, mental health, and physical problems
(1,4). Autism is, for example, often accompanied by intellectual
disability, epilepsy, gastrointestinal problems, and macroce-
phaly (4–6). It is, therefore, a major contributor to disability and
distress to those affected by the diagnosis and results in
significant costs for individuals, families, and governments (7).

Autism, sometimes colloquially referred autisms, is highly
heterogeneous with different causes and trajectories across
development. No single genetic factor accounts for a major
proportion of those diagnosed (8), and although highly heritable,
this is likely due to oligogenic and polygenic factors with
numerous genetic and epigenetic components. Many genetic
factors linked to autism also regulate synaptic functions of
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neurons underlying learning and plasticity, suggesting their role
may be during critical periods of neuronal development in the
womb and first years of life (9). Imaging studies also show a
complex and varied trajectory clustering different subsets of
autism (10) in terms of atypical brain anatomy (11), connectivity
(12,13), and function (14). For example, autism is characterized by
increased connectivity locally between neurons in the same
cortical layer and reduced axonal projections between distant
brain regions, suggesting disorganization and poor regional
coordination as a feature (12,15,16). Research is, however, in its
infancy in establishing neural profiles that predict subsequent
functioning later in life or response to different interventions
(10,14). Many aberrations in neural profiles are no longer apparent
in older children and adults (11,17), also leading to a view that
early life developmental changes are critical drivers of life-long
impairment. Along with characterization of the brain changes
across development, attention has been placed on understanding
interactions with other contributors to the broad cognitive and
behavioral phenotype, including interactions between gut (18),
immune (19), metabolic (20), and circadian changes (21). Notably,
these factors are also influenced by environmental variables and
may jointly influence brain development and behavioral pheno-
types at certain developmental stages.

Given this heterogeneity, it is not surprising there is not a
single medical treatment for the behavioral phenotypes of
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social impairment. Despite many promoted treatments in the
community, often attached with significant cost, most have
little evidence to support use (22,23) and are not specified for
a subtype of autism. Most published therapeutic treatment
trials are of small sample size, questionable methodological
rigor (24–27), and like the diagnosis itself, based only on
reports of observed behavior, as opposed to independent
objective markers. Risperidone, aripiprazole have shown ben-
efit in reducing hyperactivity, aggressive, self-injurious, and
repetitive behavior (22,28) but are associated with significant
negative side effects. Risperidone is, in fact, the most widely
prescribed medical treatment for autism in the world today
(29), even though it does not target social symptoms and is
associated with weight gain, drowsiness, extrapyramidal side
effects, and hormonal changes related to galactorrhea, ame-
norrhea, and gynecomastia (22,26,30,31). That it is prescribed
frequently highlights the complexity of symptoms for people
with autism, as symptoms that cause distress may not be
related to social deficit components. Given the limitations of
the existing scientific literature and complexities in presenta-
tion, many people often choose to trial accessible investiga-
tional therapies.

Some behavioral treatments show benefit in improving
social responsiveness and interaction for children with autism
(27,32), although they are usually associated with intensive
weekly sessions of 20 to 40 hours per week accumulating over
years (25,32). These interventions have grown in sophistication
(33,34) since the work of Lovaas (35), in the way they engage
children in rich social learning skills across development. For
example, the Early Start Denver Model (36) focuses on social-
cognitive development, including training in verbal and non-
verbal communication, imitation, emotion sharing, joint atten-
tion, play, social orienting, and social attention by clinicians
and caregivers (37). It is believed that the Early Start Denver
Model is developmentally sensitive (38), providing better out-
comes for children under age 6 who may learn more funda-
ment skills to permit more complex social skills later in life. It
has an explicit target of increasing the child’s sensitivity to
social reward and interest and affective engagement with
others (36–41). This work demonstrates that young children
with autism show considerable potential for learning and
plasticity to change and improve developmental trajectories,
although patient variables may moderate response. How such
interventions can be delivered in a cost-effective manner to
produce sustainable outcomes remains unclear (24,42), par-
ticularly in lower resourced communities.
OXYTOCIN AND AUTISM SPECTRUM DISORDERS

The neuropeptide oxytocin has garnered significant interest in
the scientific and lay communities as an investigational treat-
ment for autism. Oxytocin is a nine amino acid peptide, which
is synthesized in the paraventricular and supraoptic nucleus of
the hypothalamus and released into the bloodstream by the
posterior pituitary gland. Mammalian nonhuman animal stud-
ies demonstrate the importance of oxytocin to social behav-
iors, including social recognition, memory, and attachment
and reducing stereotyped behaviors such as exaggerated
grooming (43–45). Across many studies, central administration
of oxytocin agonists before social contexts enhances
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recognition and memory for peers, partner preference, and
bonding, while reducing predatory aggression (46). Studies of
transgenic animals show oxytocin receptor (OXTR) knockout
mice lose capacity to respond to social cues, which is fully
restored by infusion of 1.0 pg oxytocin into the medial
amygdala before social encounters (47). Parenting models
also highlight how oxytocin release is critical to bond for-
mation during exposure to bonding cues, probably by increas-
ing reward and sensitivity to these cues (suckling; parent-
offspring touch, grooming) (48).
GENETIC VARIATION, OXYTOCIN PLASMA AS A
MARKER FOR AUTISM SPECTRUM DISORDERS

There is growing evidence that allelic variation within the OXTR
gene (including several single nucleotide polymorphisms and
haplotypes) has evolutionarily importance to social cognition
and function, although functionally important alleles are unre-
solved (49–52). Animal models established the importance of
OXTR on social behavior and memory (43,53). In humans,
some studies suggest genetic variability in the OXTR gene
could increase risk for autism (49–52,54), but others show
associations reflecting broader social-cognitive phenotypes
(55–58). Examination of oxytocin plasma as a marker has also
produced mixed results. Baseline plasma oxytocin may relate
to functioning in autism (59), but a larger research body
implicates peripheral oxytocin levels with social-cognitive trait
dimensions (58). Given oxytocin release is highly responsive to
social context shifts, we know little about its function in autism
in response to social cues (e.g., touch, social reciprocity, and
reward). We also acknowledge disagreement regarding reliable
methods for sample processing, methods of measurement,
and controversy regarding the relationship between circulating
plasma, salivary, or urinary oxytocin and central levels.

SINGLE DOSE OXYTOCIN ADMINISTRATION ON
SOCIAL COGNITION IN NEUROTYPICAL
POPULATIONS

In neurotypical adults, a large body of research suggests
benefits of oxytocin nasal spray for improving social cognition
[for review, see (60)], including eye gaze, emotion recognition,
affective voice recognition, and interoceptive awareness,
along with neural underpinnings of these benefits (61). Oxy-
tocin effects can be sensitive to social contexts, even to
increase defensive tendencies (62,63), and individual differ-
ences moderate effects (64,65). A recent meta-analysis using
whole-brain analysis showed strong effects on the left insula,
which is important given its recognized role in social cognition
(66), but task-specific effects have been reported on the
caudate and putamen (during social learning tasks) and the
temporal lobes, amygdala, and prefrontal and anterior cingu-
late cortex (during social stimuli and face processing) (61), as
well as enhancement of functional coordination between some
of these regions during social interactions (67). Replication
across gender and age remains an ongoing issue, but most
findings support oxytocin’s role in reducing threat and uncer-
tainty (68) and improving empathy, synchrony, reward, and
communication during processing of social cues and inter-
actions (61,66,69).
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THE IMPACT OF A SINGLE DOSE OF OXYTOCIN IN
AUTISM SPECTRUM DISORDERS

In adults with autism, Hollander et al. (70,71) first showed acute
intravenous oxytocin reduced repetitive behavior and learning
of affective speech. Nasal administration studies followed to
show oxytocin improved emotion recognition (72), higher order
social cognition (73), eye gaze, social interaction (74), and
physiological responses to affective sounds (75). For example,
Andari et al. (74) showed oxytocin increased eye gaze, oxytocin
plasma, and social decision making within a cooperative social
ball-tossing computer game, by reducing attempts to engage
the uncooperative player. This was the first evidence that
oxytocin improves social awareness and effective decisions in
online social situations. Separately, we reported the first
evidence of benefit to youth with autism, showing that oxytocin
enhanced emotion recognition (72).

In adults with autism, imaging studies show intranasal
oxytocin increases right anterior insula (73) and activity and
coordination in the medial prefrontal cortex, with the latter
associated with improved performance on a false-belief task
(76). Domes et al. (77) showed that oxytocin administration
increased right amygdala, fusiform gyrus, and inferior occipital
gyrus activity during presentation of facial stimuli, which is
opposite to effects in neurotypical control studies (61). The
individual difference literature has highlighted how autism
traits may moderate response (64,78) and some have argued
that oxytocin might increase salience and reward for social
cues, specifically for individuals with a lack of awareness for
these cues. Finally, Gordon et al. (79) reported that oxytocin
administered to young autistic children increased activity in
the striatum, middle frontal gyrus, the medial prefrontal cortex,
right orbitofrontal cortex, and superior temporal sulcus during
social judgment making.

Overall, published studies support the benefits of oxytocin
to social neurocognition, circuitry, and social processing in
neurotypical adults, adults with autism, and youth and children
with autism. This evidence is consistent with a view that
oxytocin could enhance social salience and awareness for,
reward and responsiveness to, and learning of social cues. A
recent meta-analysis of trials and effect sizes utilizing oxytocin
nasal spray in psychiatric disorders revealed that autism was
the candidate psychiatric disorder with the most potential to
benefit (80). Based on single dose studies, oxytocin shows
promise to improve diagnostic symptoms of social awareness
and use of appropriate social approach behaviors in context,
appropriate use of eye contact, gestures, and understanding
and recognition of facial expressions (1). One study to date
suggests oxytocin may also reduce repetitive behaviors.
THE EFFECT OF OXYTOCIN AS AN EXTENDED
TREATMENT FOR AUTISM SPECTRUM DISORDERS

Open-label case studies and uncontrolled cohort studies sug-
gest potential benefits of nasal oxytocin to treat observed
autism symptoms using repeated dosing (81,82). Two published
randomized placebo-controlled trials provided nasal oxytocin
over an extended period to evaluate this. The first gave 24
International Units (IU) of intranasal oxytocin or a placebo twice
daily for 6 weeks to 19 adults with autism (83). Measures
236 Biological Psychiatry February 1, 2016; 79:234–242 www.sobp.or
included caregiver reports of social responsiveness and repet-
itive behavior, social cognition tests, and clinician ratings of
symptoms severity. This study showed benefit on secondary
measures of emotion recognition and quality of life but not on
primary domains of social reciprocity or repetitive behavior. We
published a trial of oxytocin (18 or 24 IU) or a placebo nasal
spray in 52 youth with autism (aged 12 to 18) given twice daily
for 8 weeks (84). Across all social cognition, caregiver, and
clinician assessments, there was no benefit of oxytocin. Paren-
tal reports of social responsiveness were, however, likely
influenced by expectation. Regardless of whether their child
was assigned to the oxytocin or placebo condition, parents who
believed their child received oxytocin reported greater change in
social responsiveness. This may offer some explanation for
reported benefits in open-label studies.

One study examined the potential of oxytocin to combine
with social skills training (85). Dadds et al. (85) recruited 35
youth (aged 8 to 16) to four sessions of 1-hour social skills
training with emotion recognition training. Drug administration
preceded training by 30 minutes for two sessions and 2.5
hours for two sessions. For two sessions, a family observation
coding session took place before training, while for two
sessions observation took place after training. This study did
not show benefit of oxytocin on any measure. Despite hyper-
bolic media reports of this null finding, consideration must be
given to the variable times training was provided after dosing,
the limited total oxytocin doses (n 5 4), and the use of a social
training procedure that currently lacks evidence of efficacy in
the format provided to the age range. Research is needed to
confirm and extend these initial findings. In summary, we can,
however, conclude that benefits from single-dose studies have
not translated to benefits when examining the literature of
extended oxytocin treatment.
PLACING THE DEVELOPMENT OF OXYTOCIN
INTERVENTION INTO THE AUTISM CONTEXT

This field is now delicately poised with claims oxytocin may
provide the first targeted treatment for social impairments in
autism pitted against assertions that it has little or no
therapeutic value (86,87). This diversity in views is not
surprising given major limitations of the existing evidence
base; the initial hype, expectation, and the real need for a
therapeutic; and the phenotypic heterogeneity presented by
persons with autism and associated conditions. Fortunately,
there are a growing number of trials underway to further
evaluate potential benefits of oxytocin in larger samples.
Despite this, there remains a need for much greater debate
about what might be required for optimal evaluation of
therapeutics in autism and oxytocin nasal spray specifically.
Otherwise, when heterogeneous populations are tested (by
age, gender, intelligence, social function, target behaviors, and
other concurrent neurological or neurodevelopmental disor-
ders), we will likely see mixed outcomes possibly demonstrat-
ing moderate improvements for some participants on some
selected measures, with little guidance for individuals about
who are likely to benefit, when, and why. Such problems may
not result from a failure of the therapeutic but failure of
adequate clinical trial design, drug delivery, and patient
selection to target circuitry appropriately. Greater focus is
g/journal
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required on understanding the important subject variables,
neurobiological and developmental windows of opportunity
that might mediate response, the therapeutic relevance of
oxytocin for the range of symptoms that cause distress and
result in treatment seeking, and the sensitivity of outcome
measures employed to determine benefit.
PATIENT SELECTION AND TRIAL DESIGN

There is much discussion about how genetic and epigenetic
factors (e.g., methylation status of OXTR) might mediate
response to oxytocin and learning interventions. It is further
hoped developmental profiles emerge to cluster autism sub-
types that could be used as variables to predict response. In
regard to common patient characteristics, gender appears to
moderate oxytocin effects (88), including neural response to
nasal oxytocin, but it remains unclear how this might effect a
therapeutic response for people with autism (89). Almost all
autism oxytocin studies have exclusively recruited male sub-
jects due to its overrepresentation in autism (1). The autism
field is generally lacking in terms of understanding the
characteristic female autism profile (90), which could then be
used to inform trials of therapeutics. Also, a majority of people
with autism show some intellectual impairment (1), but the
existing research evaluating the circuitry markers associated
with autism (e.g., physiological, imaging, immune, cognitive
measures) and studies validating the sensitivity of outcome
measures typically excludes those with moderate to severe
intellectual impairment. This leaves open debate about
whether a lack of measure sensitivity drives any observed
reduced responsiveness to intervention in this important
patient group. Repetitive and self-injury behavior is also a
core feature of autism and its presence may moderate
response to social intervention (91). Such behavior may cause
more distress than other symptoms, characteristically fluctu-
ates within a smaller subpopulation, is related to other
important variables such as nonverbal intelligence, and limits
response to social intervention (91). While one acute study
suggests benefit of oxytocin to repetitive behaviors (70), this is
not a main focus of oxytocin intervention. It also remains
unclear how observed benefit to repetitive behavior might
relate to the different circuitry that can guide it, including
obsessive-compulsive or stereotyped behaviors, anxiety,
impulsivity, and hyperactivity (91).

In relation to age, oxytocin could have an important role for
autism early in life (92). It is well-established that there are
critical development periods for social intervention (93). Some
argue that early social-training interventions shape the brain’s
receptiveness to the social world to mitigate the severity of
autism symptoms (94,95) and reduce the compounding neg-
ative influence of social impairment (96). There seems to be a
very strong rationale to combine oxytocin with social-learning
interventions to improve outcomes in early development. To
illustrate, a well-replicated oxytocin effect is improved eye gaze.
Reduced eye gaze and joint attention are one of the first
markers of autism (97), documented in children as young as 12
months of age (98), and it predicts later diagnosis and
functioning (99). Older children who then perform poorly on
related emotion-recognition tasks also perform poorly on
measures of social skills (100) and have a worse long-term
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prognosis (101). Theoretical models (38,94,98,102) propose that
initial deficits in engaging with social stimuli from an early age
(through mechanisms such as eye gaze and joint attention)
compound existing social deficits across development, as the
social responses that are required become more complex.
Individuals may then increase their withdrawal from social-
learning opportunities. Thus, we propose that evaluation of
early intervention with novel treatments that target the oxytocin
system should be a research priority, to combine with early
social-learning interventions to enhance attention, reward, and
the intensity of social learning. Alternatively, such interventions
could be given to parents during parent-training to enhance the
interactive process (103).
OXYTOCIN MANIPULATION IN AUTISM SPECTRUM
DISORDERS

In the absence of social-learning therapies, nasal oxytocin
may improve endogenous regulation through repeated admin-
istration. There is little human evidence (or evaluation) to
support this assumption. Numerous reviews elsewhere have
discussed limitations of standard nasal delivery devices and
non-optimized formulas to absorption for central nervous
system impact (104,105). Dose-finding and delivery compar-
ison studies are desperately needed. Delivery considerations
for people who have difficulty tolerating the spray could be a
major source of variation, with few devices optimized for
children, youth, or those with communication disabilities. We
have observed in our own unpublished data that children with
poor verbal communication have greater difficulty tolerating
nasal sprays. Different medical interventions may be needed
to activate central oxytocin release, different delivery methods,
or use of an adjunctive medical intervention with oxytocin to
activate critical circuits (105–107). Alternatively, environmental
manipulations known to facilitate oxytocin regulation could be
considered and evaluated as an alternative to drug adminis-
tration (e.g., tactile and attachment based therapies) (108). The
critical point being that mechanistic human work needs to be
done before one is in a position to disregard oxytocin-
targeting interventions.
SOCIAL IMPAIRMENT AND OXYTOCIN RESPONSE IN
AUTISM SPECTRUM DISORDERS

In the autism field, limitations of observer reporting scales as
outcome measures of social responsiveness (109) and repet-
itive behavior (110) are further accentuated by the typical
absence of self-report, particularly in pediatric settings. Our
recent meta-analysis of pharmaceutical and dietary supple-
ments in pediatric autism clinical trials (A. Masi, 2015,
unpublished data) showed that placebo effects are a signifi-
cant source of bias in both caregiver and independent
observer ratings, including trained clinicians. Clinical trials
need to establish different physiological, biological, and
cognitive makers of change to predict observed functioning.
For example, studies have suggested the potential of inflam-
matory biomarkers in drug discovery (55,111). Oxytocin influ-
ences inflammatory processes (112,113), some of which may
be important for autism, disease recovery, and social behavior
(114). There has, however, been no investigation of such
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markers in clinical trials or integration with a set of neuro-
biological measures to guide patient selection and treatment
response.

Research priority should be given to linking objective
markers of response to oxytocin intervention, to broader
measures of therapeutic response, and patient selection. This
has only attracted limited discussion. This problem is further
accentuated by limitations of laboratory models that do not
account for the complicated and heterogeneous nature of
autism and the human condition. Such models do not easily
cross from the laboratory to effective clinical treatments for all.
Thus, greater emphasis on the specific neurobiological circui-
try that is being targeted by oxytocin and, hence, the predicted
pattern of clinical response within certain groups of subjects is
required.

To illustrate, imaging studies suggest numerous potential
markers. Oxytocin influences N-acetylaspartate in the ventro-
medial prefrontal and anterior cingulate cortex to possibly
improve social cognition performance (76). This finding is
particularly fascinating, given evidence of a lack of coordina-
tion, organization, and formation underlying brain development
in autism (12), with implications for improving social learning.
Similarly, other studies suggest that oxytocin might enhance
cortical information transfer while simultaneously lowering
background activity (115), which is interesting given failure to
focus on socially salient features while being distracted by
background noise is a likely feature of autism. In addition,
there might also be immediate physiological and behavioral
markers to indicate potential therapeutic response to oxytocin,
such as improved ability to integrate and coordinate social
cues (e.g., joint attention, interoceptive awareness, ability to
interpret complex social scenes, emotion regulation under
social stress) to predict improvement in clinical observational
measures of social responsiveness over time (e.g., observa-
tions of social responsiveness). Studies show that oxytocin
increases physiological and behavioral synchrony in dyadic
interactions with caregivers (e.g., joint attention, eye gaze,
heart-rate variability) (76,103,116), coined by Feldman (117) as
biobehavioral synchrony. Nonverbal social tasks and related
physiology measures may be particularly useful as markers of
social responsiveness in young children, before more com-
plex, higher order social skills are required. Using this
approach, we propose that those who do not show the
predicted neural, behavioral, and physiological response
would be unlikely to show a clinical response. Such a frame-
work provides opportunity to more quickly establish optimal
intervention approaches to manipulate these circuits (e.g.,
dose-finding studies, head-to-head device comparisons, etc).
SAFETY

Despite recognition that interventions for autism are optimally
provided early in life, debate has been on safety and potential
harm of oxytocin administration to young children (86). Some
studies in rodents have suggested direct injection of large
oxytocin doses to very young animals (118–120) might have
long-lasting negative consequences for social behavior. In
possible support, large cohort studies have suggested a very
small but significant risk for the future development of autism
later in life following oxytocin administration to mothers during
238 Biological Psychiatry February 1, 2016; 79:234–242 www.sobp.or
labor (121). Such findings have been hotly debated (122). Trials
to date show no reports of concerning or significant side
effects that require intervention, although we note some
tolerability issues for a minority of patients during the first
administration. Reports of initial aggression or hyperactivity
that subsides from discontinuation have been made in our
studies in a small number of participants (A.J.G., 2015,
unpublished data). Further discussion is required articulating
the useful markers of a negative response. We propose that if
repeated administration damages social circuits, one would
expect deficits in circuitry initially enhanced by oxytocin (e.g.,
reduced eye gaze, joint attention, social de-synchrony). Oxy-
tocin may also, independently, alter defensive anxious-arousal
responses as a dark side of oxytocin (123). This could be
expressed as increased anxiety or agitation symptoms (e.g.,
potentially as irritability, repetitive behavior) and emotion
regulation difficulties under stress. Human data evaluating
the costs and benefits of oxytocin administration and its safety
for young children are now urgently required.

CONCLUSIONS

While there are many treatments for autism, most are poorly
evaluated and do not apply to the broad range of presenta-
tions characterizing all people with autism. Oxytocin may have
potential to provide a first medical treatment to improve social
impairments for some. This review has highlighted the com-
plexity of evaluating the efficacy of oxytocin for persons with
autism, which presents as a set of neurodevelopmental
disorders with a range of neurobiological trajectories and
symptoms causing distress. Evaluation will require a range
of personalized approaches to better identify neural targets
and associated responses for addressing who might obtain
benefit, what developmental stage and how (e.g., through
learning, direct manipulation), and effective delivery routes,
doses, or methods to optimize response of these circuits. The
challenge is unlikely to be met by a single trial resulting in a
simple answer (it works or does not work) and therefore may
not resolve questions of therapeutic efficacy for autism
quickly. In meeting this challenge, however, the evolving
research provides an opportunity to detail sophisticated
frameworks for understanding, evaluating, and potentially
treating social impairments in autism that has not been offered
before. These research applications are urgently required.
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