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Activated neuronal groups typically engage in rhythmic
synchronization in the gamma-frequency range (30–
100 Hz). Experimental and modeling studies demon-
strate that each gamma cycle is framed by synchronized
spiking of inhibitory interneurons. Here, we review evi-
dence suggesting that the resulting rhythmic network
inhibition interacts with excitatory input to pyramidal
cells such that the more excited cells fire earlier in the
gamma cycle. Thus, the amplitude of excitatory drive is
recoded into phase values of discharges relative to
the gamma cycle. This recoding enables transmission
and read out of amplitude information within a single
gamma cycle without requiring rate integration. Further-
more, variation of phase relations can be exploited to
facilitate or inhibit exchange of information between
oscillating cell assemblies. The gamma cycle could thus
serve as a fundamental computational mechanism for
the implementation of a temporal coding scheme that
enables fast processing and flexible routing of activity,
supporting fast selection and binding of distributed
responses. This review is part of the INMED/TINS special
issue Physiogenic and pathogenic oscillations: the
beauty and the beast, based on presentations at the
annual INMED/TINS symposium (http://inmednet.com).

Introduction
Activated neuronal groups engage in rhythmic
synchronization in the gamma-frequency band (30–100
Hz) [1–26]. This has bynowbeen documented inmany brain
regions, including the visual [1–5,9,11,14,15,23–25], audi-
tory [18,22], somatosensory [28], motor [6,12,21] and par-
ietal cortex [17] and the hippocampus [7,19]. It has also been
found in a variety of species, from insects [27] to mammals
[1–6,9,14,15,17,18,25], including humans [11,12,20–24,26];
and during conditions ranging from simple sensory stimu-
lation [2] to attentional selection [15,25,29,30], working
memory maintenance [17] and beyond [26]. Thus, neuronal
gamma-band synchronization appears to be a fundamental
mode of neuronal activity.

The past two decades have seen enormous gains in
insight into the mechanisms underlying gamma-band syn-
chronization as well as its functional roles. Here, we link
these results to better understand how neuronal gamma-
band synchronization subserves the various cognitive
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functions. At the core of our considerations is the gamma
cycle, that is, the sequence of neuronal processes that
reoccur within each oscillation cycle. We suggest that,
within the gamma cycle, the excitatory input to a pyrami-
dal cell is converted into a temporal code whereby the
amplitude of excitation is recoded in the time of occurrence
of output spikes relative to the gamma cycle, stronger
inputs leading to earlier responses. Thus, amplitude val-
ues are converted into phase values that indicate by how
much a discharge precedes the peak of a gamma cycle.
Furthermore, we argue that pyramidal cells receiving
strong excitation and hence discharge early in the gamma
cycle silence those that receive less excitation and thereby
profit from a winner-take-all algorithm (strictly speaking,
a few-winners-take-all algorithm, because it will always be
a group of neurons). Such a coding strategy enables fast
processing and readout because it is based on coincidence
detection, rather than on rate integration.

Several previous studies contained aspects of the
concept presented here [31–37] and the current work
attempts a broadly accessible synthesis. We would like to
note that the hypothesis put forward here is clearly distinct
from the binding-by-synchronization hypothesis [38,39],
which states that neurons forming a functional assembly
are bound together by synchronization of their action poten-
tials, a mechanism that is probably based, in part, on
experience-dependent refinement of intra- and inter-areal
connections.Bycontrast, thehypothesis exploredhere relies
on basic biophysiological dynamics that unfolds primarily
within a local neuronal group. Although the two hypotheses
are distinct, they are fully compatible with each other.
Rhythmic synchronization is a fundamental emergent prop-
erty of neuronal interactions and no single theory will
capture all of its functional consequences at once.

Mechanisms behind gamma-band synchronization
To assess the functional consequences of gamma-band
synchronization, we briefly consider the mechanisms that
underlie neuronal gamma-band synchronization. It is well
established that inhibitory interneuron networks have a
prominent role in the generation of gamma-band synchro-
nization [8,40–45]. Experiments with pharmacologically
isolated networks of inhibitory interneurons and model
simulations have shown that these networks can generate
synchronized gamma-band oscillations on their own
[8,44,45], requiring only synaptic inhibition and gap junc-
tional coupling to be intact [46–48]. The activation of these
d. doi:10.1016/j.tins.2007.05.005
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interneuron networks is due to excitatory drive and, under
physiological conditions, this is supplied through excit-
atory input from pyramidal cells. Interneuron networks
generate rhythmic synchronization regardless of whether
their excitatory drive is rhythmic; however, under physio-
logical conditions, the rhythmic synchronization of the
interneurons imposes synchronized rhythmic inhibition
onto the pyramidal cells and, therefore, their discharges
also engage in rhythmic synchronization.
Figure 1. Pyramidal cell–interneuron firing in the gamma cycle. (a) Recordings from the

the gamma band-filtered LFP recorded from the CA1 pyramidal layer. This gamma peak

sorted into interneuron spikes (blue histogram) and pyramidal cell spikes (red histogra

locked cells, the distribution of mean phases is shown across interneurons and pyram

Here, the different cell types are characterized as either regular spiking (RS) or fast spikin

putative interneurons. (b) A putative interneuron whose spike probability was modulate

but for a putative pyramidal cell. (d) Average normalized spike probability for the tw

extracellular gamma oscillation and the peak probabilities to 1. Reproduced, with perm
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During gamma-band synchronization, the discharges of
interneurons and pyramidal cells exhibit a characteristic
phase relation: the interneurons tend to fire a few milli-
seconds after the pyramidal cells. This has been first
described for the CA1 and CA3 fields of the rodent hippo-
campus [19] and recently also for the ferret prefrontal cortex
[43] (Figure 1). Simulations of networks with appropriately
coupled pyramidal cells and interneurons replicated rhyth-
mic synchronization with similar phase relationships
hippocampus of behaving rats. The vertical line indicates the moment of peaks in

time served as a temporal alignment event. Simultaneously recorded spikes were

m) and were tested for locking to the gamma rhythm. For the significantly phase-

idal cells. (b–d) Similar analysis in the prefrontal cortex of the anesthetized ferret.

g (FS) with the RS neurons being putative pyramidal cells and the FS neurons being

d by the phase of the simultaneously recorded gamma band LFP. (c) Same as (b),

o cell classes. For averaging, the widths were normalized to the period of the

ission, from Ref. [19] (a) and Ref. [43] (c).



Figure 2. Hippocampal theta-phase precession modelled as an interaction

between slowly changing excitation and theta-rhythmic inhibition. (a) and (b)

illustrate two different models that explain hippocampal theta-phase precession.

They agree in the assumption that the theta-phase of pyramidal cell spiking is

modulated through an interaction between changing levels of excitation and theta-

rhythmic inhibition. They differ in explaining why phase precession does not

reverse when a rat leaves the place field of a pyramidal cell, which is not discussed

further here. (a) The theta-rhythm entails rhythmic GABAergic perisomatic

inhibition (blue input). The running of a rat through a place field of a pyramidal

cell leads to slowly changing excitation (red input) that is slightly modulated by the

ambient theta-rhythm. The scatter plot shows the theta-phases of spikes that

occurred in a modelled neuron with those inputs. As (in the simulation) the rat

takes three seconds to traverse the place field of the cell, spikes proceed from late

to early theta-phases. In the second half of the place field, phase precession does

not reverse, because, in this model, spike frequency adaptation silences the

neuron. (b) Another model of hippocampal theta-phase precession. As in (a),

excitation (red curve) interacts with inhibition (blue curve) to generate theta-phase

precession. However, this model assumes that theta-phase precession does not

reverse, because synaptic plasticity results in an asymmetric profile of excitation.

Reproduced, with permission, from Ref. [53] (a) and Ref. [54] (b).
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between the cell types and demonstrated the importance of
this particular firing sequence [49].

Any simplifying description of these network dynamics
will fall short of their real complexity, but simplifica-
tions are justified if they help to better understand the
dynamics and their consequences. One way to describe
the process is as follows: after excitatory input, the net-
work of inhibitory interneurons generates rhythmic syn-
chronized activity and imposes rhythmic inhibition onto
the entire local network. Pyramidal cells will be able to
respond to excitatory input only during the time window
of fading inhibition. Because pyramidal cells provide the
major excitatory drive to the interneurons, the inter-
neurons will discharge with some phase delay relative
to the pyramidal cells and the resulting network inhi-
bition terminates the firing of both the pyramidal cells
and the interneurons. The whole network is inhibited and
the next gamma cycle starts anew.

Conversion of excitatory drive into relative spike
timing
One aspect of this gamma cycle is particularly important
for our further considerations: if one assumes that all
pyramidal cells of a local, oscillating group of cells receive
a similar amount of phasic inhibition, then those pyrami-
dal cells receiving the strongest excitatory drive will fire
first during the phase of the cycle when pyramidal cells can
fire [31–33]. Consequently, the strength of pyramidal cell
excitation is translated into a phase value that corresponds
to the time of occurrence of the spikes relative to the cycle
period.

In the hippocampus, this mechanism has been proposed
to explain the phenomenon of theta-phase precession [50]:
In the hippocampus, most pyramidal cells have so-called
‘place fields’; that is, they fire preferentially when the
animal moves through a certain region of its environment
[51]. The discharges of place field neurons exhibit a pro-
minent rhythmic synchronization in the theta-frequency
band (�8 Hz in this structure) (see Ref. [52] and the
corresponding special issue of Hippocampus). Similar to
the above-described gamma-band synchronization, this
theta-band synchronization entails rhythmic network inhi-
bition at the theta frequency [53,54].

Theta-phase precession is a striking and well
documented phenomenon that is likely to result from the
interaction between excitatory drive onto pyramidal cells
and rhythmically increasingand fading inhibition:when the
animalmoves through the place field of a particular cell, the
cell discharges rhythmically and phase-locked to the theta-
rhythm, whereby the discharges occur earlier and earlier in
the theta phases as the animal moves into the place field.
Several models of theta-phase precession explain this
phenomenon as a consequence of the interaction between
theta-modulated inhibition andplace-fielddriven excitation
[53,54]. When the animal moves towards the place field of a
neuron, excitatory drive to this cell increases over the course
of several theta cycles. At the same time, inhibition rhyth-
mically increases and decreases within each theta cycle. At
the periphery of the place field, the excitatory drive is weak
and can elicit spikes only during the phase of the theta cycle
when inhibition isminimal; that is, at the depolarizing peak
www.sciencedirect.com
of the theta-cycle.Howeverwhen excitation increases, it can
overcome inhibition earlier and elicit spikes earlier in the
theta-cycle [53,54] (Figure 2). Interestingly, this phase-pre-
cession is unidirectional and does not reverse when the
firing rate decreases toward the end of the place field and
several mechanisms, such as spike frequency adaptation
[53] and synaptic plasticity [54], have been proposed to
account for this asymmetry.

This phase precession has been attributed great
functional importance because the serial order of pyramidal
cell firing in one single theta cycle contains all information
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about the position and movement trajectory of the animal
and, in addition, provides a code that links past with future
positions [54]. We go on to review data that suggest that a
similar conversion of amplitude to temporal codes is
achieved by gamma-band synchronization.

Spike-phase encoding during cortical gamma-band
synchronization
As reviewed above, neuronal gamma-band synchronization
is associated with rhythmic inhibition of pyramidal cells.
Therefore, pyramidal cells drivenweaklywill likely fire only
late in the gamma cycle, whereas those driven strongly will
fire earlier [31–33]. Although we are not aware of a pub-
lished direct test of this prediction, which would involve a
direct assessment of the gamma cycle itself, there is indirect
supporting evidence: if the phase in the gamma cycle at
whichaneuronfiresdependson its excitatorydrive, thenthe
relative phase at which two neurons fire should depend on
the relation between their respective excitatory drives; the
latter has been demonstrated in visual cortex of anesthe-
tized cats [35–37,55] (Figure 3a).

In these experiments [55], multiple electrodes were
inserted into primary visual cortex. Each of these electrodes
recorded the spiking activity of a small group of neurons
around the electrode tip, the respective multi-unit activity
(MUA). SuchMUAsare likely to bedominatedbypyramidal
cells, because these cells outnumber interneurons approxi-
mately five times, are bigger and are equipped with asym-
metric dendritic trees, leading to larger extracellular
potentials that are more likely to be picked up by the
electrode. The electrodes were sufficiently closely spaced
that the receptive fields of the different MUAs overlapped
and could be driven by a single stimulus. However, each
MUA was driven to a different degree by different stimuli,
depending on, for example, basic features such as orien-
tation or spatial frequency. Accordingly, when different
(single) stimuli were presented and pairs of MUA were
analyzed, the twoMUAs were driven to different activation
strengths, probably because they received different excit-
atory drives.

In addition, as is found typically when neuronal groups
in visual cortex are activated, different MUAs engaged in
rhythmic synchronization, probably because they received
correlated rhythmic inhibition [43]. The crucial experimen-
tal finding was that the relative phase at which two MUAs
gamma synchronized depended on the relative strength
with which they were activated: When a stimulus was
presented that activated one neuronal group strongly
and another weakly, then the more strongly activated
group fired slightly earlier in the gamma cycle than did
the more weakly activated group (Figure 3a). This is as
predicted by the above considerations. Thus, gamma-band
synchronization has the effect that the stronger a pyrami-
dal cell is driven, the earlier it spikes in the gamma cycle,
similar to hippocampal theta-phase precession.

The gamma cycle as a rapidly repeating
winner-take-all algorithm
To date, and to the best of our knowledge, the functional
significance of gamma-phase specific spike timing is not yet
clear. It might be an irrelevant epiphenomenon given that
www.sciencedirect.com
the involved time differences are of the order of only a few
milliseconds. However, in view of the increasing evidence
that the precise timing of individual spikes matters, as, for
example, in spike timing-dependent plasticity, gamma
phase-dependent spike timing could be functionally
relevant.

As mentioned above, pyramidal cells can only respond
within a narrow temporal window when the network
engages in gamma oscillations. Furthermore, pyramidal
cell firing is a self-terminating process because pyramidal
cells strongly excite interneurons and these feed back onto
the pyramidal cells, curtailing their firing. Thus, if a
pyramidal cell does not fire sufficiently early in the gamma
cycle, it will not be able to fire at all in that cycle. In other
words, in each gamma cycle, there is a race among the
pyramidal cells during which the most excited pyramidal
cells will compete against the less excited ones [32,33]. This
timing-dependent suppression of weak responses could
contribute to the improvement of signal-to-noise ratios.

Spike latency-based computation
Transforming an amplitude (rate) code into a temporal code
could have a crucial role in object recognition: spike latency
coding or spike rank order coding has been the core com-
ponent in a class of computational models that perform
object recognition with remarkable speed and computati-
onal efficiency [34,56–59]. The respective line of research
began with an experiment in which human subjects were
presentedwith images for just 20 ms and then had to report
as quickly as possible whether the image contained an
animal [60]. When event-related potentials were measured
from the scalp of those human subjects, they differentiated
between the presence and absence of an animal in the image
as early as 150 msafter image presentation. Additional exp-
eriments made it highly unlikely that image classification
couldbebasedonelementary imageproperties suchascolor,
but rather suggested that it depended on the detection of
complex feature constellations [61]. Therefore, it probably
required processing of the image by inferotemporal cortical
areas where neurons show corresponding selectivities.

Given that it takes �50 ms for the image to activate the
primary visual cortex, and given that there are multiple
synapses between primary visual and inferotemporal cor-
tex, it is unlikely that the luminance distribution of the
retinal image was assessed solely by evaluating the aver-
age firing rates because this would require integration over
too-long time intervals. The complementary model hypoth-
esized that brightness values are encoded by the latency of
the first spikes in the responses, higher luminance causing
shorter latencies and that further computations would be
based on the relative spike latencies [56–59,62]. This
algorithm is applied repeatedly in a hierarchy of layers
and results in rapid image categorization. Surprisingly,
these models demonstrate that most information in the
output of a given layer is contained in the relative timing of
the first 1–5% of the spikes fired after image onset, whereas
the remaining 95% contribute only marginally (Figure 4).

Gamma-phase based computation
Importantly, in these models, spike timing is assessed
relative to image onset and processing proceeds in a purely



Figure 3. Evidence for an interaction between excitation and rhythmic inhibition in the visual cortex. (a) Gamma-band synchronization among visual cortical spike train

recordings entails phase leads and lags that depend on relative excitation levels. A pair of multi-unit activity (MUA1 and MUA2) was recorded under three different visual

stimulation conditions. For each condition, the cross-correlation histogram (CCH) between the two MUAs was calculated and fitted with a Gabor function (red, pink and blue

lines for the three stimulation conditions). A CCH peak with negative (positive) time offset indicates that MUA1 was leading (lagging) MUA2. In condition 1 (red Gabor fit),

MUA1 received more optimal visual stimulation than did MUA2. In condition 2 (pink fit), MUA2 received more optimal stimulation than did MUA1. In condition 3 (blue fit),

the relative activation advantage of MUA2 was further increased. The results demonstrate that relative activation (and thereby excitation) strengths are translated into

relative spiking phases within the gamma cycle. (b) Ongoing gamma-band oscillations co-determine the timing of first spiking in primary visual cortex after stimulus onset.

LFPs and MUA were recorded from corresponding positions in primary visual cortex of the two hemispheres of an anesthetized cat. The average stimulus-related LFP is

shown as a dashed line, defining response onset at 23 ms. Two subsets of trials were then chosen in which the LFP just before response onset was falling (rising),

corresponding to spontaneous neuronal depolarization (hyperpolarization). The corresponding average LFPs are shown as red and blue curves in (i). (ii) shows the MUA

responses averaged separately for these two groups of trials. When the LFPs indicated spontaneous depolarization (hyperpolarization), the MUA response was particularly

early (late). Reproduced, with permission, from Ref. [55] (a) and Ref. [64] (b).
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Figure 4. Efficiency of spike time coding. In spike timing-based computation, the first 1–5% of the spikes carry most of the information. The five images are reconstructions

of the image presented to a model retina. The reconstruction is based on the latency of firing of the retinal ganglion cells, with higher retinal image contrast leading to

shorter latencies. The percentage of ganglion cells that have generated a single spike is indicated for each reconstruction. It appears that 1% or less is already sufficient to

obtain a clear idea of the contents of the input image. Reproduced, with permission, from Ref. [59].
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feed-forward cascade (but cf. Ref. [59] for corresponding
modifications). However, real-world sensory input is a
temporal continuum and the human nervous system
usually has no independent information about the absolute
timing of its sensory input. Under these conditions, the
latency or rank ordering of spikes can only be evaluated if
there is an additional mechanism that provides temporal
frames. We propose that the gamma cycle serves as such a
reference frame. It repeats rapidly and it assures that
pyramidal cells spike the earlier in the gamma cycle, the
stronger they are driven. Thus, a neuronal computation
scheme based on spike timing relative to the gamma cycle
is physiologically plausible andmight be efficient. As in the
above mentioned models, it might operate exclusively on
the basis of spike timing and avoid firing rate codes
throughout. Furthermore, such a scheme might be meta-
bolically cheap and therefore ecologically advantageous:
early information-rich spikes are transmitted with high
signal-to-noise ratio, whereas late information-poor spikes
are avoided owing to rising inhibition. Because inter-
neuron–pyramidal cell inhibition is powerful, a few inter-
neuron spikesmight preventmany unnecessary pyramidal
cell spikes. Nevertheless, if fast processing within a single
gamma cycle fails to yield unambiguous results, further
processing, based on multiple gamma cycles, re-entrant
loops and continuing sensory input, is likely to occur.

It is important to note that in this concept,
gamma-rhythmic inhibition provides only the temporal
reference frame [31,42]. The timing of each pyramidal cell’s
spike(s) in the gamma cycle depends on the level of exci-
tation of the cell. The level of excitation, in turn, depends
on the interplay between stimulus properties and the
functional architecture in which the pyramidal cells are
embedded. This architecture redefines at each processing
level, which aspects of the output from previous levels are
deemed ‘exciting’ for a given neuron.

If a given neuronal processing stage does encode
information in the precise spike timing during its gamma
cycle, then the next processing stage can decode this
information best when it receives a copy of the temporal
frame; that is, the gamma cycle. Long-range gamma-band
synchronization has been described [5,21,63] and probably
synchronizes rhythmic inhibition across separate local
networks, thereby enabling distributed spike-phase based
computations to operate on the same reference frame.

Gamma-phase dependent spike timing in primary
visual cortex
However, at the earliest levels of sensory processing, such a
scheme cannot be operational, because visual input can
www.sciencedirect.com
arrive at any phase within an ongoing gamma-band
oscillation. It is a strong prediction of the outlined concept
that the neuronal response onset latencies in this case
should be determined not only by stimulus onset, but also
by the phase of ongoing rhythmic activity. This has been
confirmed with recordings in primary visual cortex of
anesthetized cats [64] (Figure 3b).

Multi-unit and local field potential activities were
recorded from multiple electrodes while neurons were acti-
vated with light bars presented repeatedly with long inter-
trial intervals. The crucial finding was that, across trials,
neuronal responses had variable onset latencies with
respect to stimulus presentation and part of this variability
could be explained by the phase of the ongoing gamma-
band activity at which visual stimulation was delivered
(Figure 3b). When visual stimulation provided thalamic
input to cortex during moments when inhibition faded,
latencies were short. By contrast, when input occurred
during moments of strong inhibition, latencies were pro-
longed, such that the timing of the first spikes were shifted
relative to stimulation, but remained roughly constant
relative to the gamma-cycle reference frame. Also in this
case, the relative timing of spikes contained important
information. The data showed that columns coding for
related features (same or co-linear orientation of contours)
that tend to be grouped perceptually, oscillate with zero
phase lag [64]. This has the effect that the latencies of the
first spikes of cells responding to groupable features co-vary
and are similar. Hence, these discharges are synchronized
from the beginning. Following the indications that synchro-
nous firing serves to establish relations among distributed
responses (reviewed in Ref. [39]), it has been proposed that
this rapid synchronization of first spikes supports rapid
feature binding and perceptual grouping.

Such a coding strategymight not apply for all processing
streams. It has been demonstrated that spikes can be
tightly locked to stimulus transients, as for example in
visual area MT [65], an area of the dorsal visual stream,
whereas the above mentioned response latency fluctu-
ations were observed in recordings from cat area 17 and
monkey area V4, two areas that belong to the ventral
stream.

Putative mechanisms of gamma-phase decoding
One important remaining issue is whether spike timing
within the gamma cycle affects neuronal interactions, bec-
ause only then could it have a functional role [66]. As
mentioned above, gamma oscillations are a ubiquitous
phenomenon and if distributed but connected groups of
neurons engage in gamma oscillations, precise spike timing
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matters: excitatory inputs that coincide with the period of
fastest fall-off of the inhibition in the target group will be
particularly effective because reduction of inhibition is by
itself a potent trigger [43] and incoming excitation that
coincides with falling inhibition will result in particularly
steepmembranepotential slopes. Ithasbeenshownthat the
membrane potential threshold for eliciting spikes is inver-
sely correlated to the membrane potential slope [67,68]. By
contrast, excitatory inputs arriving at the beginning of the
inhibitory period will have particularly little effect because
theywill be exposed to the shuntingand thehyperpolarizing
effect of IPSPs.

Thus, the impact that an EPSP has on an oscillating
target cell will depend on the time of arrival relative to
the gamma cycle [69–71]. This time depends essentially
on three variables: (i) the time of spike generation in the
sendingcell relative to itsoscillationcycle; (ii) the conduction
delay between the sending and receiving cell; and (iii) the
phase relation between the oscillations of the sending and
receiving network. Assuming fixed conduction delays, the
effective gain of a given connection in oscillating networks
can be modulated over a wide range by adjusting the phase
relations between the oscillating cell groups, the oscillation
frequencies and the phase at which spikes are emitted. As
outlinedabove, the latterdepends, in turn,on the strengthof
the excitatory drive impinging on the sending cell.

Conclusion
The evidence reviewed here and the numerous studies on
phase and frequency relations among oscillating cortical
networks suggest the existence of mechanisms for the adj-
ustment of oscillation frequencies and of phase relations
among oscillating cell populations (reviewed in Ref. [39]).
Thus, the oscillatory patterning of neuronal activity offers
a range of options to exploit the temporal domain for the
dynamic routing of signals within the rigid network of fixed
anatomical connections. This, in turn, can be used to
support a variety of functions such as feature binding
[1,2], polysensory integration [72,73], sensory-motor coor-
dination [6,21], attention-dependent selection of signals
[15,25,29,30,33,74], dynamic association of the ever-chan-
ging contents of working memory [17] and, through spike
timing-dependent plasticity, the formation of long-term
memories [16,75].

All of these functions are associated with oscillatory
activity, in most cases in the high-frequency range of the
beta- and gamma-bands. These high-frequency oscillations
appear to be particularly well suited for these functions
because there is a direct relation between the selectivity
with which dynamic routing can be accomplished and the
oscillation frequency: as the frequency increases, the pre-
cision of spike timing increases and, at the same time, the
network becomes more sensitive to small variations in
spike timing. These considerations suggest that the adjust-
ment of spike timing by the gamma cycle is not an epiphe-
nomenon but a fundamental mechanism in cortical
information processing [66,71].
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