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Astrocytic calcium dynamics has beenimplicated in the encoding of sensory
information'>, and modulation of calcium in astrocytes has been shown to affect
behaviour®™. However, longitudinal investigation of the real-time calcium activity of
astrocytesin the hippocampus of awake mice is lacking. Here we used two-photon
microscopy to chronically image CAl astrocytes as mice ran in familiar or new virtual
environments to obtain water rewards. We found that astrocytes exhibit persistent
ramping activity towards the reward location in a familiar environment, but notina
new one. Shifting the reward location within a familiar environment also resulted in
diminished ramping. After additional training, as the mice became familiar with the
new context or new reward location, the ramping was re-established. Using linear
decoders, we could predict the location of the mouse in a familiar environment from
astrocyte activity alone. We could not do the same in a new environment, suggesting
that the spatial modulation of astrocytic activity is experience dependent. Our results
indicate that astrocytes can encode the expected reward location in spatial contexts,

thereby extending their known computational abilities and their role in cognitive

functions.

Inrecent years, research revealed many roles for astrocytes in modu-
lating neuronal activity as well as behaviour®. Intracellular astrocytic
calcium elevations—a prominent signal in these cells—were widely
studied in vitro and recent studies have investigated them in vivo as
well (reviewed in refs. ™). Different studies have shown that cortical
astrocytes respond to specific sensory stimuli with calcium transients
(for example, visual cortex?and the somatosensory cortex**). Anaes-
thesia reduces calcium signalling in astrocytes’, but only a minority
of studies have investigated astrocyte activity in awake animals, and
only one in the hippocampus®. Nevertheless, direct manipulation of
astrocyte calciumsignalling was shown to modulate behaviour, thereby
extending their role beyond sensory processing®°*, Astrocytic cal-
cium signals are also affected by the general state of the organism:
they are elevated during arousal***®, reduced during natural sleep”
and regulated by neuromodulators in vivo*>®%, However, longitudinal
investigation of the real-time calciumactivity of astrocytes in the hip-
pocampus of awake mice is lacking, let alone during performance of
amultisensory cognitive task.

Place cells, a subset of pyramidal neurons in the hippocampal CA1
region, fire when the animal is in a specific location in space? and are
considered to be the neuronal underpinning of spatial memory. The
neuronal representation of a given environment entails goal-related
information®: when an animal navigates in a familiar environment,
place cells exhibit over-representation of rewarded locations?2° with
narrower and more stable tuning curves than for other locations?. Fur-
thermore, a subgroup of neurons was shown to represent the reward,
independent of its location®, After exposure to a new environment, the

activity of CAlplace cells reconfigures to form anew map thatis unique
to that environment®*, enabling neuronal discrimination between dis-
tinct contexts**3, Recent studies have also shown that subpopulations
ofinhibitory cells exhibit spatially tuned activity and are modulated by
rewards*, but the role of astrocytes in this context is unclear.

Hippocampal astrocytes have an important role in memory pro-
cesses, as shown by us and others®**; we therefore hypothesized
that their activity will also be modulated during the performance of a
spatial cognitive task. To investigate the calciumactivity of astrocytes
in CAlduring a spatial paradigm, we used two-photon calcium imag-
ing of a population of astrocytes in this region as mice ran on a linear
treadmill and navigated in a multimodal circular virtual environment
to obtain water rewards. We show that astrocytes gradually increase
their calcium activity towards the previously learnt reward location
when mice explore afamiliar environment. Moreover, decoders using
calciumdynamicsin populations of astrocytes enabled usto decode the
location of the mouse within the virtual environment. When the mice
wereintroducedintoanew virtual environment differingin visual and
tactile cues, the astrocytic population was less modulated by reward
location. Furthermore, when the reward location was shifted within the
familiar environment, we did not observe significant ramping. After
additional training in the new environment or in the familiar context
with the new reward location, ramping was re-established, suggest-
ing that the activity elevation towards a rewarding location requires
familiarity. Our results shed light on the computational abilities of
astrocytes, their role in contextual discrimination and their contribu-
tion to cognitive functions.
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Fig.1|Ca* imaging of CAlastrocytesin mice navigating a virtual reality.

a, Experimental set-up. Head-fixed mice ran voluntarily onalinear treadmill
toproceedinacircularvirtualenvironment projected onto around screenin
front of them to obtain water rewards, constantly given at aspecificlocation
(asterisk). b, The trajectory of awell-trained mouse, completing15lapsin

4 min. The mouse typically stops only after areward is given. Asterisks denote
reward delivery. ¢, Expression of GCaMP6f (green) in astrocytesin the CAlafter

Imaging CAl astrocytes during navigation

To investigate the activity of a population of astrocytes while mice
performed a spatial task, we combined two-photon calciumimaging
with a custom-made circular virtual reality apparatus, and trained
head-fixed mice to run on a linear treadmill belt (length, 170 cm)
to obtain water rewards. A circular virtual environment with multi-
ple distinct visual cues was projected onto a curved screen in front
of them (Fig. 1a and Extended Data Fig. 1a). Mouse locomotion on
the treadmill was recorded and translated into movement along
the virtual track. A single water reward was given after completion
of each 170 cm lap, matched with a specific location in the virtual
environment (Fig. 1b).

We virally expressed cytosolic GCaMP6f in dorsal CAl astrocytes,
(Fig. 1c), enabling us to image calcium transients in astrocyte somata
and main processesin atotal of 11 mice. GCaMP was expressed in >92%
(212 out 0f 230 cells from 3 mice) of CAl astrocytes, with >94% specific-
ity (212 out of 224 cells from 3 mice). Expression of GCaMP6fin soma-
tostatin (SST)- or parvalbumin (PV)-positive cells or colocalization
with the pan-neuronal marker NeuN was minimal (1.65% expression
inneurons, 11 out of 668 cells from 3 mice) (Extended Data Fig.1b). To
increase the number of astrocytic regions of interest (ROIs) imaged in
eachsession, weacquired separate time series from two fields of view
(FOVs) using an electrical fast tuneable lens focusing on different tissue
depths (Fig.1d,e and Supplementary Video 1). The obtained time series
were motion-corrected, and ROIs were semi-automatically segmented
ineach FOV separately. The signal from each ROl was extracted and the
AF/Ftraces were calculated and used for binary event detection (Fig. 1f
and Methods). Adjacent ROIs were more correlated than further ones
onaverage (Extended Data Fig.1c), and the size of the ROl was positively
correlated with its event probability (Extended Data Fig. 1d).
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viralinjection of AAV5-gfaABC1D-cyto-GCaMP6f. The imaging window was
placed-100 umabove the pyramidal cell layer, denoted by a white dashed line.
d, Meanimages of two FOVs acquired using a fast-z-tuneable lens, showing
numerous segmented astrocytic ROIs. e,f, Magnified excerpts (e) from the
fieldsshownind, withexample ROls, and their corresponding activity traces
(f). Detected events are showninblack.Scalebars, 50 um (c-e),30 s

(f, horizontal) and 5 AF/F (f, vertical)).

Astrocytic activity ramps towards areward

Reward locations are over-represented by place cells in familiar environ-
ments*?%, and a subgroup of hippocampal neurons encodes rewards
independent of their location®®. However, it is unknown whether astro-
cytes exhibitlocation- and reward-specific responses. To examine this
question, we first investigated the overall activity of the astrocytic
population as mice traversed a familiar environment, and found that it
was characterized by synchronous activity epochs across many of the
ROIs (Fig.2aand Supplementary Video 2). We calculated the number of
concurrent events as a function of the mouse location, and observed
thatitincreased towards the knownreward location (Fig.2b). The num-
berof concurrent events decreased during the stationary epochs that
often occurred during reward consumption (Pearson’sr=-0.4 + 0.04,
permutationtest, P<0.006,n =9 mice) (Extended DataFig.2a,b). The
modulation of the astrocytic population activity by location was appar-
ent across laps and significantly different from shuffled data, both
whentesting the number of concurrent events as afunction of location
(Pearson’sr= 0.4+ 0.03, permutation test, P < 0.024, n = 9 mice; Sup-
plementary Information) (Fig. 2c,d and Methods) and the mean AF/F
as afunction of location (Pearson’s r = 0.25 + 0.03, permutation test,
P<0.018, n=9 mice) (Extended Data Fig. 2c). Furthermore, when we
analysed the somata and the processes separately, we obtained similar
results, indicating that the ramping activity is not limited to specific
subcompartments of the astrocytes (Pearson’s r=0.36 + 0.03 and
r=0.38 +0.03, permutationtests, P < 0.001and P < 0.05for all 8 mice,
in the somata and processes, respectively; two-sided paired ¢-test,
t;=0.92, P=0.39) (Extended DataFig. 2d,e and Methods).

When the reward was given at random locations along the track,
we did not observe ramping (Pearson’s r= 0.02 + 0.02, permutation
test, P> 0.084, n =3 mice) (Extended Data Fig. 2f), indicating that
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Fig.2|Astrocyticactivity increases as mice move towards thereward
location. a, Binary astrocytic Ca* traces acquired from ROIs in two FOVs when
the mouseranonthe treadmilland advanced through the virtual reality. b, The
sum of'thebinary traces (thatis, the number of events per sampling point)
shownina. The heightis the number of concurrent events, and the colours
denote the mouse location along the track (the maze is shownin the top right).
Theastrocytic activity ramps as the mouse moves towards the known reward
location, and decreases when the mouse s stationary. Asterisks denote reward
delivery. The dashed line denotes stationary epochs. ¢, The mean number of
concurrentevents of the mouseinaandbas afunction of binned locationsin
alllaps (top), and averaged across laps (bottom), is significantly different from
the shuffled data (Pearson’sr=0.36,one-sided permutation test, P< 0.001).

the astrocytes do not encode the mouse position, but rather its
location relative to the expected reward. When the virtual reality
visual display was turned off, we still observed significant ramping
in most mice (Pearson’s r = 0.2 + 0.04, permutation test, P< 0.009
for n=3 mice; Pearson’s r = 0.11, permutation test, P = 0.075 for
n=1mouse) (Extended Data Fig. 2g), suggesting that the tactile
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Location (cm)

d, The mean number of concurrent events as a function of location normalized
by shuffled datain nine mice (the blue line represents the mouse showninc),
obtained from 972 ROls, with126,86,107,107,107,114,160, 72 and 93 ROls from
theindividual mice. The observed ramping was significantly different from the
shuffled data (one-sided permutation test, P< 0.024 inall 9 mice). e, Example
of aramping ROI, showing its event probability as afunction of location and
laps (top) and its mean event probability across laps (bottom). f, Mean event
probability as afunction of the location of ROIs with significant spatial
information obtained from nine mice, sorted by the mean event probability in
the centrallocationbin (top). Most of these ROIs showed ramping, agradual
increasein meanactivity probability apparent across laps, that peaked near the
knownreward location (bottom). For c-e, dataare mean = s.e.m. (shaded area).

information is usually sufficient to induce astrocytic rampingin a
familiar environment.

We next investigated whether, like place neurons, single astrocytic
ROIs have activation peaks covering the entire environment with
over-representation of the reward location. We found that about 30%
(293 out 0f 972, from n =9 mice) of the astrocytic ROIs had significant
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spatial information. However, their activation peaks did not tile the
entire track; the maximal event probability of most of these ROIs was
near the reward location, towards which they showed gradual ramping
(Fig. 2e,f) indicating that astrocytes might represent the environment
differently compared with neurons. This was also the case when we ana-
lysed the AF/Ftraces (23%; 225 out of 972 ROIs with significant spatial
information from n =9 mice) (Extended Data Fig. 2h).

Theincrease in astrocytic Ca®* events towards the expected reward
location may be the result of the mouse changing its velocity as it
proceeds in the environment, as previous research has shown that
astrocytes respond to locomotion in the cortex'®'”*$*, To test this,
we first looked at the number of concurrent events in the astrocytic
ROI population as a function of velocity. The correlation between
astrocyticactivity and velocity was weaker than between location and
astrocytic activity across laps (Pearson’s r = 0.17 + 0.04, permutation
test, P>0.084 in n=4mice, P<0.025in n= 5 mice) (Extended Data
Fig. 2i,j). Moreover, when we investigated the interaction between
location and velocity, we saw that the overall astrocytic activity varies
more as a function of location in comparison to velocity (7.37 + 0.74
and3.62 + 0.44 (mean + weighted s.d.) for locations ata given velocity
and velocities at a given location, respectively, paired t-test, t; = 6.56,
P=0.0002) (Extended DataFig. 2k,I). Single astrocytic ROIs also exhib-
ited higher variability across locations than across velocities (Extended
DataFig.2m). Taken together, these findings suggest that the astrocytic
signal is modulated by the reward location more than by the velocity
of the mouse.

To further evaluate the unique contribution of location beyond
other potential behavioural variables to the astrocytic activity, we
used general linear models (Methods). Specifically, we fitted a linear
model with five behavioural variables as inputs—normalized location,
time since reward, velocity, recent distance runand licking—to predict
the number of concurrent astrocytic events. The model performance
was significantly better than that of a reduced model, which did not
include the location as its input (log-likelihood ratio: 591.95 + 188.33,
likelihood ratio test, P < 8.82 x 10 ™*in all n = 9 mice), as well as of mod-
els based on shuffled location data (coefficient of determination (%)
betweenmodel prediction and the actual number of concurrent events:
0.25+0.04and 0.18 + 0.03 for real and shuffled location inputs, respec-
tively; permutation test, P< 0.027inn =8 mice, P=0.35inn=1mouse;
paired t-test, tg=3.39, P=0.0095) (Extended Data Fig. 2n). Consistently,
cross-validated models that included location as their input performed
significantly better than reduced models (mean r?=0.21+ 0.04 and
0.15+0.03 in the full and reduced models, respectively; paired ¢-test,
tg=3.5,P=0.0081; permutationtest,P<0.004inn=8mice, P=0.065
inn=1mouse) (Extended Data Fig. 20).

We show here that astrocytic activity in the CAl is modulated by
reward location both when looking at single ROIs and at the entire
imaged population. In contrast to place neurons, which fire selectively
atspecificlocations throughout the entire space, the astrocytic activity
gradually increases towards a single expected reward location.

Ramping requires previous experience

Previous studies have shown that CAl place cells undergo global remap-
ping after exposure to anew environment, and can discriminate between
it and a familiar context®**, Chronic imaging data of hippocampal
astrocytes in awake behaving mice are lacking and, therefore, no such
phenomenon is known in this population of cells. Hence, we examined
whether ramping of astrocytic activity towards a rewarding location
requires familiarity with the environment. To this end, we conducted
chronicimaging of astrocytes both when mice navigated in a familiar
environment, and when they were introduced into anew one, differing
intactile and visual cues (Extended Data Fig. 1aand Methods). We used
fluorescence expression in sparse inhibitory neurons, enabling us to
return to the same FOVs on subsequent days (Fig. 3a). First, only ROIs
that were repeatedly active during both sessions were included in the
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analysis (Fig. 3b). As expected, the subpopulation of repeatedly active
astrocytic ROIs was significantly modulated by thelocationin the familiar
environment, gradually increasingits overall activity towards the reward
location (Fig. 3¢). However, in the new environment, this ramping was
less apparent (Pearson’sr=0.41+0.03 and r= 0.2+ 0.05 in the familiar
and new environment, respectively, paired t-test, t, = 8.04, P= 0.0002)
(Fig.3d and Extended Data Fig. 3a). We also found significantly more ROI
pairs with significant mutual information between their activity in the
familiar environment compared with the new environment (proportion
of significant mutual information ROl pairs: 0.39 + 0.08 and 0.16 + 0.04
inthe familiar and new environment, respectively, paired ¢-test, ¢, = 2.45,
P=0.049) (Extended Data Fig. 3b,c). Second, we analysed all of the
imaged ROIs (notjust the repeated ones), and replicated the same results:
reduced rampinginthe new environment (Pearson’sr=0.44 + 0.03 and
r=0.16 £ 0.03 in the familiar and new environment, respectively, paired
t-test, t,=10.43, P=0.00005) (Extended Data Fig. 3d-f).

Next, we trained two mice in the new environment for an additional
session, after which we found that ramping was re-established in the
subpopulation of active and repeated ROIs (Pearson’s r = 0.44 + 0.07,
permutation test, P< 0.031, n=2 mice) (Fig. 3e). We also tested the
astrocytic activity when a different set of mice was re-exposed to the
familiar context after the new one, and observed that the ramping was
immediately apparent without additional training in the repeated and
activeROIs (Pearson’sr=0.31 £ 0.11, permutation test, P < 0.004,n=2
mice) (Extended Data Fig. 3g), indicating that the exposure to the new
context does not interfere with the familiar context representation.

Finally, we examined the astrocytic activity when the reward was
shifted from its previously learnt location to a new one in a familiar
environment. As expected, ramping was apparent when the reward
wasgiveninitsoriginallocation (Pearson’sr=0.54 + 0.11, permutation
test, P<0.002, n =2mice) (Fig. 3f); however, it was not evident after the
reward shift (Pearson’sr=0.03 + 0.01, permutationtest, P> 0.397,n=2
mice) (Fig. 3g). After training with the new reward location, significant
ramping re-emerged in the repeatedly active ROIs (Fig.3h) (Pearson’s
r=0.41+ 0.13, permutation test, P< 0.037, n =2 mice).

Takentogether, our resultsindicate that the astrocyte population dis-
criminates between contexts, showing ramping towards the expected
reward in familiar, but notin new, environments. After learning of either
anew environment or new reward location within a given context,
ramping of astrocytic calcium activity emerges.

Decoding location from astrocytic activity

We next examined whether the activity of the astrocytic population
would suffice to determine the location of the mouse along the track.
Tothisend, we constructed alinear-regression decoder for each mouse
that predicted its location on the basis of the binary calcium activity
traces, or on shuffled traces as control (Fig. 4a-d and Extended Data
Fig.4). The decoders estimated the mice trajectories significantly better
thanwhen tested on shuffled data (meanerror size:44.4 + 1.9 cmfor real
data, 59.5 + 1.4 cm for shuffled data, n= 6 mice, paired t-test, ;= 8.33,
P=0.0004; Supplementary Information) (Fig. 4d and Methods).
Next, we examined whether similar linear decoders could infer
the mouse location in the new environment (Fig. 4e-h). The perfor-
mance of the decoders was not significantly different compared to
when trained on shuffled data (mean error size: 52.3 + 2.2 cm for real
data, 55.9 + 1.2 cm for shuffled data; paired ¢-test, t, = 2.12, P= 0.079;
permutation test for individual decoder performance, P> 0.066 in
n=7mice) (Fig.4h). Their mean performance was significantly worse
than the mean performance of the decoders trained and tested on the
familiar environment (independent samples t-test, t;; = 2.65, P= 0.023).
Finally, we trained separate linear decoders to predict the normal-
ized velocity of the mice in the familiar environment on the basis of
the binary Ca*" activity traces, and found that their performance was
not significantly different from decoders trained on shuffled data



a Day 1: familiar environment

GFAP cyto-GCaMP6f
D (3

pOBPqQ B

Day 2 or 4: new environment b

— Familiar environment
— New environment

‘2\}, v »%a:&
%p i
o a
PR L I
g N 60
c d e
2.0 - - 2.0 - 1= 2.0 - -
| 1
. 1.8 . 1.8 e 1.8 o
o o 8 b
-gg‘].(i- -gg1.6- b §g1.6- \ !
28 14 2814 bl 2814 P
g2 121 o e 127 2Bl §& 129 iz
EE 104 g E@LO--—/f,,/éi% €810 S
T 3 08 - € T3 o087 i€ 3308 i
= = NS cl
g‘g 0.6 gg 0.6 . gs 0.6 - | :
5% 04 5% 0.4 - i1 5 ©° 04 b
Z 02 Z 021 P Z 021 b
1
0 T T T T T T T T 0 T T T T T T T T : : 0 : :
0 34 68 102 136 170 0 34 68 102 136 170 0 34 68 102 136 170
Location (cm) Location (cm) Location (cm)
f g h
2.0 - 2.0 - =7 2.0 - ]
] 1
. 1.8 . 1.8 e 1.8 P
38 8 8 b
8*31'6' E%LG- b E*21'6' : !
28 1.4 28 1.4 E i 28 144 [
c o c © 1 c o 1
£ £ 1.0 £ £ 1.0 <1z E 1.0+ i3
33 08- T3 08 2 B3 o084 i
5 8 06 5 8 06 'l 5808 P
Es o Es o L Es o |
5 04 - 55 04 - 1 56 04 P
Z 021 Z 021 P % 02 Do
—— 0 — 0 —
0 34 68 102 136 170 0 34 68 102 136 170 0 34 68 102 136 170

Location (cm)

Fig.3|Astrocyticactivity ramps as mice move towards the reward location
infamiliar environments, but notin new environments. a, Chronicimaging
when mice navigated in familiar (left) and new (right) environments. Scale bars,
25 pum. Thevirtual environment walls are drawn at the top. The inhibitory
neuronal tdTomato expression (here, PV neurons) was used to return to the
same FOV on consecutive days. b, ROIs were segmented independently oneach
session, and their masks were registered. Only ROIs that were active during
bothsessions (shownin yellow) were included in the analysis. ¢,d, The
normalized mean number of concurrent events as afunction of locationin the
familiar environment (c) and in the new environment (d) for repeated active
ROIsinseven mice. The correlation between location and astrocytic activity
was significantly higher in the familiar environment compared with the new
one (Pearson’sr=0.41+0.03andr=0.2+0.05inthe familiar and new
environment, respectively; two-sided paired t-test, ¢, = 8.04, P=0.0002).

(mean error size: 0.23 + 0.02 for real traces, 0.23 + 0.02 for shuffled
data; paired t-test, t, = 0.78, P = 0.472; permutation test for individual
decoder performance, P> 0.138 in n = 6 mice) (Fig. 4i-1), indicating that
running velocity cannot be inferred fromthe astrocyticactivity. Taken
together, our findings demonstrate that reconstruction of mouse loca-
tiontrajectories fromastrocyticactivity using linear decodersrequires
familiarization with the environment and, as opposed to neurons*
cannot be doneinanew environment.

Discussion

Here wereportlongitudinal astrocytic activity in the hippocampus of
awake behaving mice. We chronicallyimaged CAl astrocytes while mice

Location (cm)

Location (cm)

e, Two mice were imaged for the third timein the new environment after an
additional training day. The normalized mean number of concurrent events as
afunction of location shows that ramping was re-established after learning the
new environment (Pearson’sr=0.44 + 0.07, one-sided permutation test,
P<0.05).f,g, The normalized mean number of concurrent events as a function
oflocation shows ramping towards aknown reward location ina familiar
environment (Pearson’sr=0.54 + 0.11, one-sided permutation test, P< 0.01)
(f), whichis eliminated once thereward is shifted to anew locationin the same
environment (Pearson’sr=0.03 + 0.01, one-sided permutation test, P> 0.05)
(g). h, After additional training with the new reward location, the ramping is
re-established (Pearson’sr=0.41+0.13, one-sided permutation test, P< 0.05).
Forc-h,dataaremean ts.e.m. (shaded area). Different mice are colour coded
asinFig.2d.

raninfamiliar and new virtual environments. Although we noticed no
‘place astrocytes’ that tile the whole environment, we found that astro-
cytic activity shows persistent ramping towards the reward location,
but only when both the spatial context and reward location within it
were previously learnt. Furthermore, we demonstrate that astrocytic
population activity alone can be used to reconstruct mouse trajecto-
ries in familiar environments. This is one of the first indications that
astrocytes are involved in spatial tasks and can encode position-related
informationin familiar contexts, thereby extending their knownroles
in cognitive functions.

Our dataindicate that astrocytes encode position-related informa-
tion through gradual ramping towards the previously learnt reward
location, both when examining the overall population and single ROI

Nature | www.nature.com | 5



Article

a — Real location e Predicted location P
Reward
170 2> 10
: |
o . g
5 85 o 05
o ' 2
g ©
3 g — Real data
S Shuffle
0 I T -1 T 1 o 0
0 1 2 0 85 170
Time (min) Error size (cm)
e — Real location e Predicted location f
Reward
2 10
. 3
13 5
= [
2 o 05
o =
8 k]
3 g — Real data
5 Shuffle
O 0

0 85
Error size (cm)

170
Time (min)

— Real velocity e Predicted velocity

1.0+
2 z
g g
S o
el Q
8 2
g ®
% E — Real data
2 E Shuffle
O oT— T
0 0.5 1.0
Time (min) Error size

(normalized velocity)

Fig.4|Decoding of mouse trajectory fromastrocyticactivityinthe
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¢, Mean confusion matrix of the mouse showninaandb. The diagonally
concentrated errorsindicate that the predicted locationis near thereal
locationonaverage.d, Decoder mean error cumulative probability (n = 6 mice),
showing thatthelocationdecoders performed significantly better when
trained onreal compared with shuffled data on average (two-sided paired
t-test, t;=8.33,P=0.0004).e-h, Another decoder was trained to predict the
location of miceinanew environment.e,f, Anexample trajectory of amouse
(black) overlaid withitsinaccurately predicted location (blue) (e) and its error
cumulative probability plot (f). The decoder trained on the real data performed
similarly tothe one trained on shuffled data. g, Mean confusion matrix of the

activity. Such slow dynamics have been previously reported in neurons
foundinvariousbrainregions®*? that are involved in motor planning,
working memory and decision-making. Furthermore, prolonged dopa-
mine signals showing persistent ramping towards a distant reward
were found in the striatum****, Recently, a study has also shown that
radial astrocytes of zebrafish gradually increase their calcium activity
as the animals learn the ineffectiveness of their actions, triggering a
behavioural shift to passivity*. Our results show that calcium activity
inCAlastrocytesis elevated towards the known reward location, con-
sistent withamodelin which astrocytic activity increases as evidence
accumulates.

Our findings raise the question of what exactly the astrocytic ramping
encodes. We show that, when the environment remains constant but the
reward is shifted to anew location, ramping is eliminated, suggesting
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mouseshowniniandj. The horizontally concentrated errorsindicate that the
predictedlocationisindependent of thereallocation on average. h, Decoder
mean error cumulative probability (n = 7 mice), showing that the new location
decoders were not significantly better when trained on real compared with
shuffled data on average (two-sided paired t-test, t,=2.12, P=0.079).
i-1, Another decoder was trained to predict mouse-normalized velocity.
i.j, Example mouse velocity trace (black) overlaid withitsinaccurately predicted
velocity (blue) (i) and its error cumulative probability plot (j). The decoder
trained on thereal data performed similarly to the one trained on shuffled data.
k, Mean confusion matrix of the mouse shownin e andf. The horizontally
concentrated errorsindicate that the predicted normalized velocity is
independent of the real normalized velocity on average.l, Decoder mean error
cumulative probability (n = 6 mice), showing the mean performance of the
velocity decoders was not significantly better when trained onreal compared
with shuffled dataon average (two-sided paired t-test, t,= 0.78, P= 0.472).
Ford, h,1,dataare mean +s.e.m. (shaded area).

that astrocytes encode the reward location, and not location per se.
Itis conceivable that the astrocytes encode various attributes of the
reward, such as expectation, and the external environment serves
only as cues leading towards it. It is therefore possible that, like cer-
tain neurons foundinthe hippocampus, astrocytesin thisregion may
encode the progressions of sensory stimuli*¢*® or internal states (for
example, motivation, expectation) that change with proximity to a
goal. Although we studied the ramping of astrocytic activity towards
areward in aspatial context, future experiments can test whether this
phenomenon also appearsin non-spatial tasks. For example, when the
reward appears after alearntauditory sequence, such astonesinrising
pitch, and is dissociated from a specific location in space.

By chronically imaging astrocytes, we were able to compare their
activity when mice navigated a familiar environment and when they



were introduced into a new one, differing in visual and tactile cues.
Notably, inthe new environment, the astrocytic activity wasno longer
modulated by location, and it did not suffice to accurately decode the
mouse trajectory. Place cells rapidly emerge in the CAl after expo-
sure to a new environment*, and can be used to accurately decode
the mouse location as early as on the first lap®. Our results suggest
that the astrocytic representation of an environment develops more
slowly than the neuronal one. Importantly, astrocytic activity is sig-
nificantly different between familiar and new environments, which
may indicate that astrocytes are involved in contextual discrimination,
in conjunction with the neuronal representations®?*, Astrocytes are
known to have slow temporal dynamics (although see ref. ), which
may enable them to take partin computations that occur across long,
behaviourally relevant time scales. Moreover, the fact that they receive
inputs from multiple neurons may potentially enable them to serve as
spatiotemporal integrators, as has been demonstrated in vitro*® and
invivo®. Astrocytes were previously shown to encode sensory stimuli
with calcium transients in the cortex and investigating the real-time
involvement of hippocampal astrocytes in various behaviours will
deepen our understanding of cognitive functions and their underly-
ing computations.
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Methods

Animals

Ten PV-tdTomato male mice and one SST-tdTomato male mouse
were used for the experiments. The mice were generated by cross-
ing PV-IRES-Cre (B6.129P2-Pvalb™94®7/] 017320) or SST-IRES-Cre
(Ssttm2ierezit/y 013044)%2 mice with Rosa-CAG-LSL-tdT (Ail4,; B6.129
S6-Gt(ROSA)26Sortm#(CAGwdTomatolize/j 007908)5> mice. Mice (aged 7-8
weeks) were housed under a12 h-12 h light-dark cycle in cages with
running wheels. All of the mice were maintained under pathogen-free
conditionsin Tecniplast cages, on Teklad sani-chips (ENVIGO) bedding,
at20-24 °Cand 40% humidity, and fed Teklad 2918SC (ENVIGO) pellets.
The experimental protocols were approved by the Hebrew University
Animal Care and Use Committee and met the guidelines of the National
Institute of Health guide for the Care and Use of Laboratory Animals.

Surgical procedures

Mice were anaesthetized with isoflurane, and their head was placed in
astereotactic apparatus (Kopf Instruments). The skull was exposed
and asmall craniotomy was performed. Mice were unilaterally micro-
injected 400 nlviral vector using the following dorsal CAl coordinates:
anteroposterior,—1.85 mm; mediolateral, +1.4 mm; and dorsoventral,
-1.35 mm from bregma. All microinjections were performed using a
10 plsyringe and a 34 gauge metal needle (WPI). The injection volume
and flow rate (0.1 1l min™) were controlled by an injection pump (WPI).
Aftereachinjection, the needle was leftin place for anadditional 10 min
toallow for diffusion of the viral vector away from the needle track, and
was then slowly withdrawn. The craniotomy was sealed with bone wax
(Surgical Specialties), and the exposed skull was covered with trans-
parent super-bond (Sun Medical) for cementing an omega-shaped
head bar (custom design, 3D printed) anteriorly to the craniotomy
site. For postoperative care, the mice were subcutaneously injected
with tramadex (5 mg kg™).

After atleast one week of rest, mice were re-anaesthetized with iso-
flurane in the stereotactic apparatus, and a biopsy punch (Kai Medi-
cal) was used to cuta-~-2.5 mm diameter craniotomy over the injection
site. Aspiration was used to remove the cortical tissue and top most
fibres above the right dorsal CAl, and aglass cannula (2.4 mmdiameter,
2.5mm length, no. O cover slip bottom; self-fabricated) was inserted
into the craniotomy. The skull was covered with opaque super-bond
(SunMedical) for cementing the cannula. An additional layer of dental
acrylicwas placed to minimize potential physical damage.

Viral vectors
The following viral vector was used: pZac2.1gfaABCID-cyto-GCaMP6f
(Addgene viral prep, 52925-AAVS5).

Immunohistochemistry analysis

Mice were transcardially perfused with cold PBS followed by 4% para-
formaldehydein PBS. The brains were extracted, post-fixed overnightin
4% paraformaldehyde at 4 °C and cryoprotectedin30% sucrose in PBS.
Thebrains were sectioned into 40-um-thickslices using asliding freezing
microtome (LeicaSM2010R) and preservedina cryoprotectantsolution
(25% glyceroland 30% ethylene glycol in PBS). Free-floating slices were
washed in PBS, incubated for1 hinblocking solution (1%BSA and 0.3% Tri-
tonX-100inPBS) andincubated overnight at4 °Cwith primaryantibodies
(afulllist of the antibodies is provided below) inblocking solution. Slices
were then washed with PBS and incubated for 2 h at room temperature
withsecondary antibodies (a fulllist of the antibodies is provided below)
in1%BSA in PBS. Finally, the sections were washed in PBS, incubated with
4,6-diamidino-2-phenylindole (1 pg ml™) and mounted ontoslides with
mounting medium (Fluoromount-G, eBioscience).

Antibodies. The following primary antibodies were used: chicken
anti-GFP (Aveslabs, GFP-1020; 1:200); rabbit anti-NeuN (Cell Signaling

Technology, 12943;1:1,000); guinea pig anti-GFAP (Alomone Labs,
AGP-307;1:200). The following secondary antibodies were used:
donkey anti-chicken conjugated to Alexa Fluor 488 (Jackson Lab-
oratories, 703-545-155; 1:500); donkey anti-rabbit conjugated to
Alexa Fluor 594 (Jackson Laboratories, 711-585-152; 1:500); donkey
anti-guinea pig conjugated to Cy5 (Jackson Laboratories, 706-175-
148;1:500).

Confocal microscopy

Confocal fluorescence images were acquired on the Olympus scanning
laser microscope (Fluoview FV1000) using a x10 air objective. Image
analysis was performed using ImageJ (NIH).

Linear treadmill and virtual reality apparatus

Fully awake mice were mounted on top of alinear treadmill with their
head bar secured to a custom-made holder under the microscope
objective. The treadmill consisted of a170 cm belt with varying tex-
tures, circling two plastic wheels (custom design, 3D printed). To track
mouse locomotion, rotations of arotary encoder (S5-360-236-IE-S-B, US
digital) placed in the frontal wheel were measured by Arduino boards.
Thelocomotion datawere synchronized with the microscopeimaging
frames, and translated into movement in the virtual environment. To
compensate for sampling errors and belt stretches, aninfrared sensor
connected to an Arduino board detected a white band on the inner
side of the belt and auto-calibrated the virtual reality accordingly on
eachlap.

Awater solenoid valve connected tosilicone tubesand ablunt10 cm
needle delivered water rewards in response to TTL commands given
by the virtual reality computer through an Arduino board. Licking
behaviour was continuously monitored by a capacitance sensor (Atmel
Microchip). To synchronize and digitize the valve, infrared and lick
signals with the imaging frames, we used a USB-6001 NIDAQ board
(National Instruments) and acquired data at 500 Hz using MATLAB.
The board recorded TTL signals from the microscope given at the
beginning of each frame, as well as TTL commands sent to the valve
and TTL inputs originating from the infrared Arduino or lick detector
on different analogue channels.

Thevirtual environments, designed using the Blender game engine,
were projected onto acustom-made curved screen. Using aJava graphi-
cal user interface, the specific environment of choice and reward
locations were determined. The environments consisted of various
visual patterns to dissociate different locationsin the virtual world. An
Arduino board was used to trigger the initiation of the trial.

Behavioural paradigms

Mice were water-restricted and handled for 2-3 days, and we thenbegan
training them to run on the linear treadmill to obtain water rewards.
Initially, multiple water rewards were spread along the track, and as
the miceimproved on the course of 7-10 days, we gradually decreased
the number of rewards until only one reward was present on each lap.
We used two sets of environments, consisting of a treadmill belt with
tactile cuesandavirtual reality display with visual cues. In the familiar
condition, mice were extensively trained in a specific environment,
whereasinthe new condition we used the other environment, towhich
the mouse was not previously exposed. We counterbalanced the envi-
ronments across mice, such that each environment wasused bothasa
familiar and a new one for different mice.

Familiar-new paradigms. Mice were trained extensively in a specific
environment (familiar), and then imaged as they were performing
the task. After 1-3 days, they were imaged in the new environment.
Next, some of them were either trained in the new environment
for an additional day and then imaged in the new environment,
or re-exposed to the familiar environment and imaged without
additional training.



Reward shift paradigm. In the first ten laps, the reward was given at
the same location that was used during training (Fa). During the rest
of the session, which consisted of 11 more laps, the reward was given
atanew location in the same environment (Fb). We omitted the first
lap in which the reward was shifted from the analysis. The mice were
then trained for an additional session with Fb, and then imaged again
in Fb during the task.

Random reward paradigm. Mice were trained in a familiar environ-
ment, inwhich the reward was givenata constant location. During the
imaging session, a single water reward was randomly given in one of
ten possible locations along the track.

Virtual reality display off paradigm. Mice were trained in a familiar
environment. During the imaging session, the virtual reality display
wasturned off, and the reward was givenin the same location asin the
training sessions.

Behavioural analysis

We analysed the behaviour of the mouse using custom code runin
MATLAB (MathWorks). Alap was defined between each pair of rewards,
andtherelative location withinit was calculated accordingto therotary
encoder tick count difference between the beginning and end of the
lap. For the random reward paradigm, we defined a lap between two
infrared signals, that is, a specific location on the belt, and aligned
the location according to the previously learnt reward location. We
smoothed the rawrotary encoder tick count using a moving average fil-
ter (0.3 swindow) and defined movement epochs when the smoothed
time series value was >1. Velocity was defined as the derivative of the
smoothed time series. We calculated the recent distance run by the
mouse by integrating the velocity in a 2 s sliding time-window. When
comparing the familiar and new environments, we analysed the first
20lapsineachenvironmenttoreduce potential learning effectsin the
new environment.

Two-photon microscope

Two-photon imaging was performed using the Neurolabware
two-photon laser-scanning microscope. Excitation light from a
Ti:sapphire laser (Chameleon VisionIl, Coherent, and then Chameleon
Discovery TPC, Coherent) operated at 920 nm scanned the sample using
a6215galvometer and aCRS8 resonant mirror (Cambridge Technology).
Emitted fluorescence light was detected by GaAsP photo-multiplier
tubes (Hamamatsu, H10770-40) after band-pass filtering (Semrock).
xyz motion control was obtained using motorized linear stages, ena-
bled through an electronic rotary encoder (Knobbyll). We alternately
scanned two imaging-planes with an electrically tuneable lens for fast
z-focusing (Optotune EL-10-30 NIR ETL; f=100 mm offset lens) to
increase the number of astrocytic ROIs per session. A moulding clay
ring was mounted between the cannula and the objective to maintain
the water reservoir and block external light. The Scanbox software, run
on MATLAB, was used for microscope control and image acquisition. All
images were acquired using a water-immersion x16 objective (Nikon,
0.8 NA) with amagpnification of 2.8 or 3.4 to obtain 601 pm x 418 pm or
516 pm x 366 um FOVs. The sampling rate was 15.49 frames per second,
thatis, 7.745 frames per second for each imaged plane.

Processing calciumimaging data

Motion correction. Calcium imaging movies were corrected for move-
ment in each plane separately using either rigid motion-correction with
the sbxaligntool algorithm (Scanbox) or non-rigid motion correction with
the NoRMCorrealgorithm® in MATLAB (MathWorks). When movements
werestill visiblein specific frames, we removed them using the red channel.
Specifically, we extracted the meanintensity time series of neuronal ROIs
apparentinthered channelandlinearly interpolated the signal obtained

fromeach plane. FramesinwhichanROIsignal was>2locally scaled median
absolute deviations from thelocal median withinasliding~3.8 swindowin
atleast2ROIs on either plane were excluded from the analysis.

ROl detection. We used the sbxsegmenttool graphical user interface
(Scanbox) in MATLAB to semi-automatically detect ROls on the basis
ofthe motion-corrected videos. The algorithm selects pixels based on
their correlationinspace and time, such that nearby pixels are defined
as an ROL. The correlation threshold was manually set, and was based
onthe morphology of the ROI, such that different ROIs may belong to
the same astrocyte. The segmentation was performed separately for
each FOV and for each session.

Signal extraction. The mean fluorescence intensity time series were
extracted from the segmented ROIs. The first five samples were re-
moved from the analysis, as well as frames at the end of the video if
extensive bleaching was apparent. To synchronize the imaging data
with the encoder data, we linearly interpolated the signal obtained
from each plane. To obtain AF/F time series for each ROI, we adapted
previously published methods> for the astrocytic signal. Specifically,
we defined the baseline F as the eighth percentile fluorescence value
withina-~125 sinterval around each sample point. We then subtracted
the baseline from each sample, and divided the result by the baseline
F.Noisy ROIs, inwhich there were no apparent calcium transients, were
removed from the analysis.

Detection of calcium events. Potential events were first detected
based onthe AF/Ftraces; For each ROI, we defined the event threshold
as the sum of the mode fluorescence value and its distance from the
mean minimal fluorescence value (based on the 100 smallest values).
We next obtained potential events based on smoothed AF/F traces
(moving median, ~3.9 s window), using the same calculation. We de-
fined an event based on the smoothed traces, onlyifatleast one of the
samples within it was also detected as an event based on the original
traces, and if it was >260 ms long.

Registration of ROIs across sessions. Toimage the same FOV across
sessions, we used the mean-intensity images of each plane based on the
motion-corrected videos obtained during the first imaging session.
We used the red channel in which inhibitory neurons were apparent
to adjust the objective focus and Optotune parameters until reaching
the same FOV. The ROl masks obtained from each session were rigidly
aligned using the sbxmatchfields function (Scanbox). Only ROIs that
had >20% overlap, and were visually confirmed, were considered as
repeated ROIs across 2 consecutive days.

Comparison between astrocytic somata and processes

To differentiate between astrocytic somata and processes, we obtained
the meanimage from the nine mice that completed the familiar environ-
ment paradigm, and superimposed the ROl boundaries onit. We classi-
fied the cellular compartment according to the morphology of the ROL.
One mouse was excluded from the analysis as it had <10 somata ROIs.

Modulation of astrocytic activity by location or velocity analysis
To obtain concurrent events and event-probability maps, we discre-
tized the either the location or the velocity of the mouse. For location
analysis, thetrack was divided into 10 bins, each 17 cmlong, and the last
bin in which the reward was given and consumed was removed from
further analysis unless otherwise stated. For velocity analysis, we nor-
malized the velocity and obtained arbitrary units within the range 0-1.
Inboth cases, we omitted frames in which the mouse velocity did not
exceed the movement criteria (see the ‘Behavioural analysis’ section).

We then calculated the mean number of concurrent events when exam-
ining the entire ROl population, or the event probability when examining
single ROIs, per binineachlap. To obtainthe shuffled data activity maps,
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we permuted the signal using 1,000 random cyclic shifts, and performed
the same analysis as for the real data. The normalized number of con-
current events was calculated by dividing the real datamean number of
concurrent events by the shuffled data pooled mean number of concur-
rent events. To define significant modulation of astrocytic activity by
location or velocity, we calculated the linear correlation between these
variables from the real and shuffled data. Significance was determined
whenthe Pearson’s robtained from the real datawas larger than the 95th
percentile of the Pearson’s r distribution of the shuffled data.

Astrocytic activity after reward-delivery analysis

We calculated the number of concurrent events as a function of time
7 s after reward delivery in each lap. To determine statistical signifi-
cance, we permuted the signal using 1,000 random cyclic shifts, and
performed the same analysis as for the real data. To define significant
modulation of astrocytic activity by location, we calculated the Pear-
son’slinear correlation between these variables from the real and shuf-
fled data. Significance was determined when the correlation coefficient
obtained from the real data was lower than the fifth percentile of the
shuffled data correlation coefficient distribution.

General linear model

We constructed asimple model to link the astrocytic concurrent event
number as a linear function of five behavioural variables: normalized
location, time since reward, velocity, recent distance run and licking.
We omitted frames in which the mouse velocity did not exceed the
movement criteria (see the ‘Behavioural analysis’ section).

To test the significance of the contribution of the locationinput to
the model performance, we used two approaches. First, we compared
the performance of the full model with that of areduced model fitted
onthebehavioural variables excluding the location (that is, four pre-
dictors only) using alikelihood ratio test accounting for the number of
degrees of freedom. Second, we compared the fullmodel performance
when it was fitted on the real behavioural data, and compared it with
the performance of asimilar model, when the location input was shuf-
fled. Specifically, we generated 1,000 realizations of random cyclic
shifts of the location data, without changing the rest of the inputs or
output. We calculated the coefficient of determination (r*) between the
actual number of concurrent astrocytic events and the model predic-
tion for the real and shuffled-location data models. Significance was
defined when the 2 of the model fitted on the real data was greater
than the 95th percentile of the shuffled model r* distribution.

For cross-validation, we divided the dataset into 2 s chunks, and
pseudorandomly assigned them to one out of ten blocks with equal
probability. We used a tenfold cross-validation protocol, in which we
trained the model on nine out of the ten blocks, and then tested its
performance ontheresidual block. The activity in each data point was
predicted only by amodel that did not have this data pointinits train-
ing set, and used for overall performance estimation. We performed
the cross-validation process 1,000 times, using different train-test
divisions, for both the five- and four-variable models (thatis, with and
withoutlocation data, respectively). We calculated the ? of both models
oneachrealizationand compared them. Significance was defined when
the r* of the full model was greater than the r* of the reduced modelin
more than 95% of the simulations.

ROl spatial information analysis
We calculated the spatialinformation of astrocytic ROIs using the event
probability maps of each ROl as previously described*®:

Spatial information =) pi(g)logz(%)
i

where r;isthe calcium event probability of the ROl given that the mouse
isin the ith bin; p;is the probability of the mouse being in the ith bin

(samples spentin ith bin/total session samples); 7 is the overall mean
calcium event probability; and i running over all of the bins. We then
performed 1,000 cyclic permutations of the astrocytic signal, while
keeping the behaviour constant, and computed the spatial information
for each shuffle. Thisyielded the Pvalue of the measured spatial infor-
mation relative to the shuffles.

We also calculated the spatial information based on the mean AF/F
maps of each ROI¥, using the same formula with the following changes:
r;isthe mean AF/F of the ROl given that the mouseisin the ith bin; F is
the overall mean AF/F; and i running over all of the bins.

Mutual information between repeated ROl analysis

We calculated the mutual information between each pair of repeated
ROIs in each environment. We included the acquired astrocytic time
series during movement epochs of the mice in the first 20 laps. The
pairwise mutual information was considered to be significant wheniit
was higher than the 95th percentile value obtained from 1,000 cyclic
permutations of the ROI signals.

Decoding mouse location and velocity

Todecode the mouse location or velocity onthe basis of astrocytic activ-
ity, we trained alinear regression decoder for each mouse separately.
We excluded sessions in which mice completed <20 laps. The signal
was the binary astrocytic activity traces during movement epochs, and
the outputwas the normalized location along the track or the relative
velocity (thatis, between 0 and 1). We trained the decoder on 80% of the
data, and tested its performance on the remainder, such that the train
andtest data were from the same session (that is, familiar or new condi-
tion). Weran1,000 train-test sets by dividing the data usingarandom
cut-point. Whenthe predicted location or velocity was out of the range
0-1,itwas trimmed (that is, min(prediction, 1), max(prediction, 0)). To
determine modelsignificance, we created shuffled databy permuting
the signalinacyclic manner, and performed the same train-test proce-
dureasforthereal data. We computed the mean error (thatis, the mean
difference between the reallocation and the predicted location) for the
decoder trained on the real and shuffled data in each simulation. The
model was defined as significant when <50 simulated datasets reached
better performance than the real dataset (that is, had a smaller mean
error). Confusion matrices were calculated after binning the real and
predicted values into ten bins.

Statistical analysis

Data are presented as mean * s.e.m. unless otherwise indicated. The
sample number (n) indicates the number of ROIs or mice in each experi-
mentandisspecified inthe figure legends. We performed permutation
tests by conducting random cyclic shifts of the astrocytic data, and
comparingtherelevant distribution to thereal data. We used two-sided
Student’s ¢-tests to compare paired or independent samples, as appli-
cable. Data distribution was assumed to be normal, but this was not
formally tested. No statistical methods were used to predetermine
sample sizes. The experimenters were not blinded to the experimental
conditions, and norandomization was performed. All of the statistical
details of the experiments are provided in the main text. P < 0.05 was
considered to be statistically significant. Analyses were performed
using the IBM SPSS statistics software (v.24) and MATLAB.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Allsource data are provided with the paper. All datasets are provided
at GitHub (https://github.com/GoshenLab/Astro_imaging/). Source
data are provided with this paper.
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Code availability

The custom code used in this paper is provided at GitHub (https://
github.com/GoshenLab/Astro_imaging/).
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Extended DataFig.1|Apparatusfor Imaging Astrocytesin Behaving Mice.
A.Two environments consisting of different belts with tactile cues and virtual
reality displays. B. Selective expression of GCaMP6fin CAlastrocytes
followinginjection of AAV-GFAP::cyto-GCaMP6fto an Ail4XSST-Cre mouse.
GCaMP6fwas expressedin >92% of CAlastrocytes (212/230 cells from 3 mice;
92.73% +1.65 of GFAP positive cells were also GCaMP6f positive), with > 94%
specificity (212/224 cells from 3 mice; 94.58% + 0.29 of GCaMPé6f positive cells
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were also GFAP positive). Minimal co-localization with SST or PV positive cells
or the neuronal marker NeuN was detected (1.65% expressionin neurons,
11/668 cells; 1.55% + 0.54 of GCaMPé6f positive cells were also NeuN positive;
scale bars: 50 pm). C. ROl centroid distance was negatively correlated with the
mean pairwise event correlation (pooled data from n =8 mice). D. ROl size was
positively correlated with mean event probability (pooled datafromn=8
mice). Data presented as mean+SEM.
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Extended DataFig.2|Astrocytic Activity Explains Location More
Accurately Than Velocity. A. The mean number of concurrent astrocytic
events following reward delivery inall laps of the same mouse shownin
Fig.2a-c.B.Mean normalized number of concurrent events asa function of
time following reward deliveryin all mice presented in Fig. 2d (blueis the one
from A), showing significant reduction over time (Pearson’sr:—0.4 + 0.04,
1-sided permutation tests, p < 0.006 in all 9 mice). C. The mean normalized
AF/Fasafunctionof binned location, showing significant rampingin all mice
showninFig.2d (Pearson’sr:0.25+0.03,1-sided permutation tests, p < 0.018
inall9 mice). D-E. Both the astrocytic somataand processes show significant
ramping. D. The mean normalized number of concurrent eventsas afunction
ofbinned location calculated separately for the somataand processes

of themouse shownin Fig.2a-c (n=59 somataand n = 67 processes).
E.Thecorrelationbetween locationand concurrent eventsinthe somatais
notsignificantly different from the processes (Pearson’sr:0.36 + 0.03 and
0.38+0.03, 1-sided permutation tests, p< 0.014 and p < 0.025inthe somata
and processesrespectively, n =424 somataand n=455processesfromn=8
mice; 2-sided paired t-test, t;,=0.92, p = 0.39). F. The mean normalized number
of concurrenteventsasafunction of binned location when the reward was
giveninrandom locations along the track, showing no apparent ramping
(Pearson’sr:0.02 +0.02, 1-sided permutation tests, p > 0.084 for all 3 mice;
The dashed square denotes the previously learnt constant reward location).
G.The mean normalized number of concurrenteventsasafunction of binned
location when the VR display was turned off, showing significant rampingin
most mice (Pearson’sr: 0.2 + 0.04,1-sided permutation test,p<0.009,n=3
mice; Pearson’sr: 0.11,1-sided permutation test, p = 0.075,n =1 mouse).
H.Same as Fig. 2f, calculated using the AF/F traces, showing ramping towards
thereward locationin many ROIs with significant spatial information.

I.The mean number of concurrent events of the mouse shownin Fig.2a-casa

function of binned normalized velocitiesinall laps. Grey bins denote no
samples.J. Mean number of concurrent events as a function of binned
normalized velocities, normalized by shuffled datainall mice presentedin
Fig.2d (blueis the onefromA), (Pearson’sr:0.17 + 0.04, 1-sided permutation
test,p>0.084inn=4mice, p<0.025inn=5mice). K. The mean number of
concurrentevents as afunction oflocation and normalized velocityinthe
mouse shownin Fig.2a-c.Ramping is more prominent acrosslocations than
velocities.L. The mean STD of the astrocytic population activity across
locations foragiven velocity (STDjqcationsivelocity) Weighted by the time spentin
the location x velocity is significantly larger than vice versa (STD ¢jocitiesiiocation)
(STDyocationsivelocity: 3-62  0.44, STD ejocitiesliocation: 7-37 * 0.74, 2-sided paired t-test,
n=9mice, tg=6.56,p==0.0002). M. The meandistribution of the difference
between the mean weighted STD ,caionsivetocity AN STD\eiocitiesiiocation fOT Single ROIs
fromthe 9 mice shownin Fig.2d. Most ROIs vary more across locations than
acrossvelocities. N-O. General linear models were used to fit the number of
concurrentastrocytic eventsasalinear function of different behavioural
variables, showing thatlocation had aunique contribution to the variance of
astrocyticactivity. N. Themodel performance was significantly better whenit
wasfitted on the actuallocation datacompared to shuffledlocation
(coefficient of determination (r?) between the model prediction and the actual
number of concurrent events: 0.25+ 0.04 and 0.18 + 0.03 for real and shuffled
locationinputsrespectively, 1-sided permutation test, p<0.027inn =8 mice,
p=0.35inn=1mouse). 0. Cross-validated models thatincluded location as
theirinput performed significantly better than reduced models without it (r*:
0.21+0.04and 0.15+ 0.03in fulland reduced models respectively, 1-sided
permutationtest,p <0.004inn=8mice,p=0.065inn=1mouse). Data
presented as mean (bold line) +SEM (shaded area). Different mice are colour-
codedasinFig.2d.
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Extended DataFig. 3 | Astrocytic Activity Does Not Ramp Towards
RewardingLocationinaNew Environment. A. The correlationbetween
locationand astrocyticactivity inrepeated active ROIs was significantly higher
inthe familiar environment compared to the new one (Pearson’sr: 0.41+ 0.03
and 0.2 + 0.05in the familiar or new environment, respectively, n =7 mice,
2-sided paired t-test, t, = 8.04,p=0.0002). B. The repeated active ROl pairs
that had significant mutual information (MI) in each environment of the mouse
showninFig.3a,b.C.The mean proportion of significant Ml repeated active
ROl pairsin the familiar environmentis significantly higher thanin the new
environment (0.39 + 0.08 and 0.16 + 0.04 in the familiar and new environment,
respectively, 2-sided paired t-test,n=7 mice, t,,=2.45, p = 0.0495).D. The
mean normalized number of concurrenteventsasafunction oflocationin the

familiar environment and (E) in the new environment for all active ROls, not just
therepeated ones, inthe 7 miceshowninFig.3c, d.F. The ramping of astrocytic
activityissignificantly largerin the familiar environment thanin the new
environment (Pearson’sr:0.44 + 0.03 and 0.16 + 0.03 in the familiar or novel
environment, respectively, 2-sided independent samples t-test, n =7 mice,

tay = 6.11, p=0.00005). G. Two mice were imaged for the third timein the
familiar environment after the exposure to the new environment. The mean
normalized number of concurrent events as a function of location shows that
rampingis maintained (Pearson’sr: 0.31 + 0.11,1-sided permutation test,

p <0.01). Datapresented as mean (bold line) +SEM (shaded area). Different
mice are colour-coded asin Fig.2d.
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respectively, 1-sided permutation test, p=0.009). D. Mean error size: 49.6 + 0.2
and 60.2 + 0.2, for the decoder trained on the real data and the shuffled data
respectively, 1-sided permutation test, p=0.151). E. Meanerror size: 43.9+ 0.3
and 62.6 + 0.2, for the decoder trained on the real data and the shuffled data
respectively, 1-sided permutation test, p=0.037).F. Mean error size:49.9 + 0.1
and 62.2+ 0.2, forthedecoder trained onthereal dataand the shuffled data
respectively, 1-sided permutation test, p=0.061). Data presented as mean
(boldline) +SEM (shaded area). Different mice are colour-coded asin Fig. 2d.
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Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, genotypic

Recruitment

Ethics oversight

information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study
design questions and have nothing to add here, write "See above."

Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and
how these are likely to impact results.

Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences

|:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size

Data exclusions

Replication

Randomization

Blinding

No statistical methods were used to predetermine sample sizes. Most of our sample sizes were similar to those reported in
previous publications using similar methods. For certain experiments we have small sample sizes, but our statistics are based on within
individual statistics, showing that the results are consistent across multiple repetitions (i.e. laps).

All frames with apparent movement were removed (familiar exp: mouse IDs 5-7, 9; novel exp: mouse IDs: 2, 5, 7; novel after learning exp:
mouse IDs 5-6; familiar after novel exp: mouse IDs 8-9; reward shift after learning: mouse ID 11; random reward exp: mouse ID 6; No VR exp:
mouse IDs 5, 8. The soma vs. processes analysis was performed for mice that had >10 ROIs of each type. A decoder was constructed only for
trials with at least 20 laps. All exclusions are reported in the methods section.

The main results of the manuscript were replicated in n=9 mice (ramping in a familiar environment) or n=7 mice (familiar vs. novel
comparisons). We also include a few experiments with small samples, but the tested statistic is calculated for each mouse separately, such
that it is based on multiple repetitions across laps. In every paradigm, we show all the individual data-points from all the mice, to show how
similar they are. All attempts at replication were successful.

During the random reward experiment, the rewards were given in a random location on each lap.

The experimenters were not blind to the experimental conditions.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
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Antibodies
Antibodies used Primary Antibodies: Chicken anti GFP (Aveslabs, catalog no. GFP-1020; diluted 1:200); Rabbit anti-NeuN (Cell Signaling Technology,
catalog no. 12943; diluted 1:1000); Guinea pig anti-GFAP (Alomone Labs, catalog no. AGP-307; diluted 1:200).
Secondary Antibodies: Donkey anti-chicken conjugated to Alexa Fluor 488 (Jackson Laboratories, catalog no. 703-545-155; diluted
1:500); Donkey anti-rabbit conjugated to Alexa Fluor 594 (Jackson Laboratories, catalog no. 711-585-152; diluted 1:500); Donkey
anti-guinea pig conjugated to Cy5 (Jackson Laboratories, catalog no. 706-175-148; diluted 1:500).
Validation Chicken anti GFP (Aveslabs, catalog no. GFP-1020; diluted 1:200);

Validations from manufactures data sheet:

Antibodies were analyzed by western blot analysis (1:5000 dilution) and immunohistochemistry (1:500 dilution) using transgenic
mice expressing the GFP gene product. Western blots were performed using BlokHen® (Aves Labs) as the blocking reagent, and HRP-
labeled goat anti-chicken antibodies (Aves Labs, Cat. #H4-1004) as the detection reagent. Immunohistochemistry used tetramethyl
rhodamine-labeled anti-chicken IgY. 49 citations

https://www.aveslabs.com/products/anti-green-fluorescent-protein-antibody-gfp

Rabbit anti-NeuN (Cell Signaling Technology, catalog no. 12943; diluted 1:1000):

Validations from manufactures data sheet:

Species reactivity is determined by testing at least one approved applications (e.g. western blot). 87 citations.
https://www.cellsignal.com/products/primary-antibodies/neun-d3s3i-rabbit-mab/12943

Guinea pig anti-GFAP (Alomone Labs, catalog no. AGP-307; diluted 1:200)-

Validations from manufactures data sheet:

Expression of GFAP in rat parietal cortex. Immunohistochemical staining of perfusion-fixed frozen rat brain sections with Guinea Pig
Anti-GFAP Antibody (AFP-001-GP). Sections were incubated with guinea pig anti GFAP (#AFP-001-GP), (1:1200), followed by goat anti
guinea pig conjugated with Alexa 594 (red). A, GFAP immunoreactivity appears in cortical astrocytes in layers 1-2 (arrows). B, Pre-
incubation of the antibody with GFAP blocking peptide (BLP-FPO01), suppressed staining. Cell nuclei are stained with DAPI (blue).
https://www.alomone.com/p/guinea-pig-anti-gfap-antibody/AGP-3077?
gclid=CjwKCAjwnZaVBhAGEIWAVVyvOFhSs_B700dKKI1JHxnrr40MgmNszzOYGqUgCZrCocz35MfGYwtC2hoCh4gQAvD_BwE#scientifich
ackgroun

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals PV-IRES-Cre or SST-IRES-Cre mice crossed with Ail4 mice. Males, 7-8 weeks old at the beginning of all experiments.
Wild animals The study did not involve wild animals.
Reporting on sex Only males were used in this study.

Field-collected samples  The study did not involve samples collected in the field

Ethics oversight Experimental protocols were approved by the Hebrew University Animal Care and Use Committee and met guidelines of the National
Institutes of Health guide for the Care and Use of Laboratory Animals.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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