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Kyle L. Gobrogge, Xixi Jia, Yan Liu, and Zuoxin Wang
ABSTRACT
BACKGROUND: The neuropeptides vasopressin and corticotropin-releasing factor facilitate, while serotonin
inhibits, aggression. How the brain is wired to coordinate interactions between these functionally opposed
neurotransmitters to control behavioral states is poorly understood.
METHODS: Pair-bonded male prairie voles (Microtus ochrogaster) were infused with a retrograde tracer, Fluoro-
Gold, and tested for affiliation and aggression toward a female partner or novel female subject. Subsequent
immunocytochemical experiments examined neuronal activation using Fos and neurochemical/neuroreceptor
profiles on brain areas involved in these social behaviors. Finally, a series of behavioral pharmacologic and real-
time in vivo brain microdialysis experiments were performed on male prairie voles displaying affiliation or aggression.
RESULTS: We localized a subpopulation of excitatory vasopressin neurons in the anterior hypothalamus that may
gate corticotropin-releasing factor output from the amygdala to the anterior hypothalamus and then the lateral
septum to modulate aggression associated with mate guarding. Conversely, we identified a subset of inhibitory
serotonergic projection neurons in the dorsal raphe that project to the anterior hypothalamus and may mediate the
spatiotemporal release of neuropeptides and their interactions in modulating aggression and affiliation.
CONCLUSIONS: Together, this study establishes the medial extended amygdala as a major neural substrate
regulating the switch between positive and negative affective states, wherein several neurochemicals converge and
interact to coordinate divergent social behaviors.
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A critical challenge in the psychiatry field is to determine the
neurochemical circuitry underlying an individual’s propensity
to transition between prosocial emotional states to physical
violence (1). Although preclinical neuroscience has largely
focused on examining the function of individual neurochem-
icals, brain areas, and neuronal mechanisms therein, we know
surprisingly little about the neuromodulatory microcircuits
regulating emotion (2).

The posterior dorsal medial amygdala (MeAPD) projects to
several subdivisions of the hypothalamus (3–5) to regulate
various forms of social behavior (3–10). However, the circuitry
remains largely undefined beyond these second-order projec-
tions. The integrating command centers that process sensory
input and control descending motor output to program socio-
emotional behavior are unclear. Previous work has relied on
using traditional laboratory rodents to dissect the neural
circuitry involved. However, these animals do not readily
display certain types of behavior and may not be appropriate
for some investigations (11). For example, most laboratory
animals do not exhibit strong social bonds between mates,
and male animals typically do not display paternal behavior or
female-directed aggression (12). Because mating naturally
induces these behaviors in the socially monogamous prairie
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vole (Microtus ochrogaster), this rodent species represents a
unique animal model to investigate neural circuitry program-
ming pair-bonds (12,13).

Lesions of the vomeronasal organ (14) or MeAPD (15)
impair partner preference formation and affiliation in prairie
voles. In male prairie voles, parvocellular vasopressin (AVP)
neurons in the nucleus circularis and medial supraoptic
nucleus are both recruited during aggression (16) and release
their contents in the anterior hypothalamus (AH) activating
AVP 1A receptors (V1aR) to facilitate aggression selectively
toward novel conspecifics but not toward a partner (17). Two
weeks of sociosexual experience also induce structural plas-
ticity of V1aR to mediate selective aggression (17). Further-
more, viral vector-mediated gene transfer of V1aR into the AH
of sexually naïve male animals recapitulates pair-bonding-
induced aggression (17). Finally, dopamine signaling in the
rostral nucleus accumbens shell (NAcc) is also involved in
selective aggression to maintain monogamous pair-bonds
(18). However, despite these studies, we know little about
how these brain regions, genes, and neurochemicals integrate
into a network to control pair-bonding behavior (19).

Because recent work demonstrates regional overlap of
molecularly specified neurons in the ventral medial hypothalamus
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that control properties characteristic of emotion states regu-
lating social (20), sexual (21,22), and aggressive (21–25)
behaviors, we investigated whether individual pair-bonding
behaviors are encoded via similar or different neuronal sys-
tems. Here, we focused on examining the neurotransmitters
AVP, corticotropin-releasing factor (CRF), and serotonin
(5-HT) for their roles in regulating behavioral states. We
proposed that AVP/CRF facilitate aggression, while 5-HT
functions to inhibit the activity of the AVP/CRF systems in
the AH to switch from aggression to affiliation. Our data
provide necessary refinement steps toward understanding
how multiple neurotransmitter systems interact within neuronal
microcircuits to drive attachment.
METHODS AND MATERIALS

Subjects

Subjects were male prairie voles (90–120 days of age) that
were either sexually naive or pair-bonded with a female subject
for 2 weeks, which reliably induces partner preferences and
selective aggression toward novel conspecifics (16–18)
(Supplemental Experimental Procedures). All experiments were
conducted in accordance with the guidelines of the Institutional
Animal Care and Use Committee at the Florida State University.

Behavioral Assays

Subjects’ aggressive behaviors were examined using the
resident-intruder test (RIT), a well-characterized and ethologi-
cally valid model of offensive aggression (26). Briefly, a con-
specific intruder was introduced into the home cage of the
subject (resident), and the resident was scored for 10 minutes
for aggressive responses, including the frequency of lunges,
bites, and chases, as well as the duration of affiliative side-by-
side contact and anogenital investigation, as previously
described (16,17) (Supplemental Experimental Procedures).

Monosynaptic Tracer Injection Parameters

Subjects were stereotaxically injected into the AH (coordinates
from bregma: posterior 0.55 mm, lateral 6 0.75 mm, ventral 6.1
mm), rostral NAcc shell (anterior 1.60 mm, lateral 6 1.0 mm,
ventral 4.5 mm), lateral septum (LS) (anterior 0.80 mm, lateral
6 0.61 mm, ventral 4.1 mm), or MeAPD (posterior 1.30 mm, lateral
6 2.70 mm, ventral 7.0 mm), respectively, with glass capillary
micropipettes (A-M Systems, Inc., Carlsborg, WA) filled with 2%
Fluoro-Gold (FG) (Fluorochrome, Englewood, CA) and 0.5% cresyl
violet dye in 0.01 mol/L phosphate buffer solution (PBS) (pH 7.4)
under sodium pentobarbital (0.1 mg/10 g body weight). Injection
placement was evaluated by processing sections spanning the
target area for FG immunocytochemical detection and cresyl violet
dye spread. Data from the subjects with correct injection place-
ment were included in neuroanatomical mapping (Supplemental
Figure S3 and Supplemental Experimental Procedures).

Brain Microdissection and High-Performance Liquid
Chromatography With Electrochemical Detection
Analysis

Coronal brain sections (300 μm) were cut on a cryostat and
frost mounted onto microscope slides. Bilateral tissue punches
232 Biological Psychiatry February 1, 2017; 81:231–242 www.sobp.or
were taken using a 1-mm-diameter scalpel under 203
magnification on a Leica DMRB dissection microscope
(Leica Biosystems Inc., Buffalo Grove, IL). Tissue samples
were localized to the AH, medial preoptic area, and para-
ventricular nucleus of the hypothalamus and stored at 2801C.
Subsequently, 5-HT and its metabolite 5-hydroxyindoleacetic
acid (5-HIAA) were measured using high-performance
liquid chromatography with electrochemical detection
(Supplemental Experimental Procedures).

Intra-AH Stereotaxic Cannulation and Drug
Microinfusion

Subjects were anesthetized with sodium pentobarbital (0.1
mg/10 g body weight) and then stereotaxically implanted with
guide cannula aimed at the AH, as described previously
(17,18). All injections were made using a Hamilton syringe
connected to an automatic micropump. Immediately after a
10-minute RIT test, subjects were overdosed with sodium
pentobarbital and rapidly decapitated and their brains were
sectioned for histologic verification of cannula placement.
Subjects with correct cannula placement were included in
data analysis (Supplemental Figure S2 and Supplemental
Experimental Procedures).

Brain Preparation, Immunocytochemistry, and Image
Analysis

Subjects were anesthetized with sodium pentobarbital and
then perfused through the ascending aorta with 0.9% saline,
followed by 4% paraformaldehyde in 0.1 mol/L PBS. Brains
were dissected, postfixed for 2 hours in 4% paraformalde-
hyde, and then stored in 30% sucrose in PBS. Brains were cut
into 30-μm coronal sections on a freezing microtome, and
floating sections were stored in 0.1 mol/L PBS with 1%
sodium azide at 41C until immunostaining.

Different sets of floating brain sections at 150-mm intervals
were processed for single- or double-immunoreactive (ir) label-
ing of FG, Fos, FG/Fos, FG/tyrosine hydroxylase (TH), FG/AVP,
FG/5-HT, or FG/CRF. AH sections were processed for double-
or triple-ir labeling for AVP, V1aR, 5-HT, 5-HT1A receptors
(5-HTr1a), CRF, CRF2 receptors (CRFR2), FG, and Fos.

We quantified the colocalization of 5-HTr1a, V1aR, CRFR2,
and 5-HT on AVP-, CRF-, and/or FG-expressing neurons in the
AH. Leica imaging software (Leica Biosystems Inc.) profile
methods of cell counting were employed and area measure-
ments (square millimeters) were taken on each section analyzed
to determine cell densities. Photomicrographs were captured by
using a Zeiss Axioskop 2 (Carl Zeiss NTS, LCC, Peabody, MA)
microscope with a SPOT RT Slider (Diagnostic Instruments,
Sterling Heights, MI) camera and SPOTTM (version 3.0.6; Diag-
nostic Instruments) software. Image files were then stored and
subsequently analyzed (Supplemental Experimental Procedures).

Real-Time In Vivo Brain Microdialysis With
Neurochemical Analyses

Microdialysis probe construction, cannulation, and dialysate
collection were previously described (17,27,28) (Supplemental
Experimental Procedures). Immediately after RIT, subjects
were overdosed with sodium pentobarbital and rapidly decapi-
tated and their brains were sectioned for histologic verification
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of probe placement. Subjects with correct probe placement in
the AH were included in data analysis. Microdialysis samples
were processed for AVP and CRF contents using standard
enzyme-linked immunosorbent assay kits and 5-HT content
using high-performance liquid chromatography with electro-
chemical detection.

RESULTS

Neuronal Activation Associated With Opposing
Behavioral States

To establish a neural framework of the circuitry associated
with individual pair-bonding behaviors, we performed affiliation
and aggression assays in male subjects injected with FG. Male
subjects displayed offensive aggression toward novel female
subjects and social affiliation with their female partner. These
robust patterns of selective aggression and affiliation were
observed in each of the four tracing groups (Figure 1A, B). No
group differences were found in general locomotor activity,
social interest, exploration, defense, or courtship behaviors
(Supplemental Tables S1A–D).

The stereological parameters, anatomical coordinates, and
abbreviations for each brain area quantified are summarized in
(Supplemental Table S2). Stereological quantification found no
significant differences in the density of FG-ir neurons among
tracing groups, indicating consistent microinjection volumes
(Supplemental Table S3). We have previously identified sub-
sets of neurons selectively activated by the expression of
affiliation and aggression (16,29). Therefore, we focused on
this distinct subpopulation by using Fos, the protein product
of an immediate early gene, c-fos, to assess neuronal activa-
tion in retrogradely labeled projection neurons recruited during
affiliation or aggression. We added a baseline control group of
handled male subjects that were not exposed to social stimuli
during RIT. Male subjects displaying aggression toward a
novel female subject showed a significantly higher density of
Fos-ir in the AH and MeAPD than male subjects displaying
affiliation, which, in turn, showed a higher density of Fos-ir
than control subjects, and this pattern of Fos-ir was consistent
across all tracing groups (Figure 1C–E, I–K). There was a
significantly higher density of FG-ir/Fos-ir double-labeled
neurons in the AH projecting to the LS (Figure 1F, I) and in
the MeAPD projecting to the AH (Figure 1H, J) in male subjects
displaying aggression compared with male subjects displaying
affiliation and control subjects. Conversely, there was a
significantly higher density of FG-ir/Fos-ir double-labeled
neurons in the dorsal raphe (DR) projecting to the AH in male
subjects displaying affiliation than in male subjects displaying
aggression or control subjects (Figure 1H, K).

Neurochemical Microcircuit Connectivity

Multiple-label immunofluorescence experiments were per-
formed to identify the cytochemical phenotypes of FG-ir
projection neurons recruited during affiliation (DR-AH) and
aggression (MeAPD-AH-LS). FG-ir neurons in the AH or
MeAPD did not coexpress AVP, TH, gamma-aminobutyric
acid, glutamate, or oxytocin but stained positively for CRF
(Supplemental Table S4). Because the data above revealed
activation of a MeAPD-AH-LS circuit during aggression,
Biological Psy
we focused on stereologically quantifying the percentage of
FG-ir/CRF-ir double-labeled neurons in the AH and MeAPD from
the LS and AH tracing groups. Thirty-nine percent of the total
number of Fos-ir/FG-ir neurons in the AH projecting to the LS
and 8% of the total number of Fos-ir/FG-ir neurons in the
MeAPD projecting to the AH of aggressive male subjects stained
positively for CRF (Table 1). Although we found FG-ir and CRF-ir
cells in the paraventricular nucleus of the hypothalamus and bed
nucleus of the stria terminalis across each injection group, we did
not see any FG-ir/CRF-ir colocalized cells.

Furthermore, previous mapping studies indicated the
source of 5-HT innervation to the medial supraoptic nucleus
and paraventricular nucleus of the hypothalamus-AVP sys-
tems (30). Here, we found that 16% of the total number of Fos-
ir/FG-ir neurons in the DR projected to the AH and coex-
pressed 5-HT in bonded male subjects displaying affiliation
(Table 1). Finally, because the catecholaminergic circuit from
the ventral tegmental area (VTA) to NAcc has been well
established in a variety of species including voles (31,32), we
processed sections spanning the VTA taken from the NAcc FG
injection group for TH and FG double-labeling, as an internal
control for validating our retrograde tract-tracing methods.
Twenty-seven percent of the FG-ir neurons in the VTA
projecting to the NAcc coexpressed TH (Table 1), implicating
a population of mesolimbic dopaminergic neurons extending
from the VTA to the NAcc (33,34). Together, our data
unraveled a novel circuit associated with affective behavior
outside the hypothalamic-pituitary-adrenal axis (35).
5-HT and AVP Modulation of Selective Aggression via
5-HTr1a Activation

AVP in the AH mediates offensive aggression in rodent
species (36), including prairie voles (17), and this AVP effect
is attenuated by activation of the 5-HT system (37,38). Results
from our tract-tracing data suggested that a DR-AH 5-HT
circuit was activated during affiliation but not aggression.
Therefore, we tested the hypothesis that 5-HT in the AH
mediates AVP-induced or pair-bonding-induced aggression.

To increase accumulation of extracellular 5-HT, we used
fluoxetine, a commonly used selective serotonin reuptake
inhibitor, which blocks mating-induced aggression in male
prairie voles (39) and agonistic behavior in other species
(40–47). Results from meta-analytic studies demonstrated that
increased 5-HT had the strongest inhibitory effect on aggres-
sion in rodent species when aggression was offensive,
fluoxetine was used, injection was intraperitoneal, and treat-
ment was acute (48). Therefore, we followed a similar selective
serotonin reuptake inhibitor injection and dosing regimen.

To induce aggression in sexually naïve male subjects, we
used intra-AH administration of AVP (500 ng/side), which
induces offensive aggression in male prairie voles (17). Sex-
ually naïve male subjects that received bilateral intra-AH
injections of AVP (in 200 nL cerebrospinal fluid [CSF]) were
divided into three groups that received intraperitoneal
injections of saline or saline containing a low (1 mg/kg) or
high (6 mg/kg) dose of fluoxetine followed by a 10-minute RIT
toward a novel female subject. Both doses of fluoxetine bloc-
ked AH-AVP-induced aggression (Supplemental Figure S1A),
while the high dose of fluoxetine also increased affiliation
chiatry February 1, 2017; 81:231–242 www.sobp.org/journal 233
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Figure 1. Differential limbic circuit activation associated with affiliation and aggression. (A) Male prairie voles that pair-bonded with a female subject for 2 weeks
displayed robust aggression against a novel female subject but (B) high levels of affiliation toward their familiar female partner. This behavioral pattern was consistent
across animals that received Fluoro-Gold (FG) injections into the lateral septum (LS), nucleus accumbens (NAcc), anterior hypothalamus (AH), or posterior dorsal
medial amygdala (MeAPD) with significant main (F2,4,20 5 32.58, p, .001 for aggression and F2,4,20 5 37.29, p, .001 for affiliation) but not interaction (F2,4,20 5 1.37,
nonsignificant [ns] for aggression and F2,4,20 5 1.79, ns for affiliation) effects. In these four FG injection groups, aggression against a novel female subject induced a
significant increase in the density of Fos-immunoreactive (ir) neurons in the AH (C, D) and MeAPD (C–E), while affiliation induced a significant increase in the density of
Fos-ir neurons in the dorsal raphe (DR) compared with control subjects with significant main (F2,4,20 5 6.85, p , .05 for aggression and F2,4,20 5 7.64, p , .05 for
affiliation) but not interaction (F2,4,20 5 1.13, ns for aggression and F2,4,20 5 1.32, ns for affiliation) effects. In addition, aggression induced a significant increase in the
density of neurons double-labeled for Fos-ir/FG-ir in the AH (F) and MeAPD (H) compared with affiliation or control subjects with significant main (F2,4,20 5 5.93,
p , .05) but not interaction (F2,4,20 5 1.68, ns) effects. Conversely, male subjects displaying affiliation toward their female partner had an increased density of
Fos-ir/FG-ir double-labeling in the DR compared with male subjects displaying aggression against a novel female subject and control subjects with significant main
(F2,4,20 5 5.43, p , .05) but not interaction (F2,4,20 5 1.09, ns) effects (H). Light-field photomicrographs (30 μm stack) of neurons labeled for FG-ir (brown cytoplasmic
staining), Fos-ir (black nuclear staining), or both in the AH (FG injected into LS) (I), MeAPD (FG injected into AH) (J), and DR (FG injected into AH) (K) of male subjects
exposed to a stranger female subject. The open black circles shown in panels (I), (J), and (K) depict the area at higher magnification (5 μm stack) in the inset. Bars
indicate means 6 standard error of the mean. **p , .01 (A, B) Bars labeled with different letters (C–H) differ significantly by post hoc Student Newman-Keuls tests of
significance examining both main effects and interactions with analysis of variance p value set to , .05. Scale bar 5 100 μm. The insert within each panel shows
neurons double-labeled for Fos-ir/FG-ir, while scale bar 5 10 μm. See also Supplemental Table S1. CA, cerebral aqueduct; F, fornix; OT, optic tract.
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(Supplemental Figure S1B) relative to saline control subjects.
Fluoxetine treatment did not affect general locomotor activity,
social interest, exploration, defense, or courtship behaviors
(Supplemental Table S5).
234 Biological Psychiatry February 1, 2017; 81:231–242 www.sobp.or
To assess the effect of fluoxetine treatment on 5-HT activity
in the brain, three groups of sexually naïve male prairie voles
were injected (intraperitoneally) with saline, a low (1 mg/kg)
dose of fluoxetine, or a high (6 mg/kg) dose of fluoxetine, and
g/journal
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Table 1. Neurochemical Microcircuit Phenotyping

FG Injection Area Markers Cells %

LS AH CRF/Fos/FG 152 39a

AH MeAPD CRF/Fos/FG 66 8a

AH DR 5-HT/Fos/FG 58 16a

NAcc VTA TH/FG 774 27b

AH, anterior hypothalamus; CRF, corticotropin-releasing factor;
DR, dorsal raphe; FG, Fluoro-Gold; 5-HT, serotonin; ir, immunoreac-
tive; LS, lateral septum; MeAPD, posterior dorsal medial amygdala;
NAcc, nucleus accumbens; TH, tyrosine hydroxylase; VTA, ventral
tegmental area.

aPercent of the total Fos-ir/FG-ir double-labeled cells.
bPercent of the total FG-ir cells.
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their brain tissue was microdissected (Supplemental Figure S1F)
for 5-HT and its metabolite 5-HIAA measurement using
high-performance liquid chromatography with electrochemical
detection. Treatment of fluoxetine at the high dose increased
levels of 5-HT (Supplemental Figure S1C) and 5-HIAA
(Supplemental Figure S1D) in the AH. Both fluoxetine doses
decreased 5-HT turnover, indicated by a low 5-HIAA/5-HT
ratio in the AH (Supplemental Figure S1E). This effect of
fluoxetine on 5-HT turnover has been corroborated in previous
work (39,49–51).

We then focused on the AH to determine the receptor-
specific role of 5-HT attenuating AH-AVP-induced aggression.
We focused on 5-HTr1a because of their antiaggressive
properties (52) and site-specific effects in the AH on modulat-
ing offensive aggression (53). 5-HTr1a were expressed on
AVP-ir neurons (Figure 2A, C, D) surrounded by a dense
network of 5-HT-ir boutons (Figure 2B). Sexually naïve male
subjects received bilateral intra-AH injections of AVP (500 ng/
side) in CSF or CSF containing a low (0.5 μg/side) or high
(5 μg/side) dose of a 5-HTr1a agonist [R(1)-8-OH-DPAT]
followed by a 10-minute RIT toward a novel female subject.
Doses were determined based on previous studies (52). Intra-
AH microinjections of the 5-HTr1a agonist attenuated
AVP-induced aggression (Figure 2E) and enhanced social
affiliation compared with CSF control subjects (Figure 2F).
Treatment with R(1)-8-OH-DPAT did not affect other behav-
iors (Supplemental Table S6). These data indicate that 5-HTr1a
activation by R(1)-8-OH-DPAT abolishes selective aggression
that was pharmacologically induced by intra-AH AVP admin-
istration. We then tested whether manipulation of 5-HTr1a in
the AH influenced aggression naturally induced by pair-bond-
ing (16–18). Pair-bonded male subjects received intra-AH
injections of CSF (control) or CSF containing a 5-HTr1a
agonist [R(1)-8-OH-DPAT; 5 μg/side] or antagonist [4-(20-
methoxy-phenyl)-1-[20-(n-20 0-pyridinyl)-p-iodobenzamido]-
ethyl-piperazine; 5 μg/side] followed by a 10-minute RIT
toward a novel female subject. Compared with CSF control
subjects, intra-AH infusions of the 5-HTr1a agonist abolished
aggression (Figure 2G) and facilitated affiliation (Figure 2H).
Conversely, blocking 5-HTr1a in the AH enhanced aggression
above vehicle controls. Other behaviors were not affected
(Supplemental Table S7).

Lastly, we tested the behavioral consequences of AVP
administration in the AH of male subjects treated with a
combination of intra-AH 5-HTr1a agonist/antagonist infusions.
Pair-bonded male subjects were divided into one of four
Biological Psy
groups that received intra-AH infusions of AVP (500 ng in
200 nL CSF/side) in CSF (control, n 5 8) or CSF containing
a 5-HTr1a agonist [R(1)-8-OH-DPAT; 5 μg/side, n 5 9],
antagonist (4-(20-methoxy-phenyl)-1-[20-(n-20 0-pyridinyl)-p-
iodobenzamido]-ethyl-piperazine; 5 μg/side, n 5 7), or both
[R(1)-8-OH-DPAT 1 4-(20 0-methoxy-phenyl)-1-[20-(n-20 0-pyri-
dinyl)-p-iodobenzamido]-ethyl-piperazine; 5 μg/side, n 5 8]
followed by a 10-minute RIT toward a novel female subject.
Overall, male subjects displayed significantly higher levels of
offensive aggression and low levels of affiliation toward a
novel female subject (Figure 2I, J). Male subjects treated with
the 5-HTr1a 5-μg antagonist exhibited significantly higher levels
of offensive aggression (Figure 2I). No group differences were
found in affiliation (Figure 2J) or other behaviors measured
(Supplemental Table S8), extending previous findings (37–39).

Cytochemical Profiling of AH Neurons

As AVP, 5-HT, and CRF coordinate patterns of affiliation and
aggression, we histochemically profiled the AH for these
neurochemical markers and their receptors (Table 2). Twenty
percent of AVP-ir neurons in the AH coexpressed 5-HTr1a-ir
(Figure 3A–C; Table 2), which confirms our triple-labeling
experiments (Figure 2A–D). Sixteen percent of CRF-ir
neurons in the AH coexpressed 5-HTr1a-ir (Figure 3D–F;
Table 2) and 45% of AVP-ir neurons coexpressed CRFR2
(Figure 3G–I; Table 2). Finally, 14% of CRF-ir neurons coex-
pressed V1aR-ir (Figure 3J, K, M; Table 2). In addition, 45%
of neurons double-labeled for CRF-ir/V1aR-ir coexpressed
FG-ir (Figure 3J–M) in male subjects that received FG injec-
tions into the LS.

AH 5-HT Mediates Neuropeptide Release to
Modulate Behavioral Switches

Pair-bonded male subjects were implanted with a micro-
dialysis probe aimed at the AH. After 1-week recovery,
subjects were randomly divided into four pharmacologic treat-
ment groups and received reverse microdialysis infusion of
CSF or CSF containing a receptor agonist or antagonist for
V1aR, CRFR2, or 5-HTr1a, while their behavior toward a
familiar partner or a novel female subject was examined using
RIT (Figure 4A). Microdialysis samples were collected and
subsequently processed for AVP, CRF, and 5-HT contents. In
control male subjects (CSF), aggression levels were low when
they were reunited with their female partner but high when
they were exposed to a novel female subject (Figure 4B), and a
reverse pattern was found in affiliative behavior (Figure 4C).
Pharmacologic inactivation of V1aR or CRFR2, as well as
activation of 5-HTr1a, in the AH diminished aggression and
facilitated affiliation toward novel female subjects. Conversely,
activation of V1aR or CRFR2 induced aggression and dec-
reased affiliation toward their female partner (Figure 4B, C).
Furthermore, blockade of 5-HTr1a in the AH impaired affiliation
toward female partners (Figure 4C). None of the drug com-
pounds affected other behaviors measured (Supplemental
Tables S9–S11).

Changes in behavioral responses toward a partner or novel
female subject were associated with dynamic neurochemical
release patterns in the AH. Enhanced 5-HT release coupled
with decreased AVP and CRF release was associated with low
chiatry February 1, 2017; 81:231–242 www.sobp.org/journal 235
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Figure 2. Anterior hypothalamus
(AH)-serotonin (5-HT) 1A receptor
(5-HTr1a) activation attenuates vaso-
pressin (AVP)- and pair-bonding-
induced aggression. (A) AVP, (B)
5-HT, (C) 5-HTr1a, and (D) AVP/5-
HT/5-HTr1a labeling in the AH. AVP/
5-HTr1a double-labeled neurons indi-
cated by white arrowheads. For the
behavioral experiments (E–H), sexu-
ally naïve male prairie voles received
intra-AH injections of AVP (500 ng in
200 nL cerebrospinal fluid [CSF]/side)
or AVP with a low (0.5 mg/side) or high
(5 mg/side) dose of a 5-HTr1a agonist
[R(1)-8-OH-DPAT] followed by a
10-minute resident intruder test toward
a novel female subject. Both doses of
the 5-HTr1a agonist blocked AH-AVP-
induced aggression (F2,18 5 9.23, p ,

.01) (E) and enhanced affiliation (F2,18
5 4.20, p , .05) (F) compared with
CSF-injected control subjects. Male
prairie voles that were pair-bonded
with a female subject for 2 weeks
were divided into three groups that
received intra-AH infusions of CSF
(200 nL/side) or CSF containing a
5-HTr1a agonist (5 mg/side) or antagonist
[4-(20-methoxy-phenyl)-1-[20-(n-20 0-
pyridinyl)-p-iodobenzamido]-ethyl-
piperazine; 5 mg/side] followed by a
10-minute resident intruder test.
(G, H) Male subjects treated with the
5-HTr1a agonist displayed a signifi-
cant decrease in aggression (F2,20 5

40.83, p , .001) and an increase in
affiliation (F2,20 5 8.01, p , .01)
compared with CSF-injected control
subjects. (G) In contrast, male sub-
jects treated with the 5-HTr1a antago-
nist displayed enhanced aggression
toward a novel female subject than
did CSF-injected control subjects
(F2,20 5 40.83, p , .001). Lastly, we
tested the behavioral consequences
of AVP administration in the AH of
pair-bonded male subjects treated
with a combination of 5-HTr1a ago-
nist/antagonist infusions. Overall,
male subjects displayed significantly
higher levels of offensive aggression
and low affiliation toward a sexually
receptive female subject (I, J). Male
subjects treated with the 5-HTr1a
5-μg antagonist exhibited significantly
higher levels of offensive aggression
(F2,20 5 5.39, p , .05) (I). The effect of
enhancing aggressive responding by
blocking AH-5-HTr1a in intra-AH-AVP
infused sexually naïve male subjects
(E–H) is abolished in pair-bonded
intra-AH-AVP treated male subjects,
while 5-HTr1a antagonist treatment in
these male subjects enhances offen-
sive aggression (I). Thus, the effect of

5-HTr1a activation on aggression can be blocked by AVP, whereas the effect of AVP cannot be blocked by 5-HT antagonists. Bars indicate means 6 standard
error of the mean. Bars with different alphabetical letters differ significantly from each other. Scale bar 5 10 μm.
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Table 2. AH Double-Label Immunofluorescence Neurochemical Profiling (No. Neurons/mm2 Brain Region Volume)

No.
Animals

No.
Sections

Neurochemical Markers

AVP CRF 5-HTr1a CRFR2 V1aR
Neurochemical Double-

Labeling

8 16 179.8 6 19.1a

(19.76%)b
104.5 6 13.8
(33.99%)b

35.5 6 9.4 (AVP/5-HTr1a)

6 12 439.3 6 35.2
(16.55%)b

122.9 6 15.5
(59.13%)b

72.7 6 13.7 (CRF/5-HTr1a)

7 14 142.6 6 16.0
(44.99%)b

158.3 6 29.6
(40.53%)b

64.2 6 8.4 (AVP/CRFR2)

8 16 411.1 6 28.9
(14.49%)b

348.6 6 37.8
(25.10%)b

87.4 6 14.3 (CRF/V1aR)

AH, anterior hypothalamus; AVP, vasopressin; CRF, corticotropin-releasing factor; CRFR2, CRF2 receptors; 5-HTr1a, 5-HT1A receptors; V1aR,
AVP 1A receptors.

aData are presented as mean 6 standard error.
bPercent marker coexpressing the additional label on the same row.
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aggression and high affiliation (Figure 4D–G). Conversely, a
reverse neurotransmitter release pattern was associated with
aggression toward a novel female subject (Figure 4D). These
release findings were also observed by activating V1aR or
CRFR2 in the AH (Figure 4E, F), which induced aggression and
impaired affiliation (Figure 4B, C). Diminished aggression and
enhanced affiliation (Figure 4B, C) toward novel female
subjects, by V1aR or CRFR2 blockade or by 5-HTr1a activa-
tion, were associated with an inhibition in AVP and
CRF release (Figure 4E–G). Finally, impaired partner affiliation,
Biological Psy
by 5-HTr1a antagonism in the AH, was associated with the
disappearance of high 5-HT and low AVP/CRF release
(Figure 4G).
DISCUSSION

Healthy social relationships are necessary for maintaining
human mental health, yet we know little regarding intercon-
nections of brain regions and neurochemical interactions
underlying the formation and maintenance of sociality. Using
Figure 3. Serotonin (5-HT)-, corti-
cotropin-releasing factor (CRF)-, and
vasopressin (AVP)-expressing neu-
rons/receptors colocalize in the ante-
rior hypothalamus. Photomicrographs
displaying cytochemical marker fluor-
escence histochemistry in the anterior
hypothalamus. (A) 5-HT1A receptors
(5-HTr1a), (B) AVP, and (C) 5-HTr1a/
AVP double-labeled neurons indi-
cated by white arrowheads. (D) 5-
HTr1a, (E) CRF, and (F) 5-HTr1a/
CRF double-labeled neurons indi-
cated by white arrowheads. (G) CRF2
receptors (CRFR2), (H) AVP, and
(I) CRFR2/AVP double-labeled neu-
rons indicated by white arrowheads.
(J) AVP 1A receptors (V1aR), (K) CRF,
(L) Fluoro-Gold (FG) (injected into the
lateral septum), and (M) V1aR/CRF/
FG triple-labeled neurons indicated by
white arrows. Scale bar 5 10 μm.
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Figure 4. Behaviorally and pharma-
cologically evoked neurotransmitter
release in the anterior hypothalamus
(AH) reveals dynamic regulation of beha-
vioral switches. (A) Real-time in vivo
brain microdialysis paradigm. Pair-
bonded male subjects were stereotaxi-
cally implanted with a microdialysis
probe aimed at the AH and divided into
four pharmacologic treatment groups for
vehicle (cerebrospinal fluid [CSF]) infu-
sions with manipulations of vasopressin
(AVP), corticotropin-releasing factor
(CRF), and serotonin (5-HT) systems,
respectively. Microdialysate samples
were collected every 30 minutes over a
5-hour period in which male subjects
were reunited with their female partner,
introduced to a novel female subject,
and then reexposed to their female
partner again. Reverse dialysis of phar-
macologic compounds were infused
during exposure to novel female sub-
jects and reexposure to their female
partner. (B, C) Blockade of AVP 1A
receptors (V1aR) or CRF2 receptors
(CRFR2) or activation of 5-HT1A recep-
tors (5-HTr1a) in the AH abolished
aggression (F3,28 5 56.25, p , .001)
(B) and facilitated affiliation (F3,28 5

41.61, p, .001) (C) toward novel female
subjects. Activation of either V1aR or
CRFR2 induced aggression (F3,28 5

18.26, p , .01) (B) and reduced affilia-
tion (F3,28 5 15.92, p , .01) (C) toward
their female partner, while blockade of
5-HTr1a decreased affiliation (F3,28 5

63.74, p , .001) (C) but did not induce
aggression toward their female partner
(F3,28 5 2.91, nonsignificant) (B). (D) In
CSF control male subjects, 5-HT release
increased while AVP/CRF release
decreased when male subjects were
either reunited or reexposed (F3,28 5

14.52, p , .01) to their female partner.
A reverse pattern of neurotransmitter
release was found when male subjects
were fighting novel female subjects
(F3,28 5 17.49, p , .01). (E) Blockade
of V1aR in the AH attenuated AVP/CRF
release associated with exposure to
novel female subjects (F3,28 5 13.46,
p , .01), while activation of V1aR facili-
tated AVP/CRF release and decreased
5-HT release in the AH during partner
reexposure (F3,28 5 15.82, p , .01).
(F) Blockade of CRFR2 also diminished

AVP/CRF release associated with exposure to novel female subjects (F3,28 5 14.88, p , .01), while activation of CRFR2 enhanced AVP/CRF release and decreased
5-HT release during partner reexposure (F3,28 5 13.37, p , .01). (G) Activation of 5-HTr1a attenuated AVP/CRF release associated with exposure to novel female
subjects (F3,28 5 18.59, p , .01), while blockade of 5-HTr1a diminished increased 5-HT release and decreased AVP/CRF release during partner reexposure. Bars
indicate means 6 standard error of the mean. Bars with different alphabetical letters differ significantly from each other at p , .01. Line time points indicate percent
change from baseline 6 standard error of the mean. *p , .01. ANT, antagonist; AGO, agonist; B, baseline (with CSF infusions). See also Supplemental Figure S1D.
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the socially monogamous prairie vole, we provide data, for
the first time, illustrating a novel limbic network wherein
several neurochemical systems converge to regulate etho-
logically important behaviors critical for male-female pair-
bonding.
238 Biological Psychiatry February 1, 2017; 81:231–242 www.sobp.or
Our data indicate that the display of aggression by male
voles was associated with activation of a subpopulation of
neurons in the MeAPD projecting to the AH and ones in the
AH projecting to the LS, and those projection neurons in
the MeAPD-AH-LS circuit expressed CRF. Male voles are
g/journal
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Figure 5. Microcircuit switch
mechanism programming behavioral
state. (A) Schematic illustrates the
neurocircuitry and neurotransmitter
circuit phenotypes summarized from
monosynaptic neuronal tract-tracing
and histochemical experiments. Black
arrows indicate anatomical connec-
tions and neurochemical projections
are color-coded. The anterior hypo-
thalamus (AH) projects to forebrain
areas ventral pallidum (VP) and bed
nucleus of the stria terminalis (BNST),
which are involved in pair-bonding
behavior; intersects several dopami-
nergic regions, including the ventral
tegmental area (VTA), nucleus accum-
bens (NAcc), caudate putamen (CP),
and prefrontal cortex (PFC); integrates
olfactory and pheromonal information
from the vomeronasal organ through
the accessory olfactory bulb (AOB) via
the posterior dorsal medial amygdala
(MeA); receives corticotropin-releas-
ing factor (CRF) projections from the
posterior dorsal MeA and serotoner-
gic input from the dorsal raphe (DR);
and sends CRF projections to the
lateral septum (LS). (B) During affilia-
tion, a subset of serotonin (5-HT)
neurons in the DR project axonal
collaterals and release 5-HT in the
AH. Released 5-HT acts on postsy-
naptic 5-HT1A receptors (5-HTr1a)
coexpressed on vasopressin (AVP)-
and CRF-containing interneurons, in
the medial supraoptic nucleus
(mSON) and nucleus circularis (NC),
to suppress local AVP/CRF release,
enhance affiliation, and inhibit aggres-
sion. (C) During aggression, a subpop-
ulation of CRF neurons in the posterior
dorsal MeA project dendritic arbors to
and release CRF in the AH. Released
CRF binds to postsynaptic CRF2
receptors (CRFR2) coexpressed on

the membrane surface of AVP interneurons, in the AH, to facilitate local AVP release. Released AVP then acts on postsynaptic AVP 1A receptors (V1aR)
coexpressed on a subset of CRF neurons projecting to the LS, where CRF is released and activates CRFR2-expressing neurons to escalate aggression.
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physiologically stressed when separated from their partner
(54,55), and when presented with a novel conspecific, this
extra-hypothalamic CRF stress circuit is engaged to facilitate
aggression (16–18). Released CRF in the AH acts on CRFR2
expressed on AVP neurons. CRFR2 are coupled to a stim-
ulatory G-protein signaling cascade (56), activating adenylate
cyclase and increasing cyclic adenosine monophosphate and
intracellular ionized calcium (57,58). CRFR2 activation may
lead to membrane depolarization, facilitating AVP and CRF
release in the AH to enhance aggression. On the other hand,
released AVP can bind to V1aR expressed on CRF neurons.
V1aR are also coupled to stimulatory G-proteins (59,60), and
their activation enhances adenylate cyclase activity and
increases cyclic adenosine monophosphate and intracellular
ionized calcium (61,62) within CRF neurons projecting to the
LS, where CRF is released and acts on CRFR2 (63,64) to
Biological Psy
escalate aggression (65,66). Thus, AH-AVP microinfusion can
increase CRF levels and may reduce 5-HT inputs to the AH by
stimulating gamma-aminobutyric acidergic projections synaps-
ing onto 5-HT neurons in the DR-AH pathway. Furthermore,
released AVP in the AH can act directly on local V1aR-
expressing neurons to regulate selective aggression (17).

Conversely, when male voles were reunited with their
partner, a subset of neurons in the DR that expresses 5-HT
and projects to the AH was activated. Released 5-HT in the
AH acts on 5-HTr1a expressed on both AVP and CRF
neurons. 5-HTr1a are coupled to an inhibitory G-protein
signaling cascade (67), and their activation results in
decreases in adenylate cyclase activity, intracellular Ca21,
and cellular depolarization (68,69), leading to a decrease in
AVP/CRF release in the AH. Involvement of a serotonergic
microcircuit in pair-bonding behavior is further supported by
chiatry February 1, 2017; 81:231–242 www.sobp.org/journal 239
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our data showing that acute treatment of fluoxetine sup-
pressed AVP-induced aggression, reduced AH 5-HT turnover,
and enhanced social affiliation in sexually naïve male subjects.
Indeed, fluoxetine has been found to block agonistic behavior
in several species including humans (42,70–72) and to abolish
AVP-induced aggression in rodents (44,47) by decreasing
levels of AVP in the AH (71,73).

5-HT has long been considered an important neurotrans-
mitter in the regulation of impulsive aggressive behavior.
Patients with a history of physical violence exhibit low CSF
levels of 5-HIAA (74,75). Low 5-HIAA typically indicates
decreased 5-HT release and correlates with aggressive behav-
ior (76) and alcohol-related forcefulness (77) in adults, as well
as impulsive violent behavior in children (78). In free-ranging
rhesus monkeys, low levels of CSF 5-HIAA correlate with
increased aggression and risk taking (79,80). In talapoin
monkeys with an established social hierarchy, high levels of
5-HIAA in subordinates are related to their low social status
characterized by high levels of withdrawal and diminished
aggression (81). Human imaging work has shown that a DR
5-HT brainstem microcircuit is activated when subjects are
presented with images of their long-term partner (82).

The notion that 5-HT may inhibit AVP release in the human
brain is supported by clinical findings that patients presenting
with a personality disorder and exhibiting a lifetime history of
fighting and assault showed a positive correlation between
CSF levels of AVP and aggression (83) with a hyporeactive
5-HT system as assessed by fenfluramine challenge (84).
Fenfluramine is a 5-HT-releasing drug that normally stimulates
prolactin release as a neuroendocrine measure of central 5-HT
activity. Patients with a lifetime history of escalated aggression
and violence show blunted prolactin release in response to
fenfluramine (85,86). This is also true in macaque monkeys,
which show increased aggressive responding that negatively
correlates with diminished prolactin release in response to
fenfluramine challenge (87). Interactions between AVP and
5-HT have also been implicated in pathologic aggression in
patients with borderline personality disorders (83) who exhibit
impairment in bonding with mates (88,89) because of partner-
directed violence (90). Interactions between CRF and 5-HT
also underlie aggression toward offspring in abusive rhesus
macaque mothers (91). Because most neuromodulators
released by amine- and peptide-containing neurons show
remarkable preservation of structure and function within the
animal kingdom (92), this evidence in humans and nonhuman
primates, coupled with our results in prairie voles, suggests
that prosocial behavior associated with pair-bonds may be
subserved by evolutionarily conserved neurochemical circuitry
facilitating affiliation.

In summary, our data establish the medial extended
amygdala as a critical neural node in which neurochemicals
interact in programming naturally occurring social behaviors
associated with pair-bonding (Figure 5). These data illustrate
the spatiotemporal precision of neurotransmitter release
required for the expression of partner affiliation, the reversible
capacity of these neuromodulatory circuits in response to
changes in social stimuli, and the great utility of the prairie vole
model to study neurotransmitter microcircuits in mediating
and optimizing decision making and behavioral switch under
specific environmental contexts.
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