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Hippocampal astrocytes encode reward 
location

Adi Doron1, Alon Rubin2, Aviya Benmelech-Chovav1, Netai Benaim1, Tom Carmi1, Ron Refaeli1, 
Nechama Novick1, Tirzah Kreisel1, Yaniv Ziv2 & Inbal Goshen1 ✉

Astrocytic calcium dynamics has been implicated in the encoding of sensory 
information1–5, and modulation of calcium in astrocytes has been shown to affect 
behaviour6–10. However, longitudinal investigation of the real-time calcium activity of 
astrocytes in the hippocampus of awake mice is lacking. Here we used two-photon 
microscopy to chronically image CA1 astrocytes as mice ran in familiar or new virtual 
environments to obtain water rewards. We found that astrocytes exhibit persistent 
ramping activity towards the reward location in a familiar environment, but not in a 
new one. Shifting the reward location within a familiar environment also resulted in 
diminished ramping. After additional training, as the mice became familiar with the 
new context or new reward location, the ramping was re-established. Using linear 
decoders, we could predict the location of the mouse in a familiar environment from 
astrocyte activity alone. We could not do the same in a new environment, suggesting 
that the spatial modulation of astrocytic activity is experience dependent. Our results 
indicate that astrocytes can encode the expected reward location in spatial contexts, 
thereby extending their known computational abilities and their role in cognitive 
functions.

In recent years, research revealed many roles for astrocytes in modu-
lating neuronal activity as well as behaviour6. Intracellular astrocytic 
calcium elevations—a prominent signal in these cells—were widely 
studied in vitro and recent studies have investigated them in vivo as 
well (reviewed in refs. 1,11). Different studies have shown that cortical 
astrocytes respond to specific sensory stimuli with calcium transients 
(for example, visual cortex2 and the somatosensory cortex4,5). Anaes-
thesia reduces calcium signalling in astrocytes12, but only a minority 
of studies have investigated astrocyte activity in awake animals, and 
only one in the hippocampus13. Nevertheless, direct manipulation of 
astrocyte calcium signalling was shown to modulate behaviour, thereby 
extending their role beyond sensory processing8–10,14. Astrocytic cal-
cium signals are also affected by the general state of the organism: 
they are elevated during arousal3,15,16, reduced during natural sleep17 
and regulated by neuromodulators in vivo3,18,19. However, longitudinal 
investigation of the real-time calcium activity of astrocytes in the hip-
pocampus of awake mice is lacking, let alone during performance of 
a multisensory cognitive task.

Place cells, a subset of pyramidal neurons in the hippocampal CA1 
region, fire when the animal is in a specific location in space20 and are 
considered to be the neuronal underpinning of spatial memory. The 
neuronal representation of a given environment entails goal-related 
information21: when an animal navigates in a familiar environment, 
place cells exhibit over-representation of rewarded locations22–26 with 
narrower and more stable tuning curves than for other locations27. Fur-
thermore, a subgroup of neurons was shown to represent the reward, 
independent of its location28. After exposure to a new environment, the 

activity of CA1 place cells reconfigures to form a new map that is unique 
to that environment29–31, enabling neuronal discrimination between dis-
tinct contexts32,33. Recent studies have also shown that subpopulations 
of inhibitory cells exhibit spatially tuned activity and are modulated by 
rewards34, but the role of astrocytes in this context is unclear.

Hippocampal astrocytes have an important role in memory pro-
cesses, as shown by us and others9,14,35; we therefore hypothesized 
that their activity will also be modulated during the performance of a 
spatial cognitive task. To investigate the calcium activity of astrocytes 
in CA1 during a spatial paradigm, we used two-photon calcium imag-
ing of a population of astrocytes in this region as mice ran on a linear 
treadmill and navigated in a multimodal circular virtual environment 
to obtain water rewards. We show that astrocytes gradually increase 
their calcium activity towards the previously learnt reward location 
when mice explore a familiar environment. Moreover, decoders using 
calcium dynamics in populations of astrocytes enabled us to decode the 
location of the mouse within the virtual environment. When the mice 
were introduced into a new virtual environment differing in visual and 
tactile cues, the astrocytic population was less modulated by reward 
location. Furthermore, when the reward location was shifted within the 
familiar environment, we did not observe significant ramping. After 
additional training in the new environment or in the familiar context 
with the new reward location, ramping was re-established, suggest-
ing that the activity elevation towards a rewarding location requires 
familiarity. Our results shed light on the computational abilities of 
astrocytes, their role in contextual discrimination and their contribu-
tion to cognitive functions.
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Imaging CA1 astrocytes during navigation
To investigate the activity of a population of astrocytes while mice 
performed a spatial task, we combined two-photon calcium imaging 
with a custom-made circular virtual reality apparatus, and trained 
head-fixed mice to run on a linear treadmill belt (length, 170 cm) 
to obtain water rewards. A circular virtual environment with multi-
ple distinct visual cues was projected onto a curved screen in front 
of them (Fig. 1a and Extended Data Fig. 1a). Mouse locomotion on 
the treadmill was recorded and translated into movement along 
the virtual track. A single water reward was given after completion 
of each 170 cm lap, matched with a specific location in the virtual 
environment (Fig. 1b).

We virally expressed cytosolic GCaMP6f in dorsal CA1 astrocytes, 
(Fig. 1c), enabling us to image calcium transients in astrocyte somata 
and main processes in a total of 11 mice. GCaMP was expressed in >92% 
(212 out of 230 cells from 3 mice) of CA1 astrocytes, with >94% specific-
ity (212 out of 224 cells from 3 mice). Expression of GCaMP6f in soma-
tostatin (SST)- or parvalbumin (PV)-positive cells or colocalization 
with the pan-neuronal marker NeuN was minimal (1.65% expression 
in neurons, 11 out of 668 cells from 3 mice) (Extended Data Fig. 1b). To 
increase the number of astrocytic regions of interest (ROIs) imaged in 
each session, we acquired separate time series from two fields of view 
(FOVs) using an electrical fast tuneable lens focusing on different tissue 
depths (Fig. 1d,e and Supplementary Video 1). The obtained time series 
were motion-corrected, and ROIs were semi-automatically segmented 
in each FOV separately. The signal from each ROI was extracted and the 
ΔF/F traces were calculated and used for binary event detection (Fig. 1f 
and Methods). Adjacent ROIs were more correlated than further ones 
on average (Extended Data Fig. 1c), and the size of the ROI was positively 
correlated with its event probability (Extended Data Fig. 1d).

Astrocytic activity ramps towards a reward
Reward locations are over-represented by place cells in familiar environ-
ments23–27, and a subgroup of hippocampal neurons encodes rewards 
independent of their location28. However, it is unknown whether astro-
cytes exhibit location- and reward-specific responses. To examine this 
question, we first investigated the overall activity of the astrocytic 
population as mice traversed a familiar environment, and found that it 
was characterized by synchronous activity epochs across many of the 
ROIs (Fig. 2a and Supplementary Video 2). We calculated the number of 
concurrent events as a function of the mouse location, and observed 
that it increased towards the known reward location (Fig. 2b). The num-
ber of concurrent events decreased during the stationary epochs that 
often occurred during reward consumption (Pearson’s r = −0.4 ± 0.04, 
permutation test, P ≤ 0.006, n = 9 mice) (Extended Data Fig. 2a,b). The 
modulation of the astrocytic population activity by location was appar-
ent across laps and significantly different from shuffled data, both 
when testing the number of concurrent events as a function of location 
(Pearson’s r = 0.4 ± 0.03, permutation test, P ≤ 0.024, n = 9 mice;  Sup-
plementary Information) (Fig. 2c,d and Methods) and the mean ΔF/F 
as a function of location (Pearson’s r = 0.25 ± 0.03, permutation test, 
P ≤ 0.018, n = 9 mice) (Extended Data Fig. 2c). Furthermore, when we 
analysed the somata and the processes separately, we obtained similar 
results, indicating that the ramping activity is not limited to specific 
subcompartments of the astrocytes (Pearson’s r = 0.36 ± 0.03 and 
r = 0.38 ± 0.03, permutation tests, P < 0.001 and P < 0.05 for all 8 mice, 
in the somata and processes, respectively; two-sided paired t-test, 
t7 = 0.92, P = 0.39) (Extended Data Fig. 2d,e and Methods).

When the reward was given at random locations along the track, 
we did not observe ramping (Pearson’s r = 0.02 ± 0.02, permutation 
test, P ≥ 0.084, n = 3 mice) (Extended Data Fig. 2f), indicating that 
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Fig. 1 | Ca2+ imaging of CA1 astrocytes in mice navigating a virtual reality.  
a, Experimental set-up. Head-fixed mice ran voluntarily on a linear treadmill  
to proceed in a circular virtual environment projected onto a round screen in 
front of them to obtain water rewards, constantly given at a specific location 
(asterisk). b, The trajectory of a well-trained mouse, completing 15 laps in 
4 min. The mouse typically stops only after a reward is given. Asterisks denote 
reward delivery. c, Expression of GCaMP6f (green) in astrocytes in the CA1 after 

viral injection of AAV5-gfaABC1D-cyto-GCaMP6f. The imaging window was 
placed ~100 µm above the pyramidal cell layer, denoted by a white dashed line. 
d, Mean images of two FOVs acquired using a fast-z-tuneable lens, showing 
numerous segmented astrocytic ROIs. e,f, Magnified excerpts (e) from the 
fields shown in d, with example ROIs, and their corresponding activity traces 
(f). Detected events are shown in black. Scale bars, 50 µm (c–e), 30 s  
(f, horizontal) and 5 ΔF/F (f, vertical)).
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the astrocytes do not encode the mouse position, but rather its 
location relative to the expected reward. When the virtual reality 
visual display was turned off, we still observed significant ramping 
in most mice (Pearson’s r = 0.2 ± 0.04, permutation test, P ≤ 0.009 
for n = 3 mice; Pearson’s r = 0.11, permutation test, P = 0.075 for 
n = 1 mouse) (Extended Data Fig. 2g), suggesting that the tactile 

information is usually sufficient to induce astrocytic ramping in a 
familiar environment.

We next investigated whether, like place neurons, single astrocytic 
ROIs have activation peaks covering the entire environment with 
over-representation of the reward location. We found that about 30% 
(293 out of 972, from n = 9 mice) of the astrocytic ROIs had significant 
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Fig. 2 | Astrocytic activity increases as mice move towards the reward 
location. a, Binary astrocytic Ca2+ traces acquired from ROIs in two FOVs when 
the mouse ran on the treadmill and advanced through the virtual reality. b, The 
sum of the binary traces (that is, the number of events per sampling point) 
shown in a. The height is the number of concurrent events, and the colours 
denote the mouse location along the track (the maze is shown in the top right). 
The astrocytic activity ramps as the mouse moves towards the known reward 
location, and decreases when the mouse is stationary. Asterisks denote reward 
delivery. The dashed line denotes stationary epochs. c, The mean number of 
concurrent events of the mouse in a and b as a function of binned locations in 
all laps (top), and averaged across laps (bottom), is significantly different from 
the shuffled data (Pearson’s r = 0.36, one-sided permutation test, P < 0.001).  

d, The mean number of concurrent events as a function of location normalized 
by shuffled data in nine mice (the blue line represents the mouse shown in c), 
obtained from 972 ROIs, with 126, 86, 107, 107, 107, 114, 160, 72 and 93 ROIs from 
the individual mice. The observed ramping was significantly different from the 
shuffled data (one-sided permutation test, P ≤ 0.024 in all 9 mice). e, Example 
of a ramping ROI, showing its event probability as a function of location and 
laps (top) and its mean event probability across laps (bottom). f, Mean event 
probability as a function of the location of ROIs with significant spatial 
information obtained from nine mice, sorted by the mean event probability in 
the central location bin (top). Most of these ROIs showed ramping, a gradual 
increase in mean activity probability apparent across laps, that peaked near the 
known reward location (bottom). For c–e, data are mean ± s.e.m. (shaded area).
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spatial information. However, their activation peaks did not tile the 
entire track; the maximal event probability of most of these ROIs was 
near the reward location, towards which they showed gradual ramping 
(Fig. 2e,f) indicating that astrocytes might represent the environment 
differently compared with neurons. This was also the case when we ana-
lysed the ΔF/F traces (23%; 225 out of 972 ROIs with significant spatial 
information from n = 9 mice) (Extended Data Fig. 2h).

The increase in astrocytic Ca2+ events towards the expected reward 
location may be the result of the mouse changing its velocity as it 
proceeds in the environment, as previous research has shown that 
astrocytes respond to locomotion in the cortex16,17,36,37. To test this, 
we first looked at the number of concurrent events in the astrocytic 
ROI population as a function of velocity. The correlation between 
astrocytic activity and velocity was weaker than between location and 
astrocytic activity across laps (Pearson’s r = 0.17 ± 0.04, permutation 
test, P ≥ 0.084 in n = 4 mice, P ≤ 0.025 in n = 5 mice) (Extended Data 
Fig. 2i,j). Moreover, when we investigated the interaction between 
location and velocity, we saw that the overall astrocytic activity varies 
more as a function of location in comparison to velocity (7.37 ± 0.74 
and 3.62 ± 0.44 (mean ± weighted s.d.) for locations at a given velocity 
and velocities at a given location, respectively, paired t-test, t8 = 6.56, 
P = 0.0002) (Extended Data Fig. 2k,l). Single astrocytic ROIs also exhib-
ited higher variability across locations than across velocities (Extended 
Data Fig. 2m). Taken together, these findings suggest that the astrocytic 
signal is modulated by the reward location more than by the velocity 
of the mouse.

To further evaluate the unique contribution of location beyond 
other potential behavioural variables to the astrocytic activity, we 
used general linear models (Methods). Specifically, we fitted a linear 
model with five behavioural variables as inputs—normalized location, 
time since reward, velocity, recent distance run and licking—to predict 
the number of concurrent astrocytic events. The model performance 
was significantly better than that of a reduced model, which did not 
include the location as its input (log-likelihood ratio: 591.95 ± 188.33, 
likelihood ratio test, P ≤ 8.82 × 10−14 in all n = 9 mice), as well as of mod-
els based on shuffled location data (coefficient of determination (r2) 
between model prediction and the actual number of concurrent events: 
0.25 ± 0.04 and 0.18 ± 0.03 for real and shuffled location inputs, respec-
tively; permutation test, P ≤ 0.027 in n = 8 mice, P = 0.35 in n = 1 mouse; 
paired t-test, t8 = 3.39, P = 0.0095) (Extended Data Fig. 2n). Consistently, 
cross-validated models that included location as their input performed 
significantly better than reduced models (mean r2 = 0.21 ± 0.04 and 
0.15 ± 0.03 in the full and reduced models, respectively; paired t-test, 
t8 = 3.5, P = 0.0081; permutation test, P < 0.004 in n = 8 mice, P = 0.065 
in n = 1 mouse) (Extended Data Fig. 2o).

We show here that astrocytic activity in the CA1 is modulated by 
reward location both when looking at single ROIs and at the entire 
imaged population. In contrast to place neurons, which fire selectively 
at specific locations throughout the entire space, the astrocytic activity 
gradually increases towards a single expected reward location.

Ramping requires previous experience
Previous studies have shown that CA1 place cells undergo global remap-
ping after exposure to a new environment, and can discriminate between 
it and a familiar context32,33. Chronic imaging data of hippocampal 
astrocytes in awake behaving mice are lacking and, therefore, no such 
phenomenon is known in this population of cells. Hence, we examined 
whether ramping of astrocytic activity towards a rewarding location 
requires familiarity with the environment. To this end, we conducted 
chronic imaging of astrocytes both when mice navigated in a familiar 
environment, and when they were introduced into a new one, differing 
in tactile and visual cues (Extended Data Fig. 1a and Methods). We used 
fluorescence expression in sparse inhibitory neurons, enabling us to 
return to the same FOVs on subsequent days (Fig. 3a). First, only ROIs 
that were repeatedly active during both sessions were included in the 

analysis (Fig. 3b). As expected, the subpopulation of repeatedly active 
astrocytic ROIs was significantly modulated by the location in the familiar 
environment, gradually increasing its overall activity towards the reward 
location (Fig. 3c). However, in the new environment, this ramping was 
less apparent (Pearson’s r = 0.41 ± 0.03 and r = 0.2 ± 0.05 in the familiar 
and new environment, respectively, paired t-test, t6 = 8.04, P = 0.0002) 
(Fig. 3d and Extended Data Fig. 3a). We also found significantly more ROI 
pairs with significant mutual information between their activity in the 
familiar environment compared with the new environment (proportion 
of significant mutual information ROI pairs: 0.39 ± 0.08 and 0.16 ± 0.04 
in the familiar and new environment, respectively, paired t-test, t6 = 2.45, 
P = 0.049) (Extended Data Fig. 3b,c). Second, we analysed all of the 
imaged ROIs (not just the repeated ones), and replicated the same results: 
reduced ramping in the new environment (Pearson’s r = 0.44 ± 0.03 and 
r = 0.16 ± 0.03 in the familiar and new environment, respectively, paired 
t-test, t6 = 10.43, P = 0.00005) (Extended Data Fig. 3d–f).

Next, we trained two mice in the new environment for an additional 
session, after which we found that ramping was re-established in the 
subpopulation of active and repeated ROIs (Pearson’s r = 0.44 ± 0.07, 
permutation test, P ≤ 0.031, n = 2 mice) (Fig. 3e). We also tested the 
astrocytic activity when a different set of mice was re-exposed to the 
familiar context after the new one, and observed that the ramping was 
immediately apparent without additional training in the repeated and 
active ROIs (Pearson’s r = 0.31 ± 0.11, permutation test, P ≤ 0.004, n = 2 
mice) (Extended Data Fig. 3g), indicating that the exposure to the new 
context does not interfere with the familiar context representation.

Finally, we examined the astrocytic activity when the reward was 
shifted from its previously learnt location to a new one in a familiar 
environment. As expected, ramping was apparent when the reward 
was given in its original location (Pearson’s r = 0.54 ± 0.11, permutation 
test, P ≤ 0.002, n = 2 mice) (Fig. 3f); however, it was not evident after the 
reward shift (Pearson’s r = 0.03 ± 0.01, permutation test, P ≥ 0.397, n = 2 
mice) (Fig. 3g). After training with the new reward location, significant 
ramping re-emerged in the repeatedly active ROIs (Fig. 3h) (Pearson’s 
r = 0.41 ± 0.13, permutation test, P ≤ 0.037, n = 2 mice).

Taken together, our results indicate that the astrocyte population dis-
criminates between contexts, showing ramping towards the expected 
reward in familiar, but not in new, environments. After learning of either 
a new environment or new reward location within a given context, 
ramping of astrocytic calcium activity emerges.

Decoding location from astrocytic activity
We next examined whether the activity of the astrocytic population 
would suffice to determine the location of the mouse along the track. 
To this end, we constructed a linear-regression decoder for each mouse 
that predicted its location on the basis of the binary calcium activity 
traces, or on shuffled traces as control (Fig. 4a–d and Extended Data 
Fig. 4). The decoders estimated the mice trajectories significantly better 
than when tested on shuffled data (mean error size: 44.4 ± 1.9 cm for real 
data, 59.5 ± 1.4 cm for shuffled data, n = 6 mice, paired t-test, t5 = 8.33, 
P = 0.0004; Supplementary Information) (Fig. 4d and Methods).

Next, we examined whether similar linear decoders could infer 
the mouse location in the new environment (Fig. 4e–h). The perfor-
mance of the decoders was not significantly different compared to 
when trained on shuffled data (mean error size: 52.3 ± 2.2 cm for real 
data, 55.9 ± 1.2 cm for shuffled data; paired t-test, t6 = 2.12, P = 0.079; 
permutation test for individual decoder performance, P ≥ 0.066 in 
n = 7 mice) (Fig. 4h). Their mean performance was significantly worse 
than the mean performance of the decoders trained and tested on the 
familiar environment (independent samples t-test, t11 = 2.65, P = 0.023). 
Finally, we trained separate linear decoders to predict the normal-
ized velocity of the mice in the familiar environment on the basis of 
the binary Ca2+ activity traces, and found that their performance was 
not significantly different from decoders trained on shuffled data 
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(mean error size: 0.23 ± 0.02 for real traces, 0.23 ± 0.02 for shuffled 
data; paired t-test, t6 = 0.78, P = 0.472; permutation test for individual 
decoder performance, P ≥ 0.138 in n = 6 mice) (Fig. 4i–l), indicating that 
running velocity cannot be inferred from the astrocytic activity. Taken 
together, our findings demonstrate that reconstruction of mouse loca-
tion trajectories from astrocytic activity using linear decoders requires 
familiarization with the environment and, as opposed to neurons30, 
cannot be done in a new environment.

Discussion
Here we report longitudinal astrocytic activity in the hippocampus of 
awake behaving mice. We chronically imaged CA1 astrocytes while mice 

ran in familiar and new virtual environments. Although we noticed no 
‘place astrocytes’ that tile the whole environment, we found that astro-
cytic activity shows persistent ramping towards the reward location, 
but only when both the spatial context and reward location within it 
were previously learnt. Furthermore, we demonstrate that astrocytic 
population activity alone can be used to reconstruct mouse trajecto-
ries in familiar environments. This is one of the first indications that 
astrocytes are involved in spatial tasks and can encode position-related 
information in familiar contexts, thereby extending their known roles 
in cognitive functions.

Our data indicate that astrocytes encode position-related informa-
tion through gradual ramping towards the previously learnt reward 
location, both when examining the overall population and single ROI 
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Fig. 3 | Astrocytic activity ramps as mice move towards the reward location 
in familiar environments, but not in new environments. a, Chronic imaging 
when mice navigated in familiar (left) and new (right) environments. Scale bars, 
25 µm. The virtual environment walls are drawn at the top. The inhibitory 
neuronal tdTomato expression (here, PV neurons) was used to return to the 
same FOV on consecutive days. b, ROIs were segmented independently on each 
session, and their masks were registered. Only ROIs that were active during 
both sessions (shown in yellow) were included in the analysis. c,d, The 
normalized mean number of concurrent events as a function of location in the 
familiar environment (c) and in the new environment (d) for repeated active 
ROIs in seven mice. The correlation between location and astrocytic activity 
was significantly higher in the familiar environment compared with the new 
one (Pearson’s r = 0.41 ± 0.03 and r = 0.2 ± 0.05 in the familiar and new 
environment, respectively; two-sided paired t-test, t6 = 8.04, P = 0.0002).  

e, Two mice were imaged for the third time in the new environment after an 
additional training day. The normalized mean number of concurrent events as 
a function of location shows that ramping was re-established after learning the 
new environment (Pearson’s r = 0.44 ± 0.07, one-sided permutation test, 
P < 0.05). f,g, The normalized mean number of concurrent events as a function 
of location shows ramping towards a known reward location in a familiar 
environment (Pearson’s r = 0.54 ± 0.11, one-sided permutation test, P ≤ 0.01) 
(f), which is eliminated once the reward is shifted to a new location in the same 
environment (Pearson’s r = 0.03 ± 0.01, one-sided permutation test, P ≥ 0.05) 
(g). h, After additional training with the new reward location, the ramping is 
re-established (Pearson’s r = 0.41 ± 0.13, one-sided permutation test, P ≤ 0.05). 
For c–h, data are mean ± s.e.m. (shaded area). Different mice are colour coded 
as in Fig. 2d.
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activity. Such slow dynamics have been previously reported in neurons 
found in various brain regions38–42 that are involved in motor planning, 
working memory and decision-making. Furthermore, prolonged dopa-
mine signals showing persistent ramping towards a distant reward 
were found in the striatum43,44. Recently, a study has also shown that 
radial astrocytes of zebrafish gradually increase their calcium activity 
as the animals learn the ineffectiveness of their actions, triggering a 
behavioural shift to passivity45. Our results show that calcium activity 
in CA1 astrocytes is elevated towards the known reward location, con-
sistent with a model in which astrocytic activity increases as evidence 
accumulates.

Our findings raise the question of what exactly the astrocytic ramping 
encodes. We show that, when the environment remains constant but the 
reward is shifted to a new location, ramping is eliminated, suggesting 

that astrocytes encode the reward location, and not location per se. 
It is conceivable that the astrocytes encode various attributes of the 
reward, such as expectation, and the external environment serves 
only as cues leading towards it. It is therefore possible that, like cer-
tain neurons found in the hippocampus, astrocytes in this region may 
encode the progressions of sensory stimuli46–48 or internal states (for 
example, motivation, expectation) that change with proximity to a 
goal. Although we studied the ramping of astrocytic activity towards 
a reward in a spatial context, future experiments can test whether this 
phenomenon also appears in non-spatial tasks. For example, when the 
reward appears after a learnt auditory sequence, such as tones in rising 
pitch, and is dissociated from a specific location in space.

By chronically imaging astrocytes, we were able to compare their 
activity when mice navigated a familiar environment and when they 
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Fig. 4 | Decoding of mouse trajectory from astrocytic activity in the 
familiar environment. a–d, A linear regression decoder was trained to predict 
the location of mice in a familiar environment from binary astrocytic activity 
traces. a,b, An example mouse trajectory (black) overlaid with the predicted 
location (blue) (a), and its error cumulative probability plot (b). The decoder 
trained on real data outperformed the decoder trained on shuffled data.  
c, Mean confusion matrix of the mouse shown in a and b. The diagonally 
concentrated errors indicate that the predicted location is near the real 
location on average. d, Decoder mean error cumulative probability (n = 6 mice), 
showing that the location decoders performed significantly better when 
trained on real compared with shuffled data on average (two-sided paired 
t-test, t5 = 8.33, P = 0.0004). e–h, Another decoder was trained to predict the 
location of mice in a new environment. e,f, An example trajectory of a mouse 
(black) overlaid with its inaccurately predicted location (blue) (e) and its error 
cumulative probability plot (f). The decoder trained on the real data performed 
similarly to the one trained on shuffled data. g, Mean confusion matrix of the 

mouse shown in i and j. The horizontally concentrated errors indicate that the 
predicted location is independent of the real location on average. h, Decoder 
mean error cumulative probability (n = 7 mice), showing that the new location 
decoders were not significantly better when trained on real compared with 
shuffled data on average (two-sided paired t-test, t6 = 2.12, P = 0.079).  
i–l, Another decoder was trained to predict mouse-normalized velocity.  
i,j, Example mouse velocity trace (black) overlaid with its inaccurately predicted 
velocity (blue) (i) and its error cumulative probability plot ( j). The decoder 
trained on the real data performed similarly to the one trained on shuffled data. 
k, Mean confusion matrix of the mouse shown in e and f. The horizontally 
concentrated errors indicate that the predicted normalized velocity is 
independent of the real normalized velocity on average. l, Decoder mean error 
cumulative probability (n = 6 mice), showing the mean performance of the 
velocity decoders was not significantly better when trained on real compared 
with shuffled data on average (two-sided paired t-test, t6 = 0.78, P = 0.472).  
For d, h, l, data are mean ± s.e.m. (shaded area).
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were introduced into a new one, differing in visual and tactile cues. 
Notably, in the new environment, the astrocytic activity was no longer 
modulated by location, and it did not suffice to accurately decode the 
mouse trajectory. Place cells rapidly emerge in the CA1 after expo-
sure to a new environment49, and can be used to accurately decode 
the mouse location as early as on the first lap30. Our results suggest 
that the astrocytic representation of an environment develops more 
slowly than the neuronal one. Importantly, astrocytic activity is sig-
nificantly different between familiar and new environments, which 
may indicate that astrocytes are involved in contextual discrimination, 
in conjunction with the neuronal representations32,33. Astrocytes are 
known to have slow temporal dynamics (although see ref. 5), which 
may enable them to take part in computations that occur across long, 
behaviourally relevant time scales. Moreover, the fact that they receive 
inputs from multiple neurons may potentially enable them to serve as 
spatiotemporal integrators, as has been demonstrated in vitro50 and 
in vivo45. Astrocytes were previously shown to encode sensory stimuli 
with calcium transients in the cortex and investigating the real-time 
involvement of hippocampal astrocytes in various behaviours will 
deepen our understanding of cognitive functions and their underly-
ing computations.
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Methods

Animals
Ten PV-tdTomato male mice and one SST-tdTomato male mouse 
were used for the experiments. The mice were generated by cross-
ing PV-IRES-Cre (B6.129P2-Pvalbtm1(cre)Arbr/J, 017320)51 or SST-IRES-Cre 
(Ssttm2.1(cre)Zjh/J, 013044)52 mice with Rosa-CAG-LSL-tdT (Ai14; B6.129
S6-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J, 007908)53 mice. Mice (aged 7–8 
weeks) were housed under a 12 h–12 h light–dark cycle in cages with 
running wheels. All of the mice were maintained under pathogen-free 
conditions in Tecniplast cages, on Teklad sani-chips (ENVIGO) bedding, 
at 20–24 °C and 40% humidity, and fed Teklad 2918SC (ENVIGO) pellets. 
The experimental protocols were approved by the Hebrew University 
Animal Care and Use Committee and met the guidelines of the National 
Institute of Health guide for the Care and Use of Laboratory Animals.

Surgical procedures
Mice were anaesthetized with isoflurane, and their head was placed in 
a stereotactic apparatus (Kopf Instruments). The skull was exposed 
and a small craniotomy was performed. Mice were unilaterally micro-
injected 400 nl viral vector using the following dorsal CA1 coordinates: 
anteroposterior, −1.85 mm; mediolateral, +1.4 mm; and dorsoventral, 
−1.35 mm from bregma. All microinjections were performed using a 
10 µl syringe and a 34 gauge metal needle (WPI). The injection volume 
and flow rate (0.1 µl min−1) were controlled by an injection pump (WPI). 
After each injection, the needle was left in place for an additional 10 min 
to allow for diffusion of the viral vector away from the needle track, and 
was then slowly withdrawn. The craniotomy was sealed with bone wax 
(Surgical Specialties), and the exposed skull was covered with trans-
parent super-bond (Sun Medical) for cementing an omega-shaped 
head bar (custom design, 3D printed) anteriorly to the craniotomy 
site. For postoperative care, the mice were subcutaneously injected 
with tramadex (5 mg kg−1).

After at least one week of rest, mice were re-anaesthetized with iso-
flurane in the stereotactic apparatus, and a biopsy punch (Kai Medi-
cal) was used to cut a ~2.5 mm diameter craniotomy over the injection 
site. Aspiration was used to remove the cortical tissue and top most 
fibres above the right dorsal CA1, and a glass cannula (2.4 mm diameter, 
2.5 mm length, no. 0 cover slip bottom; self-fabricated) was inserted 
into the craniotomy. The skull was covered with opaque super-bond 
(Sun Medical) for cementing the cannula. An additional layer of dental 
acrylic was placed to minimize potential physical damage.

Viral vectors
The following viral vector was used: pZac2.1 gfaABC1D-cyto-GCaMP6f 
(Addgene viral prep, 52925-AAV5).

Immunohistochemistry analysis
Mice were transcardially perfused with cold PBS followed by 4% para-
formaldehyde in PBS. The brains were extracted, post-fixed overnight in 
4% paraformaldehyde at 4 °C and cryoprotected in 30% sucrose in PBS. 
The brains were sectioned into 40-µm-thick slices using a sliding freezing 
microtome (Leica SM 2010R) and preserved in a cryoprotectant solution 
(25% glycerol and 30% ethylene glycol in PBS). Free-floating slices were 
washed in PBS, incubated for 1 h in blocking solution (1% BSA and 0.3% Tri-
ton X-100 in PBS) and incubated overnight at 4 °C with primary antibodies 
(a full list of the antibodies is provided below) in blocking solution. Slices 
were then washed with PBS and incubated for 2 h at room temperature 
with secondary antibodies (a full list of the antibodies is provided below) 
in 1% BSA in PBS. Finally, the sections were washed in PBS, incubated with 
4,6-diamidino-2-phenylindole (1 µg ml–1) and mounted onto slides with 
mounting medium (Fluoromount-G, eBioscience).

Antibodies. The following primary antibodies were used: chicken 
anti-GFP (Aveslabs, GFP-1020; 1:200); rabbit anti-NeuN (Cell Signaling 

Technology, 12943; 1:1,000); guinea pig anti-GFAP (Alomone Labs, 
AGP-307; 1:200). The following secondary antibodies were used: 
donkey anti-chicken conjugated to Alexa Fluor 488 ( Jackson Lab-
oratories, 703-545-155; 1:500); donkey anti-rabbit conjugated to 
Alexa Fluor 594 ( Jackson Laboratories, 711-585-152; 1:500); donkey 
anti-guinea pig conjugated to Cy5 ( Jackson Laboratories, 706-175-
148; 1:500).

Confocal microscopy
Confocal fluorescence images were acquired on the Olympus scanning 
laser microscope (Fluoview FV1000) using a ×10 air objective. Image 
analysis was performed using ImageJ (NIH).

Linear treadmill and virtual reality apparatus
Fully awake mice were mounted on top of a linear treadmill with their 
head bar secured to a custom-made holder under the microscope 
objective. The treadmill consisted of a 170 cm belt with varying tex-
tures, circling two plastic wheels (custom design, 3D printed). To track 
mouse locomotion, rotations of a rotary encoder (S5-360-236-IE-S-B, US 
digital) placed in the frontal wheel were measured by Arduino boards. 
The locomotion data were synchronized with the microscope imaging 
frames, and translated into movement in the virtual environment. To 
compensate for sampling errors and belt stretches, an infrared sensor 
connected to an Arduino board detected a white band on the inner 
side of the belt and auto-calibrated the virtual reality accordingly on 
each lap.

A water solenoid valve connected to silicone tubes and a blunt 10 cm 
needle delivered water rewards in response to TTL commands given 
by the virtual reality computer through an Arduino board. Licking 
behaviour was continuously monitored by a capacitance sensor (Atmel 
Microchip). To synchronize and digitize the valve, infrared and lick 
signals with the imaging frames, we used a USB-6001 NIDAQ board 
(National Instruments) and acquired data at 500 Hz using MATLAB. 
The board recorded TTL signals from the microscope given at the 
beginning of each frame, as well as TTL commands sent to the valve 
and TTL inputs originating from the infrared Arduino or lick detector 
on different analogue channels.

The virtual environments, designed using the Blender game engine, 
were projected onto a custom-made curved screen. Using a Java graphi-
cal user interface, the specific environment of choice and reward 
locations were determined. The environments consisted of various 
visual patterns to dissociate different locations in the virtual world. An 
Arduino board was used to trigger the initiation of the trial.

Behavioural paradigms
Mice were water-restricted and handled for 2–3 days, and we then began 
training them to run on the linear treadmill to obtain water rewards. 
Initially, multiple water rewards were spread along the track, and as 
the mice improved on the course of 7–10 days, we gradually decreased 
the number of rewards until only one reward was present on each lap. 
We used two sets of environments, consisting of a treadmill belt with 
tactile cues and a virtual reality display with visual cues. In the familiar 
condition, mice were extensively trained in a specific environment, 
whereas in the new condition we used the other environment, to which 
the mouse was not previously exposed. We counterbalanced the envi-
ronments across mice, such that each environment was used both as a 
familiar and a new one for different mice.

Familiar–new paradigms. Mice were trained extensively in a specific 
environment (familiar), and then imaged as they were performing 
the task. After 1–3 days, they were imaged in the new environment. 
Next, some of them were either trained in the new environment 
for an additional day and then imaged in the new environment, 
or re-exposed to the familiar environment and imaged without 
additional training.



Reward shift paradigm. In the first ten laps, the reward was given at 
the same location that was used during training (Fa). During the rest 
of the session, which consisted of 11 more laps, the reward was given 
at a new location in the same environment (Fb). We omitted the first 
lap in which the reward was shifted from the analysis. The mice were 
then trained for an additional session with Fb, and then imaged again 
in Fb during the task.

Random reward paradigm. Mice were trained in a familiar environ-
ment, in which the reward was given at a constant location. During the 
imaging session, a single water reward was randomly given in one of 
ten possible locations along the track.

Virtual reality display off paradigm. Mice were trained in a familiar 
environment. During the imaging session, the virtual reality display 
was turned off, and the reward was given in the same location as in the 
training sessions.

Behavioural analysis
We analysed the behaviour of the mouse using custom code run in 
MATLAB (MathWorks). A lap was defined between each pair of rewards, 
and the relative location within it was calculated according to the rotary 
encoder tick count difference between the beginning and end of the 
lap. For the random reward paradigm, we defined a lap between two 
infrared signals, that is, a specific location on the belt, and aligned 
the location according to the previously learnt reward location. We 
smoothed the raw rotary encoder tick count using a moving average fil-
ter (~0.3 s window) and defined movement epochs when the smoothed 
time series value was >1. Velocity was defined as the derivative of the 
smoothed time series. We calculated the recent distance run by the 
mouse by integrating the velocity in a 2 s sliding time-window. When 
comparing the familiar and new environments, we analysed the first 
20 laps in each environment to reduce potential learning effects in the 
new environment.

Two-photon microscope
Two-photon imaging was performed using the Neurolabware 
two-photon laser-scanning microscope. Excitation light from a 
Ti:sapphire laser (Chameleon Vision II, Coherent, and then Chameleon 
Discovery TPC, Coherent) operated at 920 nm scanned the sample using 
a 6215 galvometer and a CRS8 resonant mirror (Cambridge Technology). 
Emitted fluorescence light was detected by GaAsP photo-multiplier 
tubes (Hamamatsu, H10770-40) after band-pass filtering (Semrock). 
xyz motion control was obtained using motorized linear stages, ena-
bled through an electronic rotary encoder (KnobbyII). We alternately 
scanned two imaging-planes with an electrically tuneable lens for fast 
z-focusing (Optotune EL-10-30 NIR ETL; f = 100 mm offset lens) to 
increase the number of astrocytic ROIs per session. A moulding clay 
ring was mounted between the cannula and the objective to maintain 
the water reservoir and block external light. The Scanbox software, run 
on MATLAB, was used for microscope control and image acquisition. All 
images were acquired using a water-immersion ×16 objective (Nikon, 
0.8 NA) with a magnification of 2.8 or 3.4 to obtain 601 µm × 418 µm or 
516 µm × 366 µm FOVs. The sampling rate was 15.49 frames per second, 
that is, 7.745 frames per second for each imaged plane.

Processing calcium imaging data
Motion correction. Calcium imaging movies were corrected for move-
ment in each plane separately using either rigid motion-correction with 
the sbxaligntool algorithm (Scanbox) or non-rigid motion correction with 
the NoRMCorre algorithm54 in MATLAB (MathWorks). When movements 
were still visible in specific frames, we removed them using the red channel. 
Specifically, we extracted the mean intensity time series of neuronal ROIs 
apparent in the red channel and linearly interpolated the signal obtained 

from each plane. Frames in which an ROI signal was >2 locally scaled median 
absolute deviations from the local median within a sliding ~3.8 s window in 
at least 2 ROIs on either plane were excluded from the analysis.

ROI detection. We used the sbxsegmenttool graphical user interface 
(Scanbox) in MATLAB to semi-automatically detect ROIs on the basis 
of the motion-corrected videos. The algorithm selects pixels based on 
their correlation in space and time, such that nearby pixels are defined 
as an ROI. The correlation threshold was manually set, and was based 
on the morphology of the ROI, such that different ROIs may belong to 
the same astrocyte. The segmentation was performed separately for 
each FOV and for each session.

Signal extraction. The mean fluorescence intensity time series were 
extracted from the segmented ROIs. The first five samples were re-
moved from the analysis, as well as frames at the end of the video if 
extensive bleaching was apparent. To synchronize the imaging data 
with the encoder data, we linearly interpolated the signal obtained 
from each plane. To obtain ΔF/F time series for each ROI, we adapted 
previously published methods55 for the astrocytic signal. Specifically, 
we defined the baseline F as the eighth percentile fluorescence value 
within a ~125 s interval around each sample point. We then subtracted 
the baseline from each sample, and divided the result by the baseline 
F. Noisy ROIs, in which there were no apparent calcium transients, were 
removed from the analysis.

Detection of calcium events. Potential events were first detected 
based on the ΔF/F traces; For each ROI, we defined the event threshold 
as the sum of the mode fluorescence value and its distance from the 
mean minimal fluorescence value (based on the 100 smallest values). 
We next obtained potential events based on smoothed ΔF/F traces 
(moving median, ~3.9 s window), using the same calculation. We de-
fined an event based on the smoothed traces, only if at least one of the 
samples within it was also detected as an event based on the original 
traces, and if it was >260 ms long.

Registration of ROIs across sessions. To image the same FOV across 
sessions, we used the mean-intensity images of each plane based on the 
motion-corrected videos obtained during the first imaging session. 
We used the red channel in which inhibitory neurons were apparent 
to adjust the objective focus and Optotune parameters until reaching 
the same FOV. The ROI masks obtained from each session were rigidly 
aligned using the sbxmatchfields function (Scanbox). Only ROIs that 
had >20% overlap, and were visually confirmed, were considered as 
repeated ROIs across 2 consecutive days.

Comparison between astrocytic somata and processes
To differentiate between astrocytic somata and processes, we obtained 
the mean image from the nine mice that completed the familiar environ-
ment paradigm, and superimposed the ROI boundaries on it. We classi-
fied the cellular compartment according to the morphology of the ROI. 
One mouse was excluded from the analysis as it had <10 somata ROIs.

Modulation of astrocytic activity by location or velocity analysis
To obtain concurrent events and event-probability maps, we discre-
tized the either the location or the velocity of the mouse. For location 
analysis, the track was divided into 10 bins, each 17 cm long, and the last 
bin in which the reward was given and consumed was removed from 
further analysis unless otherwise stated. For velocity analysis, we nor-
malized the velocity and obtained arbitrary units within the range 0–1. 
In both cases, we omitted frames in which the mouse velocity did not 
exceed the movement criteria (see the ‘Behavioural analysis’ section).

We then calculated the mean number of concurrent events when exam-
ining the entire ROI population, or the event probability when examining 
single ROIs, per bin in each lap. To obtain the shuffled data activity maps, 
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we permuted the signal using 1,000 random cyclic shifts, and performed 
the same analysis as for the real data. The normalized number of con-
current events was calculated by dividing the real data mean number of 
concurrent events by the shuffled data pooled mean number of concur-
rent events. To define significant modulation of astrocytic activity by 
location or velocity, we calculated the linear correlation between these 
variables from the real and shuffled data. Significance was determined 
when the Pearson’s r obtained from the real data was larger than the 95th 
percentile of the Pearson’s r distribution of the shuffled data.

Astrocytic activity after reward-delivery analysis
We calculated the number of concurrent events as a function of time 
7 s after reward delivery in each lap. To determine statistical signifi-
cance, we permuted the signal using 1,000 random cyclic shifts, and 
performed the same analysis as for the real data. To define significant 
modulation of astrocytic activity by location, we calculated the Pear-
son’s linear correlation between these variables from the real and shuf-
fled data. Significance was determined when the correlation coefficient 
obtained from the real data was lower than the fifth percentile of the 
shuffled data correlation coefficient distribution.

General linear model
We constructed a simple model to link the astrocytic concurrent event 
number as a linear function of five behavioural variables: normalized 
location, time since reward, velocity, recent distance run and licking. 
We omitted frames in which the mouse velocity did not exceed the 
movement criteria (see the ‘Behavioural analysis’ section).

To test the significance of the contribution of the location input to 
the model performance, we used two approaches. First, we compared 
the performance of the full model with that of a reduced model fitted 
on the behavioural variables excluding the location (that is, four pre-
dictors only) using a likelihood ratio test accounting for the number of 
degrees of freedom. Second, we compared the full model performance 
when it was fitted on the real behavioural data, and compared it with 
the performance of a similar model, when the location input was shuf-
fled. Specifically, we generated 1,000 realizations of random cyclic 
shifts of the location data, without changing the rest of the inputs or 
output. We calculated the coefficient of determination (r2) between the 
actual number of concurrent astrocytic events and the model predic-
tion for the real and shuffled-location data models. Significance was 
defined when the r2 of the model fitted on the real data was greater 
than the 95th percentile of the shuffled model r2 distribution.

For cross-validation, we divided the dataset into 2 s chunks, and 
pseudorandomly assigned them to one out of ten blocks with equal 
probability. We used a tenfold cross-validation protocol, in which we 
trained the model on nine out of the ten blocks, and then tested its 
performance on the residual block. The activity in each data point was 
predicted only by a model that did not have this data point in its train-
ing set, and used for overall performance estimation. We performed 
the cross-validation process 1,000 times, using different train–test 
divisions, for both the five- and four-variable models (that is, with and 
without location data, respectively). We calculated the r2 of both models 
on each realization and compared them. Significance was defined when 
the r2 of the full model was greater than the r2 of the reduced model in 
more than 95% of the simulations.

ROI spatial information analysis
We calculated the spatial information of astrocytic ROIs using the event 
probability maps of each ROI as previously described56:
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where ri is the calcium event probability of the ROI given that the mouse 
is in the ith bin; pi is the probability of the mouse being in the ith bin 

(samples spent in ith bin/total session samples); r  is the overall mean 
calcium event probability; and i running over all of the bins. We then 
performed 1,000 cyclic permutations of the astrocytic signal, while 
keeping the behaviour constant, and computed the spatial information 
for each shuffle. This yielded the P value of the measured spatial infor-
mation relative to the shuffles.

We also calculated the spatial information based on the mean ΔF/F 
maps of each ROI57, using the same formula with the following changes: 
ri is the mean ΔF/F of the ROI given that the mouse is in the ith bin; r  is 
the overall mean ΔF/F; and i running over all of the bins.

Mutual information between repeated ROI analysis
We calculated the mutual information between each pair of repeated 
ROIs in each environment. We included the acquired astrocytic time 
series during movement epochs of the mice in the first 20 laps. The 
pairwise mutual information was considered to be significant when it 
was higher than the 95th percentile value obtained from 1,000 cyclic 
permutations of the ROI signals.

Decoding mouse location and velocity
To decode the mouse location or velocity on the basis of astrocytic activ-
ity, we trained a linear regression decoder for each mouse separately. 
We excluded sessions in which mice completed <20 laps. The signal 
was the binary astrocytic activity traces during movement epochs, and 
the output was the normalized location along the track or the relative 
velocity (that is, between 0 and 1). We trained the decoder on 80% of the 
data, and tested its performance on the remainder, such that the train 
and test data were from the same session (that is, familiar or new condi-
tion). We ran 1,000 train–test sets by dividing the data using a random 
cut-point. When the predicted location or velocity was out of the range 
0–1, it was trimmed (that is, min(prediction, 1), max(prediction, 0)). To 
determine model significance, we created shuffled data by permuting 
the signal in a cyclic manner, and performed the same train–test proce-
dure as for the real data. We computed the mean error (that is, the mean 
difference between the real location and the predicted location) for the 
decoder trained on the real and shuffled data in each simulation. The 
model was defined as significant when <50 simulated datasets reached 
better performance than the real dataset (that is, had a smaller mean 
error). Confusion matrices were calculated after binning the real and 
predicted values into ten bins.

Statistical analysis
Data are presented as mean ± s.e.m. unless otherwise indicated. The 
sample number (n) indicates the number of ROIs or mice in each experi-
ment and is specified in the figure legends. We performed permutation 
tests by conducting random cyclic shifts of the astrocytic data, and 
comparing the relevant distribution to the real data. We used two-sided 
Student’s t-tests to compare paired or independent samples, as appli-
cable. Data distribution was assumed to be normal, but this was not 
formally tested. No statistical methods were used to predetermine 
sample sizes. The experimenters were not blinded to the experimental 
conditions, and no randomization was performed. All of the statistical 
details of the experiments are provided in the main text. P < 0.05 was 
considered to be statistically significant. Analyses were performed 
using the IBM SPSS statistics software (v.24) and MATLAB.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
All source data are provided with the paper. All datasets are provided 
at GitHub (https://github.com/GoshenLab/Astro_imaging/). Source 
data are provided with this paper. 

https://github.com/GoshenLab/Astro_imaging/


Code availability
The custom code used in this paper is provided at GitHub (https://
github.com/GoshenLab/Astro_imaging/).
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Extended Data Fig. 1 | Apparatus for Imaging Astrocytes in Behaving Mice. 
A. Two environments consisting of different belts with tactile cues and virtual 
reality displays. B. Selective expression of GCaMP6f in CA1 astrocytes 
following injection of AAV-GFAP::cyto-GCaMP6f to an Ai14XSST-Cre mouse. 
GCaMP6f was expressed in > 92% of CA1 astrocytes (212/230 cells from 3 mice; 
92.73% ± 1.65 of GFAP positive cells were also GCaMP6f positive), with > 94% 
specificity (212/224 cells from 3 mice; 94.58% ± 0.29 of GCaMP6f positive cells 

were also GFAP positive). Minimal co-localization with SST or PV positive cells 
or the neuronal marker NeuN was detected (1.65% expression in neurons, 
11/668 cells; 1.55% ± 0.54 of GCaMP6f positive cells were also NeuN positive; 
scale bars: 50 µm). C. ROI centroid distance was negatively correlated with the 
mean pairwise event correlation (pooled data from n = 8 mice). D. ROI size was 
positively correlated with mean event probability (pooled data from n = 8 
mice). Data presented as mean±SEM.



Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Astrocytic Activity Explains Location More 
Accurately Than Velocity. A. The mean number of concurrent astrocytic 
events following reward delivery in all laps of the same mouse shown in  
Fig. 2a–c. B. Mean normalized number of concurrent events as a function of 
time following reward delivery in all mice presented in Fig. 2d (blue is the one 
from A), showing significant reduction over time (Pearson’s r: −0.4 ± 0.04, 
1-sided permutation tests, p ≤ 0.006 in all 9 mice). C. The mean normalized 
ΔF/F as a function of binned location, showing significant ramping in all mice 
shown in Fig. 2d (Pearson’s r: 0.25 ± 0.03, 1-sided permutation tests, p ≤ 0.018  
in all 9 mice). D-E. Both the astrocytic somata and processes show significant 
ramping. D. The mean normalized number of concurrent events as a function 
of binned location calculated separately for the somata and processes  
of the mouse shown in Fig. 2a–c (n = 59 somata and n = 67 processes).  
E. The correlation between location and concurrent events in the somata is 
 not significantly different from the processes (Pearson’s r: 0.36 ± 0.03 and 
0.38 ± 0.03, 1-sided permutation tests, p ≤ 0.014 and p ≤ 0.025 in the somata 
and processes respectively, n = 424 somata and n = 455 processes from n = 8 
mice; 2-sided paired t-test, t(7) = 0.92, p = 0.39). F. The mean normalized number 
of concurrent events as a function of binned location when the reward was 
given in random locations along the track, showing no apparent ramping 
(Pearson’s r: 0.02 ± 0.02, 1-sided permutation tests, p ≥ 0.084 for all 3 mice;  
The dashed square denotes the previously learnt constant reward location).  
G. The mean normalized number of concurrent events as a function of binned 
location when the VR display was turned off, showing significant ramping in 
most mice (Pearson’s r: 0.2 ± 0.04, 1-sided permutation test, p ≤ 0.009, n = 3 
mice; Pearson’s r: 0.11, 1-sided permutation test, p = 0.075, n = 1 mouse).  
H. Same as Fig. 2f, calculated using the ΔF/F traces, showing ramping towards 
the reward location in many ROIs with significant spatial information.  
I. The mean number of concurrent events of the mouse shown in Fig. 2a–c as a 

function of binned normalized velocities in all laps. Grey bins denote no 
samples. J. Mean number of concurrent events as a function of binned 
normalized velocities, normalized by shuffled data in all mice presented in 
Fig. 2d (blue is the one from A), (Pearson’s r: 0.17 ± 0.04, 1-sided permutation 
test, p ≥ 0.084 in n = 4 mice, p ≤ 0.025 in n = 5 mice). K. The mean number of 
concurrent events as a function of location and normalized velocity in the 
mouse shown in Fig. 2a–c. Ramping is more prominent across locations than 
velocities. L. The mean STD of the astrocytic population activity across 
locations for a given velocity (STDlocations|velocity) weighted by the time spent in  
the location x velocity is significantly larger than vice versa (STDvelocities|location)
(STDlocations|velocity: 3.62 ± 0.44, STDvelocities|location: 7.37 ± 0.74, 2-sided paired t-test, 
n = 9 mice, t(8) = 6.56, p =  = 0.0002). M. The mean distribution of the difference 
between the mean weighted STDlocations|velocity and STDvelocities|location for single ROIs 
from the 9 mice shown in Fig. 2d. Most ROIs vary more across locations than 
across velocities. N-O. General linear models were used to fit the number of 
concurrent astrocytic events as a linear function of different behavioural 
variables, showing that location had a unique contribution to the variance of 
astrocytic activity. N. The model performance was significantly better when it 
was fitted on the actual location data compared to shuffled location 
(coefficient of determination (r2) between the model prediction and the actual 
number of concurrent events: 0.25 ± 0.04 and 0.18 ± 0.03 for real and shuffled 
location inputs respectively, 1-sided permutation test, p ≤ 0.027 in n = 8 mice, 
p = 0.35 in n = 1 mouse). O. Cross-validated models that included location as 
their input performed significantly better than reduced models without it (r2: 
0.21 ± 0.04 and 0.15 ± 0.03 in full and reduced models respectively, 1-sided 
permutation test, p < 0.004 in n = 8 mice, p = 0.065 in n = 1 mouse). Data 
presented as mean (bold line) ±SEM (shaded area). Different mice are colour-
coded as in Fig. 2d.



Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Astrocytic Activity Does Not Ramp Towards 
Rewarding Location in a New Environment. A. The correlation between 
location and astrocytic activity in repeated active ROIs was significantly higher 
in the familiar environment compared to the new one (Pearson’s r: 0.41 ± 0.03 
and 0.2 ± 0.05 in the familiar or new environment, respectively, n = 7 mice, 
2-sided paired t-test, t(6) = 8.04, p = 0.0002). B. The repeated active ROI pairs 
that had significant mutual information (MI) in each environment of the mouse 
shown in Fig. 3a, b. C. The mean proportion of significant MI repeated active 
ROI pairs in the familiar environment is significantly higher than in the new 
environment (0.39 ± 0.08 and 0.16 ± 0.04 in the familiar and new environment, 
respectively, 2-sided paired t-test, n = 7 mice, t(6) = 2.45, p = 0.0495). D. The 
mean normalized number of concurrent events as a function of location in the 

familiar environment and (E) in the new environment for all active ROIs, not just 
the repeated ones, in the 7 mice shown in Fig. 3c, d. F. The ramping of astrocytic 
activity is significantly larger in the familiar environment than in the new 
environment (Pearson’s r: 0.44 ± 0.03 and 0.16 ± 0.03 in the familiar or novel 
environment, respectively, 2-sided independent samples t-test, n = 7 mice, 
t(12) = 6.11, p = 0.00005). G. Two mice were imaged for the third time in the 
familiar environment after the exposure to the new environment. The mean 
normalized number of concurrent events as a function of location shows that 
ramping is maintained (Pearson’s r: 0.31 ± 0.11, 1-sided permutation test, 
p < 0.01). Data presented as mean (bold line) ±SEM (shaded area). Different 
mice are colour-coded as in Fig. 2d.



Extended Data Fig. 4 | Performance of Mice Location Decoders in Familiar 
Environment. A-F. Pooled error cumulative probability plots of the mice that 
appear in the averaged data in Fig. 4. A. Mean error size: 43.7 ± 0.1 and 54.1 ± 0.1, 
for the decoder trained on the real data and the shuffled data respectively, 
1-sided permutation test, p = 0.009). B. Mean error size: 41.4 ± 0.2 and 
61.1 ± 0.3, for the decoder trained on the real data and the shuffled data 
respectively, 1-sided permutation test, p = 0.027). C. Mean error size: 37.8 ± 0.2 
and 56.6 ± 0.2, for the decoder trained on the real data and the shuffled data 

respectively, 1-sided permutation test, p = 0.009). D. Mean error size: 49.6 ± 0.2 
and 60.2 ± 0.2, for the decoder trained on the real data and the shuffled data 
respectively, 1-sided permutation test, p = 0.151). E. Mean error size: 43.9 ± 0.3 
and 62.6 ± 0.2, for the decoder trained on the real data and the shuffled data 
respectively, 1-sided permutation test, p = 0.037). F. Mean error size: 49.9 ± 0.1 
and 62.2 ± 0.2, for the decoder trained on the real data and the shuffled data 
respectively, 1-sided permutation test, p = 0.061). Data presented as mean 
(bold line) ±SEM (shaded area). Different mice are colour-coded as in Fig. 2d.
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