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Amygdala Inputs to the Ventral Hippocampus
Bidirectionally Modulate Social Behavior

Ada C. Felix-Ortiz and Kay M. Tye
Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139

Impairments in social interaction represent a core symptom of a number of psychiatric disease states, including autism, schizophrenia,
depression, and anxiety. Although the amygdala has long been linked to social interaction, little is known about the functional role of
connections between the amygdala and downstream regions in noncompetitive social behavior. In the present study, we used optogenetic
and pharmacological tools in mice to study the role of projections from the basolateral complex of the amygdala (BLA) to the ventral
hippocampus (vHPC) in two social interaction tests: the resident-juvenile-intruder home-cage test and the three chamber sociability test.
BLA pyramidal neurons were transduced using adeno-associated viral vectors (AAV5 ) carrying either channelrhodopsin-2 (ChR2) or
halorhodopsin (NpHR), under the control of the CaMKII� promoter to allow for optical excitation or inhibition of amygdala axon
terminals. Optical fibers were chronically implanted to selectively manipulate BLA terminals in the vHPC. NpHR-mediated inhibition of
BLA-vHPC projections significantly increased social interaction in the resident-juvenile intruder home-cage test as shown by increased
intruder exploration. In contrast, ChR2-mediated activation of BLA-vHPC projections significantly reduced social behaviors as shown in
the resident-juvenile intruder procedure as seen by decreased time exploring the intruder and in the three chamber sociability test by
decreased time spent in the social zone. These results indicate that BLA inputs to the vHPC are capable of modulating social behaviors in
a bidirectional manner.
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Introduction
Major psychiatric disorders, such as depression, autism, schizo-
phrenia, and social anxiety disorder, share impaired social inter-
action as a distinctive feature (American Psychiatric Association,
2013). However, little is known about the neural circuitry regu-
lating adult social interaction. Previous studies using pharmaco-
logical interventions or lesions have suggested an involvement of
the amygdala in social behaviors and social aggression in both
nonhuman primates (Kling, 1974; Kling and Steklis, 1976;
Machado et al., 2008) and rodents (Bunnell et al., 1970; Jonason
and Enloe, 1971; Sanders and Shekhar, 1995a, b; Gonzalez et al.,
1996). In vivo electrophysiology recordings revealed changes in
neuronal activity in the basolateral amygdala (BLA) during social
interaction behaviors, such as increased firing in the BLA related

to the augmentation of general social behavior (Katayama et al.,
2009). However, the way the amygdala interacts with other
downstream regions in a social context is poorly understood.

One downstream region of the amygdala that has been impli-
cated in social interaction in rodents is the ventral hippocampus
(vHPC), which shares reciprocal connections with the BLA
(O’Donnell and Grace, 1995; Pikkarainen et al., 1999). Lesion
studies provided the first evidence of an involvement of the vHPC
in social interaction (Cadogan et al., 1994; Deacon et al., 2002;
McHugh et al., 2004) and defensive behaviors (Pentkowski et al.,
2006). Furthermore, studies using selective lesion methods have
suggested that the vHPC, but not the dorsal hippocampus, is
required for social interaction during a resident—intruder test
(McHugh et al., 2004). Despite these previous findings, it remains
unclear whether the BLA interacts with the vHPC to modify so-
cial behavior.

Our recent work demonstrated that the activation of BLA
projections to the central nucleus of the amygdala (Tye et al.,
2011) or the vHPC (Felix-Ortiz et al., 2013) mediates opposing
effects on anxiety-related behaviors. However, the role of specific
BLA projections in social behavior has not previously been ex-
plored. To selectively control projections from the BLA to spe-
cific downstream targets, we took advantage of the cellular
specificity and temporal precision of optogenetics. This allowed
neural activation or inhibition on a timescale relevant to social
approach in two well-validated behavioral procedures (resident–
intruder and the three chamber sociability test) (File and Pope,
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1974; Winslow, 2003; Silverman et al., 2010; Kaidanovich-Beilin
et al., 2011; Himmler et al., 2013). These findings illustrate an
approach based on optogenetic tools for testing the causal signif-
icance of circuits characterized by cell location, cell type, projec-
tion target, and target receptors in freely moving mammals
executing complex behaviors.

Materials and Methods
Animals
Naive wild-type male C57BL/6 mice, 5– 6 weeks of age (The Jackson
Laboratory) were group-housed in clear Plexiglas cages with ad libitum
access to food and water until surgery. After surgery, mice were main-
tained on a 12 h light/dark cycle. The stimulus (juvenile intruder) mice
were 3- to 4-week-old male C57BL/6 mice (The Jackson Laboratory),
group housed. All animal procedures were approved by the Massachu-
setts Institute of Technology Institutional Animal Care and Use Com-
mittee and conducted in accordance with the NIH Guide for the Care and
Use of Laboratory Animals.

Surgery
Mice were anesthetized with 1.5–2.0% isoflurane gas/oxygen mixture
and aligned on the stereotaxic apparatus (Kopf Instruments). Body tem-
perature was maintained throughout surgery with an adjustable warm-
ing pad. All stereotaxic coordinates were described relative to bregma.
Surgery was performed for viral transduction of BLA cell somata (�1.16
mm anteroposterior; �3.3–3.4 mm mediolateral; and �4.9 mm dorso-
ventral). A midline incision was made down the scalp, and craniotomy
was made using a dental drill. A 10 �l microsyringe (nanofil; WPI) was
used to deliver virus solution at a rate of 0.1 �l/min using a microsyringe
pump (UMP3; WPI) and its controller (Micro4; WPI). The virus solu-
tion contained purified adeno-associated viral vector serotype 5 (AAV5),
under the control of a CaMKll� promoter, coding eNpHR3.0 fused
to an enhanced yellow fluorescent protein (eNpHR3.0-eYFP), or
channelrhodopsin-2 (ChR2)(H134R)-eYFP, or eYFP alone. AAV5-
CaMKII�-eNpHR3.0-eYFP or eYFP was injected bilaterally (0.5 �l per
side) for mice in Figure 1. AAV5-CaMKII�-ChR2(H134R)-eYFP or
eYFP was injected unilaterally (0.5 �l) for mice in Figures 2, 3, and 4. All
virus aliquots were obtained from the University of North Carolina Vec-
tor Core (Chapel Hill, NC). The maps for above constructs are available
online at www.optogenetics.org.

After infusion, the needle was kept at the injection site for 10 min and
then slowly withdrawn. To allow for projection-specific targeting of BLA
terminals, mice were implanted bilaterally or unilaterally with chronic
implantable optic fibers (length � 4 mm, 300 �m core, NA � 0.37;
Thorlabs) held in a stainless steel ferrule (Precision Fiber Products) over
the vHPC (�3.08 mm anteroposterior; �3.6 –3.7 mm mediolateral;
�3.4 mm dorsoventral). For pharmacological experiments, a unilateral
cannula (22GA, PlasticsOne) was implanted above the vHPC for infu-
sion of glutamate receptor antagonists. Implanted fibers and cannulae
were adhered to the skull with a layer of adhesive cement (C&B Meta-
bond; Parkell) followed by dental cement (Ortho-Jet; Lang). The cement
was allowed to dry before the incision was closed using nylon sutures, and
the animal was then allowed to recover from anesthesia under a heat
lamp to maintain body temperature. Mice were given a 6 to 7 week
incubation period to allow for proper viral transduction to the vHPC
terminals, before behavioral experiments.

Laser delivery
A 3-m-long fiber-optic patch cord (Doric) was connected to the
chronically implanted optic fiber and suspended above the behavioral
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Figure 1. Inhibition of BLA terminals projecting to the vHPC with NpHR increases social
interaction in a resident-juvenile intruder procedure. BLA glutamatergic neurons were trans-
duced with either NpHR-eYFP (n � 7) or eYFP alone as a control (n � 8). Yellow light was
delivered (3 min, constant) via bilateral optical fibers implanted in the vHPC, after�7– 8 weeks
of viral incubation. A, Left, Coronal brain schematic indicating the site of viral injection into the
BLA. Right, Coronal schematic indicating optic fiber location into the vHPC. Top, Experimental
timeline. B, Left, Schematic indicating the home-cage resident-juvenile (3– 4 weeks) intruder
behavioral procedure. Right, Schematic indicating the 3 min epochs with 24 h, counterbalanced
between the social tasks. Different intruders were used for each epoch. C, NpHR mice spent
significantly more time performing social interaction than eYFP mice during the yellow light

4

illumination epoch. *p � 0.046. D, No significant effect of light stimulation or group was
detected on time spent self-grooming compared with eYFP mice. E, NpHR mice spent less time
(seconds) exploring their home cage during light stimulation compared with eYFP control mice.
*p � 0.035. F, No significant effect of light stimulation or group was detected on freezing
behavior in the presence of a juvenile intruder. G, Percentage of total time (3 min), showing
social interaction, self-grooming, cage exploration, and freezing. Data are mean values. Error
bars indicate SEM.
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testing arena to allow animals to interact and
move freely while receiving laser stimula-
tion. The patch cord was connected to a 594
nm laser or a 473 nm laser (OEM Laser Sys-
tems) with an FC/PC adapter. All laser out-
put was manipulated with a Master-8 pulse
stimulator (A.M.P.I.). For mice in Figure 1
(bilateral optogenetic inhibition of BLA-
vHPC projection using NpHR3.0), bilateral
inhibition through two implanted chronic
optic fibers connected to the optic patch
cords (Doric) received 10 mW (�35.35 mW/
mm 2) of constant yellow light generated by a
594 nm DPSS Laser (OEM Laser Systems).
For mice in Figures 2, 3, and 4, unilateral
activation using ChR2(H134R) was achieved
by delivering 10 mW (�35.35 mW/mm 2) of
blue light in a high-frequency train (20 Hz, 5
ms pulses) generated by a 473 nm DPSS laser
(OEM Laser Systems).

Behavioral assays
All tests were performed during the dark phase,
and animals were allowed to acclimate to the
behavioral testing room for at least 1 h before
the beginning of testing.

Social interaction assay
Male juvenile mice were used instead of adults
to exclude any effect of mutual aggression. So-
cial interaction in the home cage was examined
as described previously (Winslow, 2003). A
single mouse was allowed to explore freely for 1
min (habituation) in his home cage. A novel
juvenile (3– 4 weeks old) male C57BL/6 mouse
was introduced to the cage and allowed to ex-
plore freely for 3 min (test session). All behav-
iors were video recorded and analyzed by an
experimenter blind to the testing condition us-
ing ODLog software (Macropod software).
The overall score of social interaction included
behaviors, such as body sniffing, anogenital
sniffing, direct contact ( pushing the snout or
head underneath the juvenile’s body and
crawling over or under the juvenile’s body),
and close following (�1 cm). Nonsocial behav-
iors were also represented in an overall explo-
ration score, which included walking, rearing,
freezing, and self-grooming. Each mouse un-
derwent two social interaction tests separated
by 24 h, with one intruder paired with optical
stimulation and one with no stimulation.
Groups were counterbalanced for order of light
stimulation.

Three chamber sociability test
Apparatus. A different cohort of animals was subjected to the three cham-
ber sociability test (Fig. 4). The three compartment testing apparatus
consisted of a Plexiglas rectangular box (57.15 cm � 22.5 cm � 30.5 cm),
without a top. The center compartment was smaller (8 cm � 22.5 cm)
than the two end compartments, which were of equal size (24.5 cm �
22.5 cm). Inverted custom made wire cups (diameter 8 cm) were placed
in each side of the end compartments during testing sessions (discussed
below) and housed the juvenile stimulus mouse. The apparatus and wire
cups were thoroughly cleaned with 70% ethanol between sessions and
after each test mouse.

Sociability procedure. In the first session, a test mouse was placed in the
middle compartment and allowed to habituate to the apparatus for 10
min, and the first 5 min was used for analysis. In the second 5 min session,
a stimulus juvenile (3– 4 weeks) mouse was placed in an inverted wire cup

in the side designated as the social compartment, and an empty inverted
wire cup was placed in the side designated as the nonsocial compartment.
The test mouse was placed in the middle chamber for 1–2 min while the
experimenter placed the juvenile mouse inside the inverted cup. The test
mouse was then left to explore both chambers for 5 min. The side desig-
nated for the location of the enclosed stimulus mouse was randomly
assigned in a counterbalanced fashion throughout the 2 d experiment.
Behavioral tests were recorded by a video camera, and the EthoVision XT
video tracking system (Noldus) was used to track mouse location, veloc-
ity, and movement of head, body, and tail. All measurements were made
relative to the mouse body. The amount of time test mice spent in each
compartment, the amount of time they explored (sniffing) within a 2 cm
vicinity of the inverted cups, and their transitions between compart-
ments were measured. Each mouse underwent the above sociability task
twice, separated by 24 h, with one session paired with optical stimulation

Figure 2. Histologically verified placements of viral injections and optical fiber tips in NpHR:BLA-vHPC and eYFP:BLA-vHPC
groups. A, Coronal sections from bregma containing the BLA. Center of the viral injections in the BLA for all the mice injected with
NpHR (n � 7; orange circles) and eYFP (n � 8; gray circles). B, BLA confocal image from a representative NpHR mouse. Right,
Confocal images of individual cells in the BLA of a mouse in the NpHR group. C, Coronal sections from bregma containing the vHPC.
Location of the optical fiber tips above the pyramidal layer of vHPC for NpHR:BLA-vHPC (orange crosses) and eYFP (gray crosses). D,
vHPC confocal image indicating the optical fiber placement in a representative mouse from the NpHR group. Right, Confocal
images of individual cells in the vHPC of a mouse expressing NpHR in BLA axon terminals.
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and one with no stimulation. Groups were counterbalanced for order of
light stimulation as well as side assigned as the social zone.

Pharmacology
A 26 gauge stainless steel internal cannula (PlasticsOne) projecting 0.5
mm beyond the tip of the guide cannula was connected to a syringe pump
(Harvard Apparatus). The AMPA receptor antagonist and the NMDA
receptor antagonist were infused into the vHPC in a volume of 0.5 �l at
a rate of 0.1 �l per minute. The internal cannula was withdrawn 5 min
after the end of infusion, and animals underwent social testing 30 min
after drug infusion. Testing took place over 4 d, and each day an individ-
ual mouse received only one drug, counterbalanced for treatment and
stimulation (laser ON or OFF) order. Glutamate receptor antagonism
consisted of a mixture of 22 mM of NBQX and 38 mM of AP5 (Tocris
Bioscience), dissolved in 0.9% saline, and prepared freshly on each day of
the experiment.

Immunohistochemistry
To use c-fos expression as a readout for neural activity, mice expressing
ChR2(H134R)-eYFP or eYFP were stimulated in vivo inside their home
cage for 3 min (with the same stimulation protocol used for behavioral
testing) 90 min before death. All mice were anesthetized with sodium
pentobarbital and transcardially perfused with ice-cold 4% PFA in 1�
PBS, pH 7.3. The brain was extracted and postfixed in 4% PFA overnight,
followed by transfer to 30% sucrose in 1� PBS. Brains were sectioned
into 40-�m-thick coronal sections using a sliding microtome (HM430;
Thermo Fisher Scientific) and stored in PBS at 4[GRAPHIC] before being
processed using immunohistochemistry. Sections were blocked in Triton
X-100 0.3%/PBS and 3% normal donkey serum for 1 h at room temper-
ature, followed by incubation with primary antibody (rabbit anti-c-fos
1:500; Calbiochem) for 17–20 h at 4°C. Sections were then washed 4
times for 10 min each with PBS before and after incubation with second-
ary antibody (AlexaFluor-647 anti-rabbit, 1:500, Invitrogen) for 2 h at
room temperature. Sections were then incubated with a DNA specific
fluorescent probe (DAPI; 1:50,000) for 30 min and washed 4 times
with1� PBS followed by mounting on microscope slides with PVD-
DABCO (Sigma).

Confocal microscopy
Confocal fluorescence images were acquired using an Olympus FV1000
confocal laser scanning microscope using a 10�/0.40 NA or a 40�/1.30
NA oil-immersion objective. Serial z-stack images covering a depth of 10
�m through multiple sections were acquired using the image analysis
software (Fluoview, Olympus). The number of c-fos-positive cells were
counted by experimenters blind to the experimental conditions. Mice show-
ing eYFP somata expression in the cortex were excluded from analysis.

Statistics
A two-way ANOVA was used to examine group differences followed by
Bonferroni post hoc tests. We performed a Bonferroni correction for
multiple comparisons by multiplying the p value for each individual test
by the number of comparisons made. For all results, significance thresh-
old was placed at p � 0.05 and p � 0.01. All data are shown as � SEM.

Results
Optogenetic inhibition of BLA inputs to the vHPC increases
social behaviors
Using AAV5 under the control of the CaMKII� promoter, we
transduced BLA pyramidal neurons with an enhanced version of
halorhodpsin (eNpHR3.0) (Gradinaru et al., 2010). In experi-
mental groups, BLA projection neurons were transduced with
NpHR fused to an eYFP (AAV5-CaMKII�-NpHR-eYFP),
whereas control animals received the same viral vector carrying
the fluorophore alone (AAV5-CaMKII�-eYFP). To inhibit NpHR-
expressing BLA axon terminals in the vHPC, we bilaterally im-
planted optical fibers above the vHPC to allow for the delivery of 594
nm light to the pyramidal layer of the vHPC (Fig. 1A). The mice were
then tested on a well-validated social interaction test, the resident–
intruder procedure (File and Pope, 1974; Winslow, 2003; Silverman

et al., 2010; Himmler et al., 2013). Each mouse was tested on two
separate days, with different juvenile intruders (3–4 weeks old), to
allow for within-subject and within-session comparisons as well as
group comparisons Each mouse had 1 min of habituation in their
home cage followed by a 3 min epoch of either light-off (OFF) or
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Figure 3. Activation of BLA axon terminals in the vHPC with ChR2 decreases social interac-
tion in a resident-juvenile intruder procedure. Glutamatergic neurons from the BLA were trans-
duced with either ChR2-eYFP (n � 8) or eYFP control (n � 8). After �6 –7 weeks of incubation
after viral transduction of BLA cell somata, blue light was delivered (3 min, 20 Hz, 5 ms pulses)
via a unilateral optical fiber implanted above the vHPC. A, Left, Sagittal view brain schematic
indicating viral injection into the BLA. Right, Schematic indicating unilateral optical fiber loca-
tion into the vHPC. Top, Experimental timeline. B, Schematic indicating the home-cage
resident-juvenile (3– 4 weeks) intruder behavioral procedure. Three minute epochs were coun-
terbalanced for order with a 24 h interval between ON and OFF light conditions. Novel juvenile
intruders were used for each epoch. C, ChR2 mice spent significantly less time (seconds) per-
forming social interaction than eYFP mice during the blue light illumination epoch. *p � 0.034.
D, ChR2 mice also spent significantly more time (seconds) performing self-grooming than eYFP
mice in the presence of a juvenile intruder. **p � 0.008. E, No significant effect of light stim-
ulation or group was detected for the time spent exploring their home cage. F, No significant
effect of light stimulation or group was detected in freezing behavior in the presence of a
juvenile intruder. G, Percentage of total time (3 min), showing social interaction, self-
grooming, cage exploration, and freezing. Data are mean values; error bars indicate � SEM.
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light-on (ON) illumination using constant illumination with 594
nm light. During the testing epochs, the residents were presented
with a juvenile intruder. Groups were counterbalanced for order of
light stimulation (Fig. 1B).

Mice in the NpHR group showed significantly greater total
investigation of the juvenile intruder, reflecting an increase in
social behaviors, relative to eYFP mice during the ON epoch (Fig.
1C; two-way ANOVA demonstrating group � light epoch inter-
action, F(1,13) � 12.89, p � 0.0033; Bonferroni post hoc analysis,
corrected for multiple comparisons, p � 0.046). No significant
differences were found in stereotypical behaviors, such as self-
grooming (Fig. 1D; two-way ANOVA did not detect a group �
light epoch interaction, F(1,13) � 0.02, p � 0.8993). Mice in the
NpHR group also displayed a decrease in time spent performing
home-cage exploration during the ON epoch (Fig. 1E; two-way
ANOVA demonstrating group � light epoch interaction, F(1,13) �
7.12, p � 0.0193; Bonferroni post hoc analysis, corrected for mul-

tiple comparisons, p � 0.035), perhaps explained by the in-
creased attention to the juvenile intruder. No significant
differences were found in freezing (immobilization) behavior
(Fig. 1F; two-way ANOVA did not detect a group � light epoch
interaction, F(1,13) � 0.52, p � 0.4839). Each epoch session lasted
3 min. Figure 1G shows the overall time mice spent engaging in
different behaviors for experimental and control groups. NpHR
mice spent significantly more time exploring the intruder than
eYFP controls. These data demonstrate that silencing BLA inputs
to the vHPC increased the time spent on social interaction. Next,
we explored whether the ability of BLA inputs to the vHPC could
control social interaction in a bidirectional manner. After com-
pletion of the 2 d of behavior, brains were extracted and the tissue
was prepared for confocal microscopy. In Figure 2A, we show the
locations of viral injections (Fig. 2A) and representative confocal
images from an NpHR mouse (Fig. 2B). Optic fiber placements
were also verified for all animals (Fig. 2C). Representative confo-

Figure 4. Activation of BLA projections to the vHPC with ChR2 decreases sociability in a three chamber sociability test. In a different group of animals from Figure 3, glutamatergic neurons from
the BLA were transduced with either ChR2-eYFP (n � 8) or eYFP control (n � 8). After �6 –7 weeks of viral transduction of BLA cell somata, blue light was delivered (5 min, 20 Hz, 5 ms pulses) via
unilateral optical fiber implanted in the vHPC. A, Top, Timeline across 2 d of testing. Bottom, Schematic indicating the three chamber sociability test and 5 min experimental epochs. Each testing day
was composed of habituation to the arena followed by 5 min of laser ON or laser OFF stimulation (counterbalanced for order). Different juvenile mice were used for each testing epoch, counterbal-
anced for side of the testing arena. B, Representative animal tracks during the habituation phase for day 1 (top) and day 2 (bottom). C, Time spent in the different zones of the arena during day 1.
No significant differences were found between the times spent on the right chamber versus the left chamber. D, Time spent in the different zones of the arena during day 2. No significant differences
were found between the times spent on the right chamber versus the left chamber. E, No significant effect on locomotion during the habituation phase during the 2 d of testing. F, Representative
animal tracks during the testing sessions for OFF (top) and ON (bottom). G, ChR2 mice spent significantly less time (seconds) in the social zone relative to eYFP mice during the blue light illumination
epoch. *p � 0.033. H, ChR2 also showed a significantly lower social/nonsocial ratio during laser stimulation compared with eYFP mice. *p � 0.023. I, No significant effect of locomotion during the
habituation phase during the laser stimulation. Data are mean values; error bars indicate � SEM.
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cal images from an NpHR mouse’s optic fiber position are pre-
sented in Figure 2D.

Optogenetic activation of BLA inputs to the vHPC decreases
social behaviors
We transduced BLA pyramidal neurons with a channelrhodopsin-2
(ChR2)-eYFP fusion protein in experimental animals and eYFP
alone in control animals along with a unilaterally implanted op-
tical fiber over the vHPC on the ipsilateral hemisphere (Fig. 3A)
before testing in the resident–intruder procedure (Fig. 3B). We
used the same procedure as in the previous experiments, but with
the illumination epoch consisting of a continuous train at 20 Hz
of 473 nm (blue) light pulses, with 5 ms pulse duration. ChR2
mice showed reduced investigation of the juvenile intruder, re-
flecting a reduction in social interaction (Fig. 3C; two-way
ANOVA demonstrating group � light epoch interaction,
F(1,14) � 9.04, p � 0.0094; Bonferroni post hoc analysis, corrected
for multiple comparisons p � 0.034). ChR2 mice also showed a
significant increase in self-grooming compared with eYFP con-
trols (Fig. 3D; two-way ANOVA demonstrating group � light
epoch interaction, F(1,14) � 14.90, p � 0.0017; Bonferroni post
hoc analysis, corrected for multiple comparisons, p � 0.008). No
differences were found in home-cage exploration (Fig. 3E; two-
way ANOVA did not detect a group � light epoch interaction,
F(1,14) � 0.04, p � 0.8497) and freezing behavior (Fig. 3F; two-
way ANOVA did not detect a group � light epoch interaction,
F(1,14) � 0.29, p � 0.5975). Figure 4G shows the overall time
ChR2 and eYFP groups spent engaging in different behaviors
during the test. As shown above, ChR2 mice spent less time ex-
ploring the intruder compared with eYFP controls.

To evaluate other aspects of social behavior, we also tested a
different group of mice on the three chamber sociability test (Fig.
4). To allow for within-subject comparisons in addition to
between-group comparisons, we tested each mouse on two sep-

arate days on the three chamber sociability test with different
juvenile intruders (3– 4 weeks) each day (Fig. 4A). Each test had 5
min of habituation in the testing arena. Representative ChR2
mouse tracks are shown in Figure 3B. No differences were found
in the time spent in the right zone versus the left zone of the
testing chamber (Fig. 4C; two-way ANOVA did not detect a
group � light epoch interaction, F(1,14) � 1.69, p � 0.2146; and
Fig. 4D; two-way ANOVA did not detect a group � light epoch
interaction, F(1,14) � 0.09, p � 0.7646). No differences were
found in distance traveled (Fig. 4E; two-way ANOVA did not
detect group � light epoch interaction, F(1,14) � 0.93, p �
0.3503). The habituation period was followed by one 5 min epoch
of either a baseline epoch without illumination (OFF) or illumi-
nation using continuous train at 20 Hz of 473 nm (blue) light
pulses, with 5 ms pulse duration (ON). During the testing epochs,
the test mouse was presented with a juvenile intruder inside an
inverted cup for which a representative animal track from the
ChR2 group is shown (Fig. 4F). Groups were counterbalanced
for order of light stimulation. Mice in the ChR2 group displayed
a decrease in time spent in the social zone upon illumination (ON
epoch) relative to eYFP controls (Fig. 4G; two-way ANOVA dem-
onstrating group � light epoch interaction, F(1,14) � 9.04, p �
0.0094; Bonferroni post hoc analysis, corrected for multiple com-
parisons, p � 0.033). ChR2 mice also showed a lower social/
nonsocial ratio during the ON epoch, which indicates that during
light stimulation ChR2 mice spent more time investigating the
nonsocial zone (Fig. 4H; two-way ANOVA demonstrating
group � light epoch interaction, F(1,14) � 8.02, p � 0.0133; Bon-
ferroni post hoc analysis, corrected for multiple comparisons, p �
0.023). Furthermore, we simultaneously analyzed locomotor ac-
tivity across epochs and did not detect any changes during the
ON epoch relative to the OFF epoch as measured by distance
traveled (Fig. 4I; two-way ANOVA did not detect a group � light
epoch interaction, F(1,14) � 0.03, p � 0.8728).

Figure 5. Activation of BLA axon terminals in the vHPC using ChR2 increases c-fos expression in the pyramidal layer of vHPC. Blue represents DAPI; green, eYFP; red, c-fos. A, Confocal image of
the BLA of representative ChR2 animal. B, Confocal images of the BLA from two representative mice. Representative ChR2:BLA-vHPC animal (left) and representative eYFP:BLA-vHPC mice (right).
C, Percentage of DAPI-positive (�) cells expressing eYFP or c-fos in the BLA (n � 8 ChR2 mice and n � 8 eYFP mice). No differences between groups were found in c-fos � or eYFP � cells in the BLA.
D, Confocal image of the vHPC from representative ChR2 mice. E, vHPC confocal images of two representative mice. Representative ChR2:BLA-vHPC animal (left) and representative eYFP:BLA-vHPC
mice (right). F, Percentage of DAPI-positive (�) cells expressing eYFP or c-fos in the vHPC (n � 8 ChR2 mice and n � 8 eYFP mice). Compared with eYFP:BLA-vHPC controls, light stimulation of BLA
terminals in the vHPC increased the percentage of c-fos(�) cells in the vHPC of ChR2:BLA-vHPC group. Data are mean � SEM. **p � 0.0028.
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Optogenetic stimulation of BLA axon terminals in the vHPC
increases c-fos expression in the vHPC, but not in BLA
somata
To test for the effects of blue light illumination on neuronal acti-
vation, we used the immediate early gene c-fos as a readout for
neural activity. A confocal image of the BLA from a representative
ChR2 mouse is shown in Figure 5A, demonstrating basal c-fos
expression (red) within the BLA. Confocal images of the pyrami-
dal layer in vHPC CA1 from representative ChR2 and eYFP mice
are shown in Figure 5B. We did not observe a change in BLA
somata c-fos expression induced by illumination of BLA termi-
nals in the vHPC relative to eYFP control mice (Fig. 5C; unpaired
Student’s t test, df � 14, t � 0.4515, p � 0.3293). Although light
stimulation does not alter basal activity on the BLA, we also show
that c-fos expression was increased in the pyramidal layer of the
vHPC CA1 extending to �1.5 mm below the fiber tip (Fig.
5D,E). Quantification of c-fos demonstrates a significant in-
crease of cell activity on the vHPC during light stimulation (Fig.
5F; unpaired Student’s t test, df � 17, t � 3.166, p � 0.0028).
Confocal images were also taken from each animal to confirm the
viral injection site (Fig. 6A) and optic fiber position (Fig. 6B).

BLA excitatory projections to the vHPC are sufficient to
mediate changes in social behaviors
Although our data suggest that excitation of glutamatergic inputs
from the BLA to the vHPC can reduce social behaviors, the illu-
mination of ChR2-expressing terminals in the vHPC could in-
duce depolarization of axons of passage and/or back-propagating
action potentials to BLA somata (Petreanu et al., 2007). To con-
trol for this possibility, we combined in vivo pharmacological
manipulations with our in vivo optogenetic manipulations dur-
ing the resident–intruder procedure (Fig. 7). Once again, we ex-
pressed ChR2 in BLA neurons but unilaterally implanted a guide
cannula rather than an optic fiber to deliver either saline or glu-
tamate receptor antagonists to the vHPC �30 min before testing
and laser stimulation on the resident–intruder procedure (Fig.
7A). To allow for a within-subject comparison, we tested each
animal four times on different days, with unilateral administra-
tion of either saline or a combination of the AMPA receptor
antagonist NBQX (22 mM) and NMDA receptor antagonist AP5
(38 mM), counterbalanced for order. This enabled comparison of
saline trials to glutamate receptor antagonist mixture (GluRX)
trials (Fig. 7B). Different intruders were used for each day of
testing.

In saline trials, mice replicated the light-induced reduction of
social interaction on the resident–intruder procedure; but after
treatment with glutamate receptor antagonists, the light-induced
changes in social interaction were attenuated (Fig. 7C; two-way
ANOVA demonstrating group � light epoch interaction, F(1,14) �
10.37, p � 0.0062; Bonferroni post hoc analysis, corrected for
multiple comparisons, p � 0.048). Furthermore, the light-
induced increase in grooming evident in the saline group was also
attenuated by the GluRX treatment (Fig. 7D; two-way ANOVA
demonstrating group � light epoch interaction, F(1,14) � 9.62,
p � 0.0078; Bonferroni post hoc analysis, corrected for multiple
comparisons, p � 0.036). No differences were found between
groups in locomotor activity shown by distance traveled (Fig. 7E;
two-way ANOVA did not detect a group � light epoch interac-
tion, F(1,14) � 0.56, p � 0.4674) or freezing behavior (Fig. 7F;
two-way ANOVA did not detect a group � light epoch interac-
tion, F(1,14) � 1.97, p � 0.1827). Figure 7G shows the overall time
ChR2:GluRX and ChR2:saline groups spent engaging in different
behaviors during the test. As shown above, the light-induced

changes were replicated in the ChR2:saline group and attenuated
with the presence of the GluRX. After behavioral testing, animals
were processed to allow for histological verification of injection
site (Fig. 8A) and cannula placement (Fig. 8B).

Discussion
Our results demonstrate a critical role for BLA projections to the
vHPC in bidirectionally modulating social interaction. Addition-
ally, activation of this pathway increases self-grooming while de-
creasing social interaction. These findings provide broad
implications for the involvement of this pathway in behaviors
relevant to autism spectrum disorders, obsessive– compulsive
disorder, and social anxiety, and represent a potential new target
for therapeutic development.

Strong evidence suggests a functional role for the amygdala in
social processing or social cognition in humans (Killgore and
Yurgelun-Todd, 2005; Schultz, 2005; Bickart et al., 2011), as well
as in social behavior in animals (Ferguson et al., 2001; Amaral,
2002). However, support for a role of the vHPC has been less

Figure 6. Histologically verified placements of viral injections and optical fiber tips in ChR2:
BLA-vHPC and eYFP:BLA-vHPC groups. A, Coronal sections from bregma of the BLA. Center of
the viral injections in the BLA for all the mice injected with ChR2 (n�16; green circles) and eYFP
(n � 16; gray circles). B, Coronal sections from bregma of the vHPC. Location of the optic fibers
tip above the pyramidal layer of vHPC for ChR2:BLA-vHPC (green crosses) and eYFP (gray
crosses).
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clear. It has been reported that increases in 5HT and cAMP are
observed in the vHPC after social interaction (Cadogan et al.,
1994). However, their study used a novel arena, which may have
been anxiogenic, which is in contrast to the home-cage social
interaction test but similar to the three chamber sociability test.
Although these changes appear distinct from our observation of
increased c-fos expression, our findings show that the same pho-
tostimulation that reduced social interaction showed increased
vHPC activity and agree with this report in terms of linking social
interaction to changing neural dynamics within the vHPC. In
another study, oxytocin was recently shown to increase the
signal-to-noise ratio of CA1 pyramidal neurons in mice in an ex
vivo preparation (Owen et al., 2013), providing one possible
mechanism underlying the ability of oxytocin to reduce social
deficits associated with autism spectrum disorders (Guastella et
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al., 2010) and to ameliorate the symptoms of obsessive– compul-
sive disorder (Ansseau et al., 1987) in humans.

Despite these findings, there has been contention about
whether the vHPC has a critical role in social interaction. Specif-
ically, although ibotenic acid lesions in neonatal rats produced
dramatic changes in social interaction when the rats were tested
in adulthood in the absence of changes in general anxiety-re-
lated behaviors, no such changes in social interaction were
observed when the lesions were performed in adult rats (Sams-
Dodd et al., 1997; Becker et al., 1999). This result suggests that the
vHPC does not play an active role in social interaction in adult-
hood. However, these lesions were nonspecific and may have
targeted multiple circuits in the vHPC with opposing functions in
social interaction, thereby producing a zero sum effect on behav-
ior. Furthermore, in these studies, the lesions were performed 2
weeks before testing, and compensatory mechanisms in the adult
brain may have contributed to the lack of change in social inter-
action observed. In contrast to this nonspecific ablation of the
vHPC region, in this study we transiently modulated the activity
across a specific subpopulation of synapses in the vHPC without
causing any permanent damage. Whereas in vivo electrophysio-
logical studies have been performed in the BLA (Wang et al.,
2011) and vHPC during anxiety (Adhikari et al., 2010), and re-
cordings have also been performed in the BLA during social be-
haviors (Katayama et al., 2009), our findings provide the first
evidence that BLA inputs to the vHPC have a causal relationship
with social behavior. Furthermore, the neural encoding dynam-
ics of vHPC-projecting BLA neurons have yet to be revealed dur-
ing social interaction.

In our previous work, we identified two projections originat-
ing from the BLA that showed opposing effects on anxiety-related
behavior (Tye et al., 2011; Felix-Ortiz et al., 2013). Here, we ex-
tend these findings by showing that BLA projections to the vHPC
not only mediate anxiety-related behaviors but also mediate so-
cial behaviors. We speculate that the dual function of this path-
way may contribute to the high rate of comorbidity of autism and
anxiety disorders (Kim et al., 2000; Amaral and Corbett, 2008), as
individuals with both autism and anxiety-related symptoms
could have a perturbation in this pathway.
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