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Learning does not happen in a vacuum. Rather it occurs against the 
backdrop of an animal’s cumulative experience. Related experiences 
form knowledge structures referred to as schemata1–3 or categories4,5, 
which then influence how new information is encoded. The degree to 
which new experiences match existing structures determines which 
brain networks are engaged and the speed of memory consolidation6–10.  
In particular, in both humans and rodents the mPFC appears to be 
important for mediating conflicts between new and old experiences 
and updating existing schemata6,7,9,11.

Psychological and computational accounts suggest that the  
identification of commonalities (i.e., patterns) across experiences is 
necessary for the construction of schemata and categories3,12,13. This 
process of identifying regularities in data may occur rapidly as pat-
terns are encountered14 as well as in the immediate post-encoding rest 
period15–18. However, it has been hypothesized that a similar process 
persists over more extended time periods (e.g., weeks or months) after 
initial encoding is complete. This long-standing idea19,20 forms the 
basis of contemporary theories of systems consolidation21–25, which 
propose that detailed episodic memories stored as individual patterns 
in the auto-associative networks of the hippocampus are transformed 
into semantic or schematized memories stored using distributed rep-
resentations in the neocortex. Consistent with this, previous research 
has demonstrated that memories can generalize over time26,27 and that 
remote memories may be less detailed28. However, there is no direct 
evidence that pattern identification persists over an extended time 
period after initial encoding. Moreover, how post-encoding pattern 
identification then influences new learning is not known.

To address these issues we developed a new water-maze paradigm 
in which mice are exposed to platform locations drawn stochastically 

from a specific spatial distribution. This design allowed us to assess  
the extent to which mice could match the pattern defined by the  
spatial distribution 1 d or 30 d after training. Further, we examined 
how mice reacted to a new training platform location when it was 
either consistent or in conflict with the pattern. We found that after 
training was complete, the passage of time improved the match 
between mouse search paths and the pattern presented during train-
ing. This was associated with delay-dependent differences in the 
learning of new platforms, with increased sensitivity to conflicting 
platform locations 30 d after training. Increased sensitivity to a con-
flict between previous patterns and new information was reduced 
by pharmacogenetic inhibition of the mPFC. These results indicate 
that a continued process of pattern identification occurs over time, 
which can lead to conflicts between new information and existing 
knowledge structures that must be resolved, in part, by computations 
carried out in the mPFC.

RESULTS
The passage of time improves pattern matching
According to contemporary theories of systems consolidation, the 
passage of time allows for the identification of patterns across multiple 
experiences (Fig. 1a). Whereas one consequence of this process is that 
memory of details for specific experiences may fade with time, one 
benefit might be that the consolidated ‘composite’ memory is a better 
reflection of the cumulative experience22,23. To assess this, we used a 
modified version of the delayed matching-to-place water-maze task29. 
On each training day, we presented mice with four opportunities to 
find a platform in a fixed location. However, across days we moved 
the location of the platform, with each specific daily location selected 
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from a normal distribution in polar coordinates (Supplementary  
Fig. 1a). Accordingly, the pattern emerged across multiple training 
days but was not apparent on any single training day. If post-encoding 
processing facilitates pattern identification, then some delay between 
the completion of training and testing would allow mice to better 
match the overall distribution of platforms (perhaps at the expense 
of spending time at any single day’s location; Fig. 1b). To evaluate 
the impact of a post-encoding delay, we presented mice with a probe 
test (with the platform removed from the pool) either 1 d or 30 d 
after the end of training (Supplementary Fig. 2a). To quantify the 
extent to which search paths on the probe test matched the pattern 
of platform locations experienced during training, we calculated the 
Kullback-Leibler divergence30 (DKL) between the search paths and the 
platform distribution. The DKL is a measure of the difference between 
two probability distributions; low DKL values indicate high pattern 
matching (Supplementary Fig. 3).

On any given training day, latency to locate the platform declined 
across trials and escape latencies generally declined over the course 
of training (Supplementary Fig. 4). During the probe test, the search 
patterns were sensitive to the delay between the completion of train-
ing and testing (Fig. 1c). Consistent with our prediction, there was a 
stronger correspondence between search path and overall platform 
distribution 30 d versus 1 d after the completion of training (indi-
cated by a lower DKL value; Fig. 1d). These results indicate that the 
passage of time, even in the absence of additional maze experience, 
allowed mice to better match the overall distribution of platforms. 

At the longer delay, mice crossed specific platform locations less fre-
quently (Fig. 1e). This suggests that behavior in the 30-d probe test 
was driven less by any single day’s training experience and instead 
reflected the cumulative training experience. Improved pattern 
matching depended on exposure to the pattern and did not emerge 
spontaneously as a result of either decreased memory accuracy or 
increased search-path entropy (Supplementary Fig. 5). Similarly, 
time-dependent shifts in search strategy (e.g., swimming closer to 
the walls of the pool or reduced searching for more recent platforms) 
could not account for better pattern matching at the remote delay 
(Supplementary Figs. 6 and 7a,b).

Our data suggest that the passage of time allowed for improved 
pattern matching. We next asked whether similar time-dependent  
improvements would emerge after training on a more complex 
distribution. In this case, we trained mice on a series of platforms 
drawn from a weighted bimodal distribution, with uneven peaks 
centered in the north and east quadrants of the pool. Platforms 
were twice as likely to occur in the north quadrant (Fig. 2a, and 
Supplementary Figs. 1b and 2b), and therefore the best match to 
the pattern would be to spend twice as much time in the north versus  
east quadrant. At the 1-d delay, mice spent almost equal time in 
the north and east quadrants. In contrast, at the 30-d delay, mice 
spent roughly twice as much time in the north versus east quadrant, 
which indicated that pattern matching improved over time (Fig. 2b). 
Consistent with this, after a 30-d delay, but not a 1-d delay, the time 
that mice spent searching in the zone around any given platform  

d
1.0

0.8

D
K

L(
P

||P
at

h)
 (

na
ts

)

0.6

0.4

0.2

0
1 d 30 d

* e

M
ea

n 
pl

at
fo

rm
 c

ro
ss

in
gs

6

4

2

0
1 d 30 d

**

Distinct
episodes

a bTime Pattern 1 d probe
(episodes)

30 d probe
(pattern)

Time

Mnemonic variable Mnemonic variable

F
re

qu
en

cy

P
ro

ba
bi

lit
y

P
(platform

 location)

c
P(location)30 d probe1 d probe

Figure 1 Passage of time improves behavioral 
match to pattern. (a) Diagram illustrating 
hypothesized post-encoding transformation 
of memories from information about distinct 
episodes to information about the overall 
statistical patterns in the experiences.  
(b) Schematic of the water-maze task we 
designed to test for post-encoding pattern 
identification, with gray circles indicating 
specific platform locations drawn from a 
probability distribution, and the heat map 
showing the distribution. (c) Averaged search 
paths for both groups (1 d and 30 d probe)  
and the platform distribution (right). Gray 
circles indicate specific platform locations.  
(d) DKL values 1 d and 30 d after training  
(t-test 1 d vs. 30 d: 1 d n = 52 mice, 30 d n = 40 
mice, t90 = 2.22, P = 0.03). (e) Mean platform location crossings 1 d and 30 d after training (Welch’s t-test 1 d vs. 30 d: 1 d n = 52 mice, 30 d n = 40 mice  
t89.61 = 3.10, P = 0.002). Data are for individual mice, with black line and shaded region indicating mean  s.e.m. (*P < 0.05, **P < 0.005).
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correlated with the probability assigned to that zone by the  
distribution (Fig. 2c).

The ‘recency’ of the last platform location (i.e., the shorter length of 
time that has passed since the last location was encountered relative 
to the other locations) may represent another factor that influences 
search paths. To address this, we determined whether order of plat-
form presentation during training influenced search behavior in the 
probe test. Overall, platform order weakly influenced search behavior 
(Supplementary Fig. 7c). However, the last platform location did 
influence search behavior. At the 1-d delay, we found that the focus of 
the mouse search paths corresponded with the last platform location, 
but at the 30-d delay, the focus shifted to the mean of the distribution 
(Fig. 2d). Therefore, probe-test performance is more influenced by 
the specific memory for the most recent platform 1 d after training 
but more so by the overall distribution at the 30-d delay.

Improved pattern matching influences new learning
Only once a pattern has been identified is it possible to determine whether a 
new event is consistent or in conflict with that pattern. As such, the sensitivity  
to conflicts may increase as a function of time-dependent improvements  

in pattern matching (Fig. 3a). To evaluate this idea, we modified the 
training protocol. As previously, we trained mice to find a new platform 
location on each day, with locations for the first 8 d matching those in the 
first experiment (Supplementary Fig. 1c). However, when that training 
was complete, we gave mice a set of test trials where they were presented 
with a new platform location. We placed this new platform at the mean 
of the former distribution (‘consistent’) or in an area of the pool that had 
a low probability according to the distribution (‘conflicting’) (Fig. 3b and 
Supplementary Fig. 1c). To assess the impact of the passage of time, these 
test trials occurred either 1 d or 30 d after training. We then gave all groups 
a probe test 1 d later (Supplementary Fig. 2c).

On each training day, latency to locate the platform declined across tri-
als, and escape latencies generally declined over the 8 d of training (Fig. 3c).  
Although there were no group differences in latency on the final day of 
training, differences emerged on the test trials. In particular, mice took 
longer to locate the conflicting (compared to the consistent) platform on 
the final trial, and this difference was more pronounced 30 d after training 
(Fig. 3c). This suggests that over time mice became increasingly sensitive 
to the difference between a new instance that was consistent with the pat-
tern versus an instance that conflicted with the pattern.
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Figure 3 Sensitivity to difference between 
pattern consistency versus conflict 
increases over time. (a) Diagram illustrating 
hypothetical difference between assimilating 
new information into memory before and 
after post-encoding pattern identification 
has occurred. (b) Schematic of the water-
maze task we designed to test for the effects 
of post-encoding pattern identification on 
learning new platforms. (c) Escape latencies 
(time to find the platform) for all groups 
across training and on the day of exposure 
to the new platforms (two-way analysis of 
variance (ANOVA), 1 d vs. 30 d × consistent 
vs. conflict, final trial latency: (1 d, 
consistent) n = 24 mice, (30 d, consistent)  
n = 11 mice, (1 d, conflict) n = 12 mice, 
(30 d, conflict) n = 12 mice; 1 d vs. 30 d 
F1,55 = 11.42, P = 0.001; consistent vs. conflict F1,55 = 29.27, P = 1.41 × 10−6; interaction F1,55 = 7.54, P = 0.008). (d) Averaged search paths for 
all groups from a probe test the next day; small circles indicate specific platform locations. (e) DKL values 1 d and 30 d after training for mice exposed 
to consistent and conflict platforms (two-way ANOVA, 1 d vs. 30 d × consistent vs. conflict: 1 d vs. 30 d F1,55 = 11.74, P = 0.001; consistent vs. 
conflict F1,55 = 24.07, P = 8.65 × 10−6; interaction F1,55 = 8.16, P = 0.006; post hoc Tukey’s test, (30 d, conflict) vs. (1 d, consistent): P < 0.001, 
(30 d, conflict) vs. (30 d, consistent): P < 0.001). (f) Time spent searching in a 10-cm radius zone around the conflict platform 1 d and 30 d after 
training (t-test, (30 d, conflict) vs. (1 d, conflict): t16.11 = −3.29, P = 0.005). The dashed line indicates the chance level of searching in a 10 cm radius 
circular zone. Data are mean  s.e.m., or individual mice, with black line and shaded region indicating mean  s.e.m. (**P < 0.005).
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pattern conflict with alternate distribution.  
(a) Schematic of the experimental design  
to control for any possible effects of 
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or the pool wall; consistent and conflict 
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platform and equidistant from the wall.  
(b) Escape latencies for all groups on the  
day of exposure to the new platforms (two-way 
ANOVA, 1 d vs. 30 d × consistent vs. conflict: (1 d, consistent) n = 12 mice, (30 d, consistent) n = 15 mice, (1 d, conflict) n = 22 mice,  
(30 d, conflict) n = 23 mice; 1 d vs. 30 d F1,68 = 0.46, P = 0.5, consistent vs. conflict: F1,68 = 0.77, P = 0.38; interaction F1,68 = 4.07, P = 0.047). 
(c) Averaged search-path distributions from the probe test; small circles indicate specific platform locations. (d) DKL values 1 d and 30 d after training 
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post hoc Tukey’s test, (30 d, conflict) vs. (1 d, consistent): P < 0.05, (30 d, conflict) vs. (30 d, consistent): P < 0.05). (e) Time spent searching  
in a 10-cm radius zone around the conflict platform 1 d and 30 d after training (t-test (30 d, conflict) vs. (1 d, conflict): t43 = −2.41, P = 0.02).  
The dashed line indicates the chance level of searching in a 10 cm radius circular zone. Data are mean  s.e.m., or individual mice, with black line  
and shaded region indicating mean  s.e.m. (*P < 0.05).
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Learning is driven by differences between 
expected and observed outcome (i.e., predic-
tion error31). Therefore, if the passage of time 
allows for refinement of an identified pattern, then presentation of 
the conflicting platform at the 30-d delay should produce a larger 
prediction error and lead to greater learning. The probe test provided 
an opportunity to evaluate learning after the presentation of the new 
platforms. When we presented mice with the conflicting platform 
after a 1-d delay, they reverted to searching the former distribution 
in the subsequent day’s probe test (Fig. 3d). In contrast, when we 
presented mice with the conflicting platform after a 30-d delay, the 
mice altered their search strategy, as reflected by a significant increase 
in the DKL value (Fig. 3e). These data suggest that after a 30-d delay, 
mice were more sensitive to instances that violated the pattern that 
they had experienced during training, and this produced a high pre-
diction error and consequently supported new learning. In line with 
this interpretation, in the probe test mice searched for the conflict-
ing platform more if it was presented 30 d after training (Fig. 3f). 
Presentation of the consistent platform did not alter search paths on 
the probe test, regardless of the post-training delay (Fig. 3d,e). We 
replicated these findings using a different distribution as well as con-
flicting and consistent platforms that were equidistant from the edge 
of the pool (Fig. 4a–e and Supplementary Fig. 1d). Therefore, the 
tendency for a conflicting platform to induce longer escape latencies, 
as well as stronger learning, does not depend on specific distributions 
or particular platform locations but only on the passage of time.

The mPFC mediates learning of conflict with prior patterns
The mPFC may be important for resolving conflicts between new 
information and background knowledge11. Our data indicate  
that sensitivity to conflicts increases as a function of time and  
therefore predict a more pronounced role for the mPFC in con-
flict resolution at remote time points after training. To test this, we  
microinfused an adeno-associated virus (AAV) carrying a Camk2a-
driven modified sequence encoding the human muscarinic M4  
receptor, known as hM4Di, tagged with the fluorescent reporter 
mCitrine, into the mPFC and then trained mice in our water-
maze paradigm. hM4Di is a Gi/o-coupled designer receptor exclu-
sively activated by designer drugs (DREADD) that is insensitive to  
endogenous ligands but activated by a synthetic ligand (clozapine- 
N-oxide (CNO)32). When bound to CNO, this Gi/o-coupled  
DREADD induces membrane hyperpolarization and inhibition of 
spiking activity33.

Histological examination revealed robust, bilateral expression of 
hM4Di in neurons in the mPFC, including the anterior cingulate  
cortex and prelimbic cortex regions (with some limited infection in 
the orbital cortex) (Fig. 5a). In a subset of mice, we performed ex vivo 

whole-cell patch clamp recordings to characterize the effects of CNO 
in AAV-infected neurons. Application of 1 M CNO hyperpolarized 
infected neurons (Fig. 5b) by −7.07  2.09 mV (mean  s.e.m) but 
not uninfected neurons, which showed a change of −0.12  0.81 mV 
after treatment with CNO (t-test for hM4Di− (no hM4Di expression) 
versus hM4Di+ (hM4Di expression): hM4Di− n = 3 cells, hM4Di+  
n = 4, t4 = 3.09, P = 0.04). This was associated with inhibition of  
spiking responses to 200 pA square current pulses (Fig. 5c), with a 
38.59  9.32% reduction in the spike rate of infected neurons after 
application of CNO, compared to a 3.03  8.02% increase in unin-
fected neurons (t-test versus mean of 1: hM4Di− n = 3, t2 = 0.38,  
P = 0.74; t-test versus mean of 1: hM4Di+ n = 4, t3 = −4.14, P = 0.03).

After mice recovered from surgery, we trained them in the same 
modified water-maze protocol as in the previous experiment (Fig. 4 
and Supplementary Fig. 1d). On any given training day, latency to 
locate the platform declined across trials, similar to previous experi-
ments (Supplementary Fig. 8). Either 1 d or 30 d after training, we 
presented mice with a platform that was either consistent or in conflict 
with the pattern. To pharmacogenetically inhibit mPFC neurons, we 
injected the mice with CNO or vehicle 30 min before the mice learned 
the new platform (Supplementary Fig. 9). We then probed the mice 
the next day in a drug-free state in order to evaluate how mPFC inhi-
bition had altered learning. After a 1-d post-training delay, CNO had 
no effect on learning either the consistent or conflicting platforms. 
During the subsequent probe test, search paths in CNO and vehicle 
groups did not differ in DKL or the time spent in the new platform 
zone (Fig. 6a–c).

However, mPFC inhibition significantly impacted learning of  
a conflicting platform when there was a 30-d delay after training.  
As expected, vehicle-treated mice presented with the conflicting  
platform after 30 d altered their search behavior, shifting their focus  
to the new platform in the subsequent probe test (Fig. 6d). In con-
trast, CNO-treated mice presented with the conflicting platform 
divided their search between the training distribution and the new 
platform in the subsequent probe test (Fig. 6d). This division between  
training distribution and the new platform was indicated by a  
significant reduction in the DKL value and time spent searching  
for the new platform in the CNO injection group compared to the 
vehicle group (Fig. 6e,f). Injection of CNO during presentation of 
the consistent platform did not alter search paths on the subsequent 
probe test (Fig. 6d–f). Altogether, these results indicate that the mPFC 
has an important role in updating search behavior in response to new 
platforms that conflict with patterns encountered during training, but 
only after a 30-d delay.
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Figure 5 CNO inhibits spiking activity in hM4Di 
infected neurons in the mPFC. (a) Illustration  
of the regions targeted for AAV8-Camk2a-
hM4Di-mCitrine microinfusion (left).  
Image of a representative infection in the 
anterior cingulate cortex (ACC), prelimbic cortex 
(PrL) and orbital cortex (Orb) (right).  
(b) Example traces showing responses to  
bath perfusion of 1 M CNO recorded via  
whole-cell current clamp in infected (hM4Di+) 
and uninfected (hM4Di−) neurons of ex vivo 
mPFC slices. (c) Example traces showing 
responses to injection of square pulses  
of 200 pA current before and after CNO  
bath application.
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DISCUSSION
The hypothesis that there is a persistent process of pattern identifica-
tion after encoding to combine and schematize memories is central 
to contemporary theories of systems consolidation21–25. According 
to these theories, statistically common elements across multiple 
memories constitute patterns that can be used during consolidation 
to construct more general knowledge about the world21–25. Here we 
provided evidence supporting this hypothesis. Our data indicate that 
mice trained in a water-maze task to find platforms drawn from a 
statistical distribution exhibited better pattern matching after a 30-d 
delay compared to a 1-d delay. We observed this improvement in pat-
tern matching for two distinct distributions, using different measures 
of pattern matching. This time-dependent improvement in pattern 
matching was associated with increased sensitivity to conflicting plat-
forms. Given that conflicts between new information and background 
knowledge engage the mPFC, this suggested that the mPFC may have 
a more pronounced role in learning about conflicting platforms at 
remote time points. In agreement with this, pharmacogenetic inhibi-
tion of the mPFC only affected the learning of conflicting platforms 
after a 30-d delay. Altogether, our results support the idea that there is 
an extended process of pattern identification after encoding and that 
identified patterns can influence new learning as a result of computa-
tions performed in the mPFC.

An important question that our studies do not directly address is: 
what is the nature of the process that continues after encoding, i.e., 
what leads to better pattern matching and greater sensitivity to pattern 
conflicts at remote time points? One component of the transformation 
may be degradation of the original memories. However, the time-
dependent improvement in pattern matching to the weighted bimodal 
distribution in Figure 2 is inconsistent with a memory-degradation 
process (reduced memory precision would not alter the ratio of time 
spent in north versus east quadrants). Another factor that is very 
likely to be involved is recency34, where memory strength is related 

to how recently an event has been experienced. We found that after 
a 1-d delay search-path behavior was often centered at the position 
of the last platform encountered, whereas after a 30-d delay search 
paths were centered at the mean of the platform distribution (Fig. 2d). 
This suggests that one contribution to better pattern matching after 
a 30-d delay was reduced dominance of the memory for the last plat-
form. However, recency effects cannot explain all of our results. The 
increased sensitivity of mice to the difference between a consistent 
and conflicting platform after a 30-d delay, measured by their escape 
latencies (Fig. 3c), is the opposite of what a recency account would 
predict: a reduction in the strength of the memories for the most 
recent platforms should have made it easier to learn a new platform in 
a new location of the pool, not harder. Therefore, although a reduction 
in the focus on recent platforms is likely to contribute to improved 
pattern matching over time, it is unlikely to be the sole factor driving 
the behavior we observed.

What other processes might be involved in time-dependent pat-
tern matching and sensitivity to pattern conflicts? It has been pro-
posed that statistical regularities across memories are extracted via 
hippocampal replay, which leads to the categorization of experiences 
in the neocortex19,20 (an idea that subsequently has been elaborated 
in computational models of systems consolidation24). With this in 
mind, it is plausible that time-dependent improvements in pattern 
matching could reflect an active process of statistical learning. Given 
that the patterns in platform locations that our mice were exposed to 
were explicitly statistical in nature, our data are consistent with this 
interpretation. In line with this, there is evidence that the brain can 
learn statistical models and estimate the probability of different values 
or events based on experience. Early psychological studies indicated 
that people can rapidly identify statistical patterns in visual stimuli3, 
and computational models of sensory learning in the neocortex have 
long proposed that it is statistical in nature35–37. These ideas have been 
supported more recently by neuroimaging work in humans14,38 and 
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Figure 6 mPFC inhibition impairs learning  
of conflicting platform after 30-d delay.  
(a) Averaged search-path distributions  
from the probe tests after a 1-d delay; small 
circles indicate specific platform locations.  
(b) DKL values from probe tests for mice  
exposed to new platform (consistent or conflict) 
and given either vehicle or CNO injections  
1 d after training (two-way ANOVA, consistent 
vs. conflict × CNO vs. vehicle: (consistent, 
vehicle) n = 7 mice, (consistent, CNO) n = 8, 
(conflict, vehicle) n = 5, (conflict, CNO)  
n = 4; consistent vs. conflict F1,20 = 17.02,  
P = 0.0005; vehicle vs. CNO F1,20 = 0.6,  
P = 0.45; interaction F1,20 = 0.05, P = 0.82). 
(c) Time spent searching in a 10-cm radius 
zone around the new platform for mice exposed 
to consistent and conflict platforms and given 
either vehicle or CNO injections 1 d after 
training (two-way ANOVA, consistent vs.  
conflict × CNO vs. vehicle: consistent vs. 
conflict F1,20 = 0.67, P = 0.42; vehicle  
vs. CNO F1,20 = 0.03, P = 0.87; interaction 
F1,20 = 0.33, P = 0.57). (d) Averaged search-
path distributions from the probe tests after a 
30-d delay. (e) DKL values as in b, 30 d after 
training (two-way ANOVA, consistent vs. conflict × CNO vs. vehicle: (consistent, vehicle) n = 6 mice, (consistent, CNO) n = 8, (conflict, vehicle) n = 8, 
(conflict, CNO) n = 13; consistent vs. conflict F1,31 = 14.54, P = 0.0006; vehicle vs. CNO F1,31 = 2.93, P = 0.1; interaction F1,31 = 3.43, P = 0.07; 
post hoc Tukey’s test, (conflict, vehicle) vs. (conflict, CNO): P < 0.05). (f) Analysis as in c, 30 d after training (two-way ANOVA, consistent vs. conflict 
× CNO vs. vehicle: consistent vs. conflict F1,31 = 7.36, P = 0.01; vehicle vs. CNO F1,31 = 7.04, P = 0.01; interaction F1,31 = 0.83, P = 0.37; post hoc 
Tukey’s test, (conflict, vehicle) vs. (conflict, CNO): P < 0.05). Data are mean  s.e.m. (*P < 0.05). 
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in vivo recordings in primary sensory cortices of ferrets39. Likewise, 
learning in sensorimotor integration tasks is predicted by Bayesian 
statistical models40,41. Studies in rodents using multiple-choice behav-
ioral tasks have also demonstrated that the neocortex can compute 
estimates of expectation and confidence42,43. Finally, studies in 
humans have shown that sleep facilitates statistical learning, possibly 
via memory replay15–18. Therefore, the types of learning mechanisms 
known to operate in the brain are well suited to identify statistical 
patterns across multiple memories during consolidation.

Our finding that inhibition of the mPFC affects learning of conflict-
ing platforms after a 30-d delay has interesting implications for rapid, 
schema-based consolidation6,7,10. First, these data suggest that the role 
of the mPFC in rapid consolidation may be limited to the learning of 
new information that breaks established patterns11. It is possible that 
consolidation of information that closely matches (or only slightly 
deviates from) previous experiences could be achieved without the 
functions performed by the mPFC. Second, our findings leave open 
the possibility that rapid, schema-based consolidation would not be 
possible in tasks where initial learning is too rapid to permit time-
dependent pattern identification. Recent memories may not provide 
sufficient scaffolding for quickly encoding information outside of 
the hippocampus. The framework provided by the task we used here 
provides an approach for investigating these issues in the future.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Animals. All experiments conformed to the guidelines set forth by the Canadian 
Council for Animal Care and the Animal Care Committee at the Hospital for 
Sick Children. 8–9-week-old male, wild-type mice were used in all experiments. 
These mice were the F1 generation derived from crossing C57BL6n and 129SvEv 
mice (breeding mice were sourced directly from Taconic). Mice were weaned at 
21 d, and then housed 4–5 mice per cage. The housing room was maintained 
on a 12 h–12 h light-dark cycle, with lights on during the day. All experiments 
were performed in the morning between 9 a.m. and 12 p.m. One week before the 
commencement of experiments mice were briefly anesthetized using isoflurane, 
and their ears were punched with individual markings to differentiate cage mates. 
Cages of mice were assigned to different experimental groups randomly. The 
experimenter was not blinded regarding group assignments because this would 
have required using different experimenters for training and probe tests, which 
could introduce unwanted behavioral effects. In the 4 d before training, mice 
were handled by the experimenter, two at a time, for 3 min each day. No mice 
were excluded from any analyses in purely behavioral experiments (Figs. 1–4),  
with the exception of one mouse that escaped the pool during the second day 
of training and did not search for the platform afterward. Mice were excluded 
from the pharmacogenetic experiments (Figs. 5 and 6) based on post-experiment 
histology: only mice for whom viral microinfusion resulted in robust bilateral 
expression of hM4Di-mCitrine in the appropriate location of the mPFC were 
included (see below for more details on the exclusion criteria).

Behavioral apparatus. Experiments were performed in a water-maze pool, which 
was 120 cm in diameter and 50 cm in depth. The pool was surrounded by white 
curtains with large red and black shapes to provide visual cues for navigation. 
Ambient light in the room was kept at a constant, moderately low level across all 
days of the experiments.

Each day, before mice were brought into the room, the pool was filled to 40 cm  
with water and the temperature of the water was adjusted to 22 °C. The water 
was rendered opaque using nontoxic, white children’s paint. Video tracking of 
the mice was conducted using an Actimetrics WaterMaze system (Actimetrics) 
at a rate of 8 frames/s. The tracking camera was mounted above the center of 
the pool and fixed to the ceiling. A custom-built platform with a double-jointed 
rotating arm was used to ensure that the platform position could be adjusted to 
a specific position within the pool. The platform was circular (10 cm diameter). 
The platform positions were preselected using Matlab 7.12 (MathWorks) and 
entered into the WaterMaze software. The video tracking device was then used 
to confirm that the actual platform was set to the correct position on each day. 
The platform was submerged ~5–8 mm below the water level.

Behavioral training and testing. The training procedure was based on the 
delayed matching-to-place task in ref. 29. As in that task, the platform location 
changed on each day of training, and all mice were trained for four trials on this 
new location. However, in this task the locations were selected from a statistical 
distribution in polar coordinates. Specifically, we selected the distance of a given 
platform from the center of the pool, d, and the angle of the arc connecting the 
platform and the eastern cardinal direction in the pool, , using a variety of 
distributions (Supplementary Fig. 1). In the first set of groups (Fig. 1) the plat-
forms for the first 8 d of training were generated by selecting d from a normal 
distribution with a mean of 35 cm and an s.d. of 10 cm, and selecting  from a Von 
Mises distribution (a circular normal distribution) with a mean of 0.75  radians 
and a  parameter of 5. The 9th platform for these groups was presented at the 
mean of the selection distribution (Supplementary Fig. 1a). In the weighted 
bimodal distribution groups (Fig. 2), d was again selected from a normal distri-
bution with a mean of 35 cm and a s.d. of 10 cm, but now,  was selected by first 
randomly selecting one of two Von Mises distributions, one with a mean of 0.5  
radians, the other with a mean of 0 radians, and then selecting from the chosen  
distribution. The selection of the two distributions was weighted 2:1 toward the first 
(0.5  radians mean), and both used a  parameter of 8 (Supplementary Fig. 1b).  
For the first set of groups presented with new platforms (Fig. 3), training  
was conducted with the same eight platforms used in the first experiments, but 
during the test trials either the same platform at the mean of the distribution was 
presented (‘consistent’) or a different platform was presented that was low prob-
ability in the distribution (‘conflict’) (Supplementary Fig. 1c). For the second  
set of groups presented with new consistent or conflict platforms (Fig. 4),  

a new set of seven platforms was selected from the distribution used for the first 
experiments. The 8th platform was then placed along the northern axis of the 
pool, 35 cm from the center. The consistent and conflict platforms were then 
placed 35 cm from the center along either the western or eastern axis, respectively, 
in order to preserve the displacement between the final day of training and the 
two different new platforms (Supplementary Fig. 1d). In the mPFC inhibition 
experiments (Fig. 6), the same platforms used in the second set of new platform 
learning experiments were used. In the single platform groups (Supplementary 
Fig. 5), the same platform at the mean of the first distribution was presented each 
day. The platforms used and their specific order over the days of training for all 
groups are shown in Supplementary Figures 1 and 2.

For each training trial, mice were taken from their cage and carried to the pool 
area on the hand of the experimenter. Mice were then lowered into the pool by 
their tail at one of the 4 cardinal locations (north, south, east and west) facing the 
wall of the pool. The start locations were selected randomly and were identical 
for all mice in any given experiment (Supplementary Fig. 2). The experimenter 
started the trial manually once he or she left the water-maze area. Training trials 
ended automatically when tracking software determined that the mice had stayed 
on the platform for 1 s. Mice were then left on the platform for 15 s, at which 
point they were retrieved by the experimenter. If a mouse jumped off the platform 
before the end of 15 s, it was directed back to the platform by the experimenter. 
Trials lasted for a maximum of 60 s. On the first day, mice often did not get on 
the platform and were guided there by hand of the experimenter at the end of the 
trial. On the first trial of each day, when mice sometimes did not find the new 
platform in the allotted 60 s, the experimenter would place his or her hand on 
the platform until the mouse came to the platform and climbed onto it. At the  
start of each trial a short 320 Hz tone played, at the end of each trial a short  
440 Hz tone played and during the intertrial interval a 220 Hz tone repeatedly 
played once every 5 s. The tones marked the trials for the experimenter, but they 
were unlikely to have affected behavioral results as they were below the hearing 
range of mice44. During training, when mice were not in the water maze they 
were kept in their cages in an area behind the curtains.

On the new platform trials, when the consistent or conflict platforms were 
introduced, the procedure followed the same protocol as on the training days. On 
probe tests, the same procedure as on the training days was followed except that 
the platform was absent from the pool. The probe trials lasted for 60 s. In experi-
ments 1, 2 and 3 (Figs. 1–3), mice underwent two probe trials and the search 
paths from both trials were used for data analysis (see below). At the end of the 
first probe trial, mice were removed from the pool by the experimenter at the 60 s  
mark at whichever location they happened to be at in the pool. In experiments 4 
and 5 (Figs. 4 and 6), mice underwent a single probe trial. A subset of data (24 mice)  
from the first groups given a 1-d delay (Fig. 1) was reused for the first new 
platform analyses (Fig. 3) as these training procedures were identical and these 
mice were trained by the same experimenter (Supplementary Fig. 2). Further, 
because the experimental procedures were identical in experiments 4 and 5, a 
subset of the mice that were trained by the same experimenter included in the 
analysis in Figure 4 (15 of 72 mice) were from the vehicle condition in Figure 6.  
The specific training protocols and testing time lines for each experimental group 
are displayed in Supplementary Figure 2.

In the pharmacogenetic experiments (Fig. 6, and Supplementary Figs. 8b,c 
and 9), mice received intraperitoneal injections of either clozapine-N-oxide 
(CNO) or a vehicle solution 30 min before the first trial of the new platform 
learning. Mice in the CNO group received an injection of 5 mg/kg CNO, which 
was first dissolved in 20 l DMSO, then mixed into 380 l 1× PBS. Mice in the 
vehicle group received an injection of 20 l DMSO mixed with 380 l 1× PBS. All 
drugs and ingredients for these experiments were obtained from Sigma.

Viral microinfusions. 45 d before training with a new platform (Supplementary 
Fig. 9), mice in the pharmacogenetic experiments underwent stereotaxic surgery 
for viral microinfusion of AAV into the mPFC. AAV8-Camk2a-hM4Di-mCitrine 
was purchased from the University of North Carolina Vector Core. Mice were 
pretreated with atropine sulfate (0.1 mg/kg, intraperitoneal), anesthetized with 
chloral hydrate (400 mg/kg, intraperitoneal) and placed in a stereotaxic frame. 
Skin on top of the head was retracted, and holes were drilled in the skull bilaterally 
above the mPFC (anteroposterior = +1.9, mediolateral =  0.3, ventral = −1.8 mm  
from bregma) according to ref. 45. AAV (2.0 l/side) was microinjected through 
glass micropipettes connected via polyethylene tubing to a microsyringe 
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(Hamilton) at a rate of 0.1 l/min. Micropipettes were left in place an additional 
5 min after microinfusion to ensure diffusion of vector. Micropipettes were 
slowly retracted, the incision closed, and mice treated with analgesic (ketoprofen,  
5 mg/kg, subcutaneous) and 1 ml saline.

After the pharmacogenetic experiments mice were transcardially perfused 
with 1× PBS followed by 4% paraformaldehyde. Brains were fixed overnight  
(4 °C) and transferred to a 30% sucrose solution. Coronal brain slices (30 m) 
across the entire extent of the mPFC were collected using a cryostat (Leica 
CM1850). Every second section was mounted on a gel-coated glass slide and 
covered with a coverslip with Vectashield fluorescence mounting medium (Vector 
Laboratories). Mosaic images of the mPFC in the slices were then obtained using 
a confocal laser scanning microscope (LSM 710; Zeiss).

Images of AAV infection were scored via two judges blinded to the groups. 
Each mouse received an infection quality score from each judge ranging from 0 
to 3, where 0 indicated no infection or severe damage to the tissue, 1 indicated 
infection, but only unilateral, weak or in the wrong location, 2 indicated robust 
bilateral infection centered on the prelimbic and anterior cingulate cortices,  
and 3 indicated ideal infection. Only data for animals whose score averaged across 
both judges was 2 or greater were included in subsequent analyses. As a result, of 
the 112 animals included in the original experiments, only 59 were included in 
the data analyses shown in Figure 6.

Electrophysiology. A subset of mice (4 mice) microinfused with AAV were used 
to test the effects of CNO on hM4Di-infected neurons. 4 weeks after microin-
fusion of AAV into the mPFC, these mice were perfused with cold modified  
artificial cerebrospinal fluid (mACSF) containing the following (in mM):  
180 sucrose, 25 sodium bicarbonate, 25 glucose, 2.5 KCl, 1.25 sodium phosphate,  
2 MgCl2, 1 CaCl2, 0.4 sodium ascorbate and 3 sodium pyruvate, saturated with 
95% O2/5% CO2 and with pH and osmolarity adjusted to 7.4 and 290–295 mOsm, 
respectively. Brains were quickly removed and placed for 30 s in a chilled mACSF 
slurry. The posterior portions of the brain were removed, and the posterior edge 
of the brain was glued to a slicing stage with an agarose block placed behind 
it. The stage was then placed in a slicing chamber filled with mACSF chilled  
to a slurry and continuously oxygenated with 95% O2/5% CO2. Brain slices  
(350 m) were prepared on a VT1000S vibratome (Leica) and slices recovered 
for 1 h at room temperature in a continuously oxygenated mixture of 25 ml of 
mACSF mixed with 25 ml ACSF (see recipe below).

During recording, slices were placed in a recording chamber perfused with 
continuously oxygenated ACSF containing the following (in mM): 125 NaCl, 
25 sodium bicarbonate, 25 glucose, 2.5 KCl, 1.25 sodium phosphate, 1 MgCl2, 
2 CaCl2, 0.4 sodium ascorbate and 3 sodium pyruvate, saturated with 95% 
O2/5% CO2 and with pH and osmolarity adjusted to 7.4 and 290–295 mOsm, 
respectively. Solution temperature was maintained at 36 °C with a TC-344B tem-
perature controller and SH-27B in-line solution heater (Warner Instruments). 
Whole-cell recording pipettes with tip resistances of 4–7 M  were pulled from 
thin-walled borosilicate glass (World Precision Instruments, TW-150F) using a 
Sutter Instruments P-87. Pipettes were filled with a potassium gluconate–based 
internal solution containing the following (in mM): 130 potassium gluconate, 
10 KCl, 10 HEPES, 0.2 EGTA, 4 ATP, 0.3 GTP and 10 phosphocreatine, with 
pH and osmolarity adjusted to 7.4 and 290–295 mOsm, respectively. Whole-cell 
recordings were performed using a Multiclamp 700B amplifier and digitized 
using an Axon Digidata 1440A (Molecular Devices). Recordings were made from 
both fluorescent and nonfluorescent neurons in the mPFC, visualized with an 
Olympus BX51WI equipped with infrared differential interference contrast and 
GFP epifluorescence. Recordings were performed in current-clamp with bridge 
balancing. After 10 min to ensure patches had settled, a 1-s, 200-pA current pulse 
was injected to induce spiking. After this, 10-min continuous recordings were 
performed. 1 min into the continuous recordings, ACSF containing 1 M CNO 
was switched into the perfusion system, and the effects on resting membrane 
potential were observed. After this, a second 200-pA current pulse was injected 
to induce spiking in order to compare spiking before and after CNO application. 
All reagents used for electrophysiology were obtained from Sigma.

Behavioral analysis. All data analysis was fully automated. Data were analyzed in 
Matlab using a custom-designed toolbox called the Matlab water-maze (MWM) 
toolbox. This toolbox is freely available for download under a GNU Lesser Public 
License agreement at Http://www.franklandlab.com/?page_id=306/. Additionally, 

the analysis used the CircStat Toolbox46 and the kernel density estimation (KDE) 
Toolbox (see below), which is also available under a GNU Lesser Public License 
agreement at http://www.ics.uci.edu/~ihler/code/kde.html.

Path and platform data from each training, testing and probe trial were loaded 
into Matlab directly from the Actimetrics software data files and used to estimate 
escape latency, platform crossings, time in quadrants, time in different platform 
zones, thigmotaxis, path entropy, mean angular search position and DKL.

Escape latency (Figs. 3c and 4b, and Supplementary Figs. 4 and 8) was defined 
simply as the length of the trial. Platform crossings (Fig. 1e and Supplementary 
Fig. 5c) were defined as the number of times during the probe test when the 
mouse entered a region of the pool that had been occupied by a platform at 
any time during training. Time in platform zone (Figs. 2c, 3f, 4e, 6c,f and 
Supplementary Fig. 7a,c) was defined as the percentage of time during the 
probe trials that the mice spent in a circular zone with 10 cm radius centered on 
the platform. In experiments with two probe trials both platform crossings and 
time in platform zone measurements were averaged across both probe trials. 
Mean angular location (Fig. 2d and Supplementary Fig. 7b) was calculated by 
converting the search paths into polar coordinates and taking the circular mean 
via the function provided in the CircStat toolbox. Thigmotaxis was measured by 
examining the percentage of time that the animals spent in the outer 10-cm ring 
of the pool (Supplementary Fig. 6).

Path entropy (Fig. 1f and Supplementary Fig. 5d) and DKL (Figs. 1d, 3e, 4d 
and 6b,e) were estimated by calculating a probability density function from each 
search path during the probe using a kernel density estimation technique. Search 
paths from both trials were used as the centers for circular two-dimensional (2D)  
Gaussian kernels with bandwidths of 5 cm. These kernels were then used to 
generate a probability density function estimate, Psearch (normalized across the 
space of the pool), at each grid point in a 1 cm × 1 cm grid covering the pool. The 
path entropy, Hsearch, was then calculated as:

H = P x P xsearch search searchln( ) ( ( ))

where x ranges over space in the pool.
DKL provides an estimate of the difference between two statistical distribu-

tions30. It does so by providing a measure of the average number of bits that are 
lost when information from a target distribution is encoded using an alternative 
distribution. We used the DKL to measure the difference between the distribution 
of individual mouse search paths on the probe test and the distribution of the 
platforms experienced during training. To estimate the DKL, we defined the target 
distribution as the probability density function, Pplatform (Figs. 1c, 2a and 4a),  
which was estimated using kernel density estimation. This was done using each 
training platform location as the center for circular 2D Gaussian kernels. The 
bandwidth of the Gaussian kernels was optimized using a likelihood cross-
validation search technique (implemented in the KDE Toolbox). The result-
ing bandwidth was 11.35 cm for the unimodal distribution (Supplementary  
Fig. 1a), 14.84 cm for the first new platform test distribution (Supplementary  
Fig. 1c) and 10.02 cm for the second new platform test distribution 
(Supplementary Fig. 1d). It should be noted that these specific bandwidths were 
not critical as analyses using different bandwidths produced similar results. Using 
Pplatform and Psearch, DKL was calculated as:

D P P = P x
P x
PKL platform search platform
platform

search
ln( ) ( )

( )
(xx)

An example illustrating the calculation of DKL for two different search paths is 
given in Supplementary Figure 3. The DKL measure is particularly high when 
the search path is absent from a nonzero region of the Pplatform distribution. 
Therefore, a higher mean DKL indicates that mice did not provide sufficient cov-
erage in their search of areas which had a nonzero probability according to the 
Pplatform distribution.

Electrophysiology analysis. Electrophysiology data was analyzed in iPython 
using NumPy, ScyPy and custom scripts. The change induced by CNO in the 
resting membrane potential was measured as the difference between the median 
membrane potential in the 1 min of continuous recording before CNO applica-
tion, and the median membrane potential in the final 1 min window of the 10 min  
recording after CNO application. Spike rate was estimated by first detecting  

Http://www.franklandlab.com/?page_id=306/
http://www.ics.uci.edu/~ihler/code/kde.html
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spikes via a thresholding of the derivative of the spike trace, then calculating the 
spike rate as the number of spikes generated over the 1 s pulse of current. The 
effect of CNO on spike rate was measured by taking the spike rate observed after 
CNO application and dividing it by the pre-CNO spike rate.

Statistical analysis. Statistical analyses were conducted in Matlab (MathWorks). 
No statistical methods were used to predetermine sample sizes and exact group 
numbers were determined by animal availability. However, we did ensure that 
our sample sizes were similar to those generally employed in the field. For  
the comparison of averages between two groups (e.g., Fig. 1d), data were tested 
for normality using Lilliefors test. If data for either group were significantly  
nonnormal (with  = 0.05), then a nonparametric Mann-Whitney U test was  
used (e.g., Supplementary Fig. 5b). If data from neither group were signifi-
cantly nonnormal, then the groups were tested for equality of variance using 
an F test. If the two groups had significantly different variances (with  = 0.05), 
then Welch’s t-test was used; otherwise a standard two-sample t-test was used. 
For the comparison of the average of a single group to a specified mean (e.g., 
Fig. 2b) the data were tested for normality using Lilliefors test. If the data were 

significantly nonnormal (with  = 0.05), then a sign-rank test was used; other-
wise a t-test was used. For the comparison of averages between groups presented 
with consistent or conflict platforms at different delays, two-way, fixed-effect 
ANOVAs with interaction terms were used (e.g., Fig. 2d). Lilliefors test of the 
residuals from the models confirmed that they were not significantly nonnormal. 
Post hoc comparisons between individual groups were done using Tukey’s test 
to control for multiple comparisons (e.g., Fig. 3e). Correlations were performed 
using Pearson’s correlation coefficient. P values for individual correlations were 
calculated using transformation to a Student’s t distribution, and z-tests were used 
to calculate the significance of differences between correlations. All statistical 
tests were two-tailed.

A Supplementary Methods checklist is available.
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