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SUMMARY
Elucidating the neural circuits supporting odor identification remains an open challenge. Here, we analyze the
contribution of the two output cell types of the mouse olfactory bulb (mitral and tufted cells) to decode odor
identity and concentration and its dependence on top-down feedback from their respective major cortical
targets: piriform cortex versus anterior olfactory nucleus. We find that tufted cells substantially outperform
mitral cells in decoding both odor identity and intensity. Cortical feedback selectively regulates the activity
of its dominant bulb projection cell type and implements different computations. Piriform feedback specif-
ically restructures mitral responses, whereas feedback from the anterior olfactory nucleus preferentially con-
trols the gain of tufted representations without altering their odor tuning. Our results identify distinct func-
tional loops involving the mitral and tufted cells and their cortical targets. We suggest that in addition to
the canonical mitral-to-piriform pathway, tufted cells and their target regions are ideally positioned to
compute odor identity.
INTRODUCTION

No two stimuli are ever the same. However, the brain readily rec-

ognizes different objects in the environment, generalizing under

widely varying conditions. For example, humans categorize one

person’s face as distinct from another, generalizing across dif-

ferences in viewing angles, brightness, or orientation (DiCarlo

et al., 2012). The past decade has seen considerable progress

in our understanding of the neural mechanisms underlying visual

object recognition (DiCarlo et al., 2012; Hong et al., 2016; Rust

and DiCarlo, 2010). Despite recent advances (Bolding and

Franks, 2017, 2018; Chae et al., 2019; Pashkovski et al., 2020;

Stettler and Axel, 2009), how analogous computations on odor-

ants are supported by specific neural circuits remains an open

question.

Two key features of odorants are their identity and intensity.

Coffee smells distinct from cheese across most concentrations

(logarithmically proportional to the perceived intensity) (Mosko-

witz et al., 1976; Sirotin et al., 2015). Olfactory behaviors often

impose different constraints on decoding sensory representa-

tions. For example, while odor identification requires the extrac-

tion of response differences across stimuli, generalizing across

concentrations of the same odorant necessitates extracting
the common response features. In addition, navigating toward

an odor source also requires estimating the relative stimulus

concentration and its intermittence (Celani et al., 2014). Although

odor discrimination and generalization are key for survival, how

these computations are supported by the activity of specific

cell types remains unclear.

Inmammals, olfactory information is relayed to higher brain re-

gions by two distinct populations of olfactory bulb (OB) output

neurons, themitral cells (MCs) and tufted cells (TCs), which differ

in their size, location, intrinsic excitability, local wiring, and activ-

ity (Burton and Urban, 2014; Cavarretta et al., 2018; Fukunaga

et al., 2012; Geramita and Urban, 2017; Geramita et al., 2016;

Gire et al., 2012; Igarashi et al., 2012; Jordan et al., 2018; Kapoor

et al., 2016; Nagayama et al., 2004; Otazu et al., 2015; Yamada

et al., 2017).MCs and TCsproject to approximately a dozen brain

regions including the olfactory cortex (anterior olfactory nucleus

[AON] and piriform cortex [PCx]) (Shepherd, 1972). TC projec-

tions are biased toward the AON and olfactory tubercle ([OT], ol-

factory striatum) (Igarashi et al., 2012; Nagayama et al., 2010;

Shepherd, 2003). Although MCs project widely and strongly

innervate the PCx, they send relatively little input to AON (Ghosh

et al., 2011;Sosulski et al., 2011). In turn, theAONand the anterior

PCx (aPCx), and most other bulb targets, send numerous
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Figure 1. Odor identity and concentration representations in MC and TC ensembles

(A and B) (Ai and Bi) (Left) Cartoon drawing of the olfactory bulb major cell types with MCs (blue, A) and TCs (red, B) highlighted. (Right) Average resting fluo-

rescence of example field of view (FOV) containing MC(A) and TC(B) somata (�225 and 150 mm from surface). (Aii and Bii) Mean peri-stimulus time histogram of

simultaneously recorded MC (n = 40, A) and TC (n = 40, B) from two example FOVs to increasing concentrations of valeraldehyde. Color indicates normalized

change in fluorescence with respect to pre-odor baseline (dF/F0). Dotted lines mark odor presentation (4 s). (Aiii and Biii) Mean concentration responses of five

example MC (A) and TC (B) indicated by colored fiduciary marks in (Aii) and (Bii). Population responses (black line) were averaged across all MC (n = 40, A) and TC

(n = 40, B) in the example FOVs (Ai and Bi).

(C) Cartoon showing that mixed representations of odor identity (orange) and concentration (blue) signals in individual neurons can be linearly ‘‘de-mixed’’ as low-

dimensional components of the population activity.

(D) For MC (top) and TC (bottom) ensembles accrued across all fields of view, the variance explained by the top 15 principal components (PCs) identified using

demixed-PCA is decomposed into four categories: ‘‘identity,’’ ‘‘concentration,’’ ‘‘interaction between identity and concentration,’’ and ‘‘condition independent’’;

n = 447 MC (5 FOVs, 5 mice) and 458 TC (6 FOVs, 5 mice); stimuli: 5 odors, 4 concentrations.

(legend continued on next page)
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feedback axons that primarily target inhibitory bulbar interneu-

rons (Boyd et al., 2015; Markopoulos et al., 2012; Otazu et al.,

2015; Rothermel and Wachowiak, 2014).

Over the past decades, numerous computational models and

experimental results (Babadi and Sompolinsky, 2014; Bolding

and Franks, 2017, 2018; Choi et al., 2011; Gottfried, 2010; Miura

et al., 2012; Roland et al., 2017; Schaffer et al., 2018; Stettler

and Axel, 2009; Wilson and Sullivan, 2011) have proposed that in-

tensity invariant odor representations first emerge in the PCx,

drawing specifically from MC inputs (Bolding and Franks, 2017,

2018; Miura et al., 2012; Pashkovski et al., 2020; Stettler and

Axel, 2009;WilsonandSullivan, 2011). In contrast to this canonical

mitral-to-PCx pathway, the AON, which integrates mainly TC in-

puts from the bulb (Ghosh et al., 2011; Igarashi et al., 2012; Na-

gayama et al., 2010; Sosulski et al., 2011), is thought to estimate

the location of odor sources by computing the relative stimulus

concentration (Esquivelzeta Rabell et al., 2017; Kikuta et al.,

2010), processing social cues (Oettl et al., 2016; Wang et al.,

2020), and contributing to episodic memory (Aqrabawi and Kim,

2018). The contribution of MCs versus TCs in odor discrimination

andgeneralizationacrossconcentrationshasbeen investigated to

a much lesser extent. This is partly due to technical limitations of

unambiguously differentiatingMCsandTCsusing extracellular re-

cordings (Bolding and Franks, 2018; Cury andUchida, 2010; Dha-

wale et al., 2010; Fantana et al., 2008; Gupta et al., 2015; Li et al.,

2015; Wilson et al., 2017). Interestingly, previous studies using

whole-cell or juxtacellular recordings showed that TC responses

are faster andmore robust thanMC, which sets them as potential

candidates for representing odor identity and intensity (Fukunaga

et al., 2012; Igarashi et al., 2012; Jordan et al., 2018; Nagayama

et al., 2004). Additionally, cortical bulbar feedback has been pro-

posed to enable the separation of odor representations, sparsen-

ingMCresponsesby targeting specific setsof granule cellswhich,

in turn, inhibit theMCs (Grabska-Barwi�nska et al., 2017; Koulakov

and Rinberg, 2011; Otazu et al., 2015). However, despite over-

whelming evidence for massive top-down projections to the

bulb and the presence of extensive interactions between olfactory

cortical areas (AON versus PCx), the specificity and logic of inter-

play between feedforward input and cortical bulbar feedback sig-

nals acting on the MCs and TCs remain poorly understood.

Here, we took advantage of multiphoton microscopy that af-

fords differentiating between MCs and TCs and monitored their

responses to odors in awake mice while varying stimulus con-

centration. We asked four specific questions. Do MCs and TCs

differ in their ability to convey odor identity information? Is

cortical feedback from the piriform and AON specific in control-

ling the activity of their dominant inputs cell types? Does cortical

bulbar feedback originating in the piriform versus AON imple-

ment different computations? What is the relative contribution
(E) (Left) Population trajectories in the neural state space defined by the top 3 id

different odorants, whereas increasing thickness indicates increasing concentrat

(Right) Pairwise correlation of population trajectories within category (same odo

centrations) for MCs (top) and TCs (bottom).

(F) (Left) Same as (E), except that neural trajectories are depicted in the sub-space

20.2%. (Right) Pairwise correlation of population trajectories within category (sa

concentrations) for MCs (top) and TCs (bottom).

See also Figure S1.
of feedforward versus feedback inputs to supporting the MC

and TC representations of odor identity and intensity? Our ex-

periments identified distinct functional feedforward-feedback

loops mediated by the MCs and TCs and their preferred cortical

targets. They suggest that in addition to the MCs-to-PCx

pathway, the non-canonical TCs-to AON pathway is ideally

placed for decoding odor identity and intensity.

RESULTS

Representations of odor identity in MC and TC
ensembles
We investigated whether odor identity and concentration can be

decoded from MC and TC populations and the extent to which

this depends on cortical feedback. We recorded the OB output

activity in awake head-fixed mice in response to 5 odorants

whose concentration was varied across 3 orders of magnitude

(GCaMP6f, Table S1, Odor Set A) (Chen et al., 2013), as well

as to a 20 odors panel (GCaMP3, Table S1, Odor Set B) (Tian

et al., 2009) presented each at a single concentration (STAR

Methods; Figures S1A–S1G). Multiphoton imaging of GCaMP3/

6f signals enabled us to distinguish MCs versus TCs based on

the location of their cell bodies in the OB (Figures 1A, 1B, S1,

S4A, and S4B; STAR Methods).

Consistent with previous reports (Chae et al., 2019; Fukunaga

et al., 2012; Igarashi et al., 2012; Jordan et al., 2018; Meredith,

1986; Nagayama et al., 2004), we found differences in the mitral

and tufted responses to the same stimuli. Notably, MC responses

were slow, sparse, and phasic (Figure 1A). Moreover, individual

neurons had non-monotonic concentration response curves (Fig-

ure 1A) in contrastwithprevious reports in anesthetizedmice (Igar-

ashi et al., 2012; Kikuta et al., 2013). TCs showed fast and sus-

tained responses to odorants (Figures S1B and S1C) whose

magnitude increasedmonotonically with increasing concentration

(Figure 1B). Additionally, TC responses were more reliable, dis-

playing lower trial-to-trial variability in comparison to MCs

(Figure S1D).

We used de-mixed principal component analysis (dPCA) (Ko-

bak et al., 2016) to investigate whether odor identity and concen-

tration information could be linearly separated from the MC and

TC responses (Figures 1C–1F). Success in de-mixing the identity

and concentration dimensions implies that a linear combination of

neuronal activity can ‘‘decode’’ odor identity with concentration

invariance, although a different linear combination of the same

neural responses can be used to infer stimulus concentration,

irrespective of the odor identity (Figures 1C and 1D). Indeed, we

found that odor identity as well as concentration can be de-mixed

and linearly read-out using ensemble activity from both MCs and

TCs. To quantify this observation, we calculated the pairwise
entity PCs from (D). For MCs (top) and TCs (bottom). Different colors denote

ion. Total variance explained by the top 3 identity PCs: MC: 14.1%; TC: 25.8%.

r across concentrations) versus across categories (different odors and con-

defined by the top 2 concentration PCs. Total variance explained:MC: 7%; TC:

me concentration across odors) versus across categories (different odors and
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Figure 2. TC ensembles outperform MCs in decoding odor identity and concentration

(A) Generalization across concentrations. (Left) The SVM decoder learns to group together any three of four concentrations sampled for a given odorant.

Increasing size of odor representations denotes increasing concentration. Cross-validated performance is tested on the ability to classify the fourth concentration

previously not used for training (empty circles). (Right) Setup of the decoding strategy where hypothetical classifier neurons (one for each odor) signal the

presence (value = 1) of their corresponding odor for all four sampled concentrations and its absence (value = 0) for all other odors in the panel.

(B) (Left) Cross-validated classification performance of generalization across concentrations for an example odor (ethyl valerate), whereas increasing number of

MCs (blue) and TCs (red) at a fixed time point (t = 1 s). (Center) Classification performance for the example odor as a function of time for 200 randomly chosen

neurons with bootstrap re-sampling. (Right) TC and MC ensemble performance as quantified by the sensitivity index (d0, d-prime, STAR Methods).

(C) Summary of the difference between MC and TC performance (d-prime) averaged across all odors in the panel. Baseline decoder performance is 0.

(D) Odor identification and concentration decoding. The decoder learns to identify both the odor identity and the relative concentration (on a log scale). Cross-

validated performance is evaluated across held-out trials.

(E) (Left) Classification performance averaged across all five odors with increasing number of MCs (blue) and TCs (red) at a fixed time point (t = 1 s). (Right)

Classification performance averaged across all five odors as a function of time for 200 randomly chosen MC and TC.

(F) Same as (C), for odor identification and concentration decoding. n = 447 MC (5 FOVs, 5 mice) and 458 TC (6 FOVs, 5 mice); stimuli: 5 odors, 4 concentrations.

Timewas discretized in 200-ms bins and data plotted such that the decoding performance evaluated from 0 to 0.2 swas plotted in the 0-s bin. Similarly for the rest

of the odor period. Shaded areas are SEM unless stated otherwise.

See also Figure S2.
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correlation between population trajectories in the neural state

space. In the identity sub-space, for both MCs (447 MC, 5

FOVs, 5mice) and TCs (458 TC, 6 FOVs, 5mice), the pairwise cor-

relation between population trajectories within category (same

odor, across concentrations) was substantially higher than across

all trajectory pairs (odors and concentrations); the same was

found in the concentration sub-space (Figures 1E and 1F, right).

Accumulating across FOVs, the first 3 principal components

(PCs) explained 14.1% of signal variance for MC versus 25.8%

for TC, suggesting that tufted ensembles were superior to MCs

at differentiating odor identity invariant of concentration

compared (Figure 1E). Additionally, the first 2 PCs in the concen-

tration sub-space explained 7% of the signal variance for MCs

versus 20.2% for TCs, suggesting that TCs are superior to MCs

in segregating different odor concentrations (Figure 1F). The de-

gree of de-mixing of olfactory information achieved with this

method was substantially larger than by maximizing the overall

variance using PCA (Figures S1H and S1I; STAR Methods).

Decoding odor identity with concentration invariance
from the OB outputs
We used dimensionality reduction approaches to provide a

qualitative intuition for the neural representation of odor identity
4 Neuron 110, 1–16, December 7, 2022
and concentration. For quantification, throughout the rest of the

study, we resorted to cross-validated decoding approaches.

To quantify the ability of MC and TC ensembles to perform

odor identification, we used linear and non-linear decoding

schemes (STAR Methods). Specifically, we analyzed the per-

formance of MCs and TCs in two decoding schemes inspired

from analogous computations necessary for solving olfactory

behavioral tasks. First, we probed for generalization to a novel

concentration, after odor identity was learned from a set of

concentrations (Figures 2A–2C, generalization across concen-

trations). We trained the classifier to identify the odorant (one

out of five possibilities) by learning on three of the four concen-

trations and further tested for generalization to a novel held-out

concentration. Identifying a specific odorant across many con-

centrations is likely to involve such a computation. Second, we

aimed to decode both odor identity and concentration, wherein

the classifier algorithm (support vector machine [SVM]) was

tasked with identifying the presence of the corresponding

odorant, as well as simultaneously reporting its relative con-

centration (Figures 2D–2F, odor identification and concentra-

tion decoding; STAR Methods). This second decoding scheme

(Figure 2D) is similar to the generalization across concentra-

tions (Figure 2A), except that the classifier neuron for a given
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odor (e.g., Odor 1) has to fire in proportion (log scale) to con-

centration without explicitly requiring invariance across con-

centrations of the same odorant. This computation is likely

important for tracking a target odorant along a concentration

gradient. By systematically varying the number of cells

included in analysis, we trained, evaluated, and cross-validated

the decoders’ performance at different time points from

odor onset (baseline SVM decoder performance is 0, Figures

S9D–F).

TCs substantially outperformed MCs in odor generalization

across concentrations, both in time and with respect to the num-

ber of neurons required for comparable accuracy (earlier and

fewer cells, Figures 2B and 2C). We quantified the differences in

the TC versus MC performance using a sensitivity index (d0,
STAR Methods; Figures 2B and 2C) and found them to be robust

and appearing early, within behaviorally relevant timescales (200–

500 ms) from odor onset (Figures S1A–S1C). Importantly, small

subsets of randomly selected TCs (�10 cells) were sufficient for

successful decoding (Figures 2B and 2E), highlighting the distrib-

uted nature of odorant representations. Furthermore, TCs were

better also at simultaneously decoding odor identity and concen-

tration compared with MCs (Figures 2D–2F). TC-based decoders

were also superior to MC decoders when specifically trained to

assign odor identity irrespective of concentration (concentration

invariant odor recognition, Figures S2A–S2E and S8A–S8G;

STAR Methods).

A potential explanation for the difference in decoding perfor-

mance of the two cell type ensembles could be technical: MCs

are located deeper than TCs, and thus, imaging MC activity is

in principle more difficult. Furthermore, TC odor responses are

generally higher in amplitude (Figures 1A and 1B). To account

for intrinsic differences in response magnitude across MCs

and TCs, their activity was Z scored before performing any de-

coding analyses and found to span the same range

(Figures S1E and S1F; STAR Methods). We further analyzed

the signal-to-noise ratio (SNR) of MC and TC responses (average

signal/standard deviation of signal across individual repeats).

We found that the SNR of MC and TC responses is comparable

(see largely overlapping distributions, Figure S1G), despite dif-

ferences in the z axis positions of their somata (slightly higher

for TCs versus MCs; median SNR MCs = 3.25; 1,809-cell-odor

pairs; median SNR TCs = 4.46; 2,138-cell-odor pairs). The higher

decoding performance of tufted versus mitral ensembles we

observed is consistent with previous work using electrophysi-

ology measurements that do not suffer from potential methodo-

logical SNR differences when sampling MC versus TC re-

sponses. These studies found that TCs responses occur

substantially earlier and are stronger compared with those of

MCs (Fukunaga et al., 2012; Igarashi et al., 2012; Jordan et al.,

2018; Nagayama et al., 2004). In addition, for simple binary

odor discrimination, the performance of our decoders based

on either of the two cell types was high and similar (98% and

95% for TCs versus MCs at 1 s from odor onset), mirroring re-

ports from rodents engaged in odor discrimination behaviors

(Uchida and Mainen, 2003; Uchida et al., 2006; Zariwala et al.,

2013). Therefore, technical considerations are unlikely to ac-

count for the higher decoding performance of TCs compared

with MCs.
In summary, TC ensembles appear to carry sufficient informa-

tion to infer odor identity with concentration invariance, as well

as to extract the relative odor concentration, and outperform

MC representations to the same stimuli (for further comparison

of the decoders performance, see STAR Methods). Taken

together with known biases in the projection patterns of MCs

versus TCs (Ghosh et al., 2011; Igarashi et al., 2012; Nagayama

et al., 2010; Shepherd, 2003; Sosulski et al., 2011), these results

suggest that OB target regions other than the PCx, such as the

AON and OT, which receive strong TC input, are well positioned

to compute odor identity.

Cortical feedback preferentially regulates the activity of
its dominant OB input
The responses of MCs and TCs are shaped both by feedforward

input from olfactory sensory neurons (OSNs), local interactions

via interneurons, as well as top-down feedback from the cortex

and other brain regions (Boyd et al., 2015; Kapoor et al., 2016;

Markopoulos et al., 2012; Otazu et al., 2015; Rothermel and Wa-

chowiak, 2014; Shepherd, 2003). As a first step toward evalu-

ating how cortical feedback affects the decoding of odor identity

and concentration in the bulb outputs, we investigated the spec-

ificity of cortical feedback from the PCx and AON in regulating

theMC and TC activity. We suppressed the AON or aPCx activity

using muscimol (a GABA-A receptor agonist, Figures 3A–3C;

STAR Methods) (Otazu et al., 2015) and probed the changes in

the odor responses of MCs and TCs. aPCx sends feedback pro-

jections only ipsilaterally, whereas the AON feedback projections

run bilaterally (Boyd et al., 2012, 2015; Markopoulos et al., 2012;

Matsutani, 2010; Shepherd, 2003; Shipley and Adamek, 1984;

Figures S3A–S3E). We therefore monitored the change in MC

and TC GCaMP3 responses upon inactivation of the ipsilateral

aPCx, ipsilateral AON, as well as contralateral AON (Figures 3,

4, and S3A–S3E). To account for potential non-specific decay

in responses over long imaging sessions (before and after mus-

cimol/saline injection), all changes in MC and TC activity were

normalized to saline regression controls (Figures S4C–S4F, S5,

S6B, S6C, and S6F–S6I; STAR Methods).

Consistent with our previous results (Otazu et al., 2015), sup-

pression of the ipsilateral aPCx specifically modulated MC but

not TC responses (Figures 3B–3G).Comparedwith saline injection

controls, ipsilateral aPCx suppression increased MC responsive-

ness (response amplitude and frequency, Figures 3D–3G) as well

as the pairwise similarity inMCodor representations (odor similar-

ity, Figures 4A–4C and S5A–S5E; STAR Methods). TC responses

were largely unaffected by the suppression of the aPCx

(Figures 3D–3G). Conversely, suppression of the ipsilateral AON

had substantially stronger impact on TCs compared with MCs.

Ipsilateral AON suppression resulted in increased amplitude and

number of TC responses (Figures 3D–3G and S4C–S4F) and

higher pairwise odor similarity (Figures 4A–4C, S5D, and S5E).

The preferential modulation of TCs upon AON suppression was

even more apparent upon contralateral AON suppression.

Contra-AON suppression had a negligible effect onMCs and spe-

cifically boosted individual responsiveness (Figures 3D–3G and

S4C–S4F) and pairwise odor similarity in TCs (Figures 4A–4C,

S5D,andS5E). Thehigherspecificityofcontralateral versus ipsilat-

eralAONfeedback in regulatingTCactivitycanbeexplainedby the
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Figure 3. Feedback from the aPCx and AON to the OB preferentially regulates the odor responsiveness of MCs versus TCs, matching biases

in feedforward connectivity

(A) Schematic of experimental procedures: cartoon representation of the OB and its major projection targets including the AON, PCx, OT, cortical amygdala,

lateral entorhinal cortex, and tenia tecta. Dotted lines indicate cortical feedback to OB from the PCx and AON.MC and TC odor responseswere sampled in awake

head-fixedmice via two photon imaging of GCaMP3/6f signals before and after suppression of activity in the aPCx and AON, respectively, via muscimol injection.

(B and C) (Top, left) Cartoon drawing of the OBmajor cell types with MCs (blue) and TCs (red) highlighted. Two example fields of view (220 and 150 mm below the

surface) of MCs (B) and TCs (C). Themarked cells (left, Bi andCi) match the example traces shown (center, Bii and Cii); gray shaded areamarks odor duration. The

traces (center, Bii and Cii) represent the change in fluorescence (dF/F0) to odor stimulation before- (black) and after-muscimol suppression (color) of cortical

activity for the MC and TC outlined in (Bi) and (Ci). (Right, Biii and Ciii) Example average odor responses (dF/F0) to valeric acid of MCs (rightmost columns, B) and

TCs (rightmost columns, C) in the two example fields of view before (left) and after (right) muscimol injection into aPCx (top, ipsi-aPCx) and AON (bottom,

ipsi-AON).

(D) Cumulative distribution of MC and TC odor response pairs as function of dF/F0 response amplitude before (black) and after (blue: MC, red: TC) muscimol

injection into ipsi-aPCx, ipsi-AON, and contra-AON.

(E) Summary of mean MC and TC odor response amplitude (dF/F0, cell-odor pairs) before (black) and after (blue: MC, red: TC) muscimol injection into ipsi-aPCx

(MC: n = 4,682 cell-odor pairs, 5 FOVs, 4 mice, TC: n = 4,316 pairs, 5 FOVs, 4 mice), ipsi-AON (MC: n = 3,971 pairs, 4 FOVs, 4 mice, TC: n = 3,777 pairs, 4 FOVs, 4

mice), and contra-AON (MC: n = 1,656 pairs, 3 FOVs, 3 mice, TC: n = 1,861 pairs, 3 FOVs, 3 mice), ***p < 0.001, one-sided Wilcoxon sign-rank test.

(F) Cumulative distributions of number of odors in the panel that individual MC and TC responded to before (black) and after (MC: blue, TC: red) muscimol injection

into ipsi-aPCx, ipsi-AON, and contra-AON.

(G) Summary of mean distance from saline regression line for changes in the number of odor responses per cell after muscimol (blue: MC, red: TC) into ipsi-aPCx,

ipsi-AON, and contra-AON. ***p < 0.001, Wilcoxon rank-sum test; also see Figures S3, S4, and S6, Table S2, and STAR Methods. Error bars are SEM unless

stated otherwise.
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fact that the AON provides substantial input to the ipsilateral (but

not contralateral) anterior portion of the PCx (see Discussion).

Qualitatively, we observed the same results when responses

were compared within individual FOVs (Figures S6A–S6C), as
6 Neuron 110, 1–16, December 7, 2022
well as for matched sample sizes of MCs and TCs

(Figures S6D–S6I).

Taken together, our results indicate that the PCx and the AON

exert preferential suppression and decorrelation of the MC and
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Figure 4. Feedback from the aPCx and AONto the OB differentially regulates the pairwise correlations of odor representations in MCs

versus TCs

(A) Scatter plots of pairwise odor similarity of MC (blue) and TC (red) responses before and after muscimol injection into ipsi-aPCx, ipsi-AON, and contra-AON;

each dot represents one odor-to-odor comparison before and after muscimol injection; odor pair comparisons are summed across fields of view (ipsi-aPCx MC:

n = 950 pairs, 5 FOVs, 4 mice, TC: n = 950 pairs, 5 FOVs, 4 mice; ipsi-AONMC: n = 760 pairs, 4 FOVs, 4 mice, TC: n = 760 pairs, 4 FOVs, 4 mice; contra-AONMC:

n = 570 pairs, 3 FOVs, 3 mice, TC: n = 570 pairs, 3 FOVs, 3 mice).

(B) Cumulative plots of distance distributions from saline regression of MC (blue) and TC (red) odor similarity distributions after muscimol injection into ipsi-aPCx,

ipsi-AON, and contra-AON.

(C) Summary ofmean distance from saline regression line for pairwise odor similarity ofMC (blue) and TC (red) representations before and after muscimol injection

into ipsi-aPCx, ipsi-AON, and contra-AON. ***p < 0.001, Wilcoxon rank-sum test. Error bars are SEM unless stated otherwise.

See also Figure S5.
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TC activity, respectively. This selectivity in feedback regulation

of the two OB output channels mirrors the biases in their feedfor-

ward connectivity (Ghosh et al., 2011; Igarashi et al., 2012; Na-

gayama et al., 2010; Shepherd, 2003; Sosulski et al., 2011),

thus revealing the existence of two long-range functional loops

that may serve different computations.

Differential effects of the cortical feedback on the MCs
versus TCs
How does the cortical feedback change the ensemble OB

output? One possibility is that feedback from the anterior

PCx and the AON controls the gain of the bulb outputs. If

this were true, we expect a scaling of the odor response ampli-

tudes upon cortical inactivation, although largely preserving the

odor tuning of individual neurons. Alternatively, cortical feed-

back may provide specific information and restructure the pop-

ulation activity, acting beyond simple scaling of response

amplitude.

aPCx suppression increased the response probability of MCs,

rendering them responsive to odors in the panel, which did not

evoke a significant response before aPCx silencing (Figures 5A

and 5D, black and blue). In contrast, the odor responses of

TCs remained similar before versus after AON silencing, consis-

tent with a gain control scenario (Figures 5B and 5E, black and

red). To quantify this observation, for each cell type and site of

inactivation, we analyzed the changes in the odor response tun-

ing of individual cells (Figures 5A–5C), as well as the changes in
cell responses to a given odor (Figures 5D–5I) before versus after

muscimol injection.

Briefly, for each neuron, we constructed a vector that repre-

sents its mean response magnitude to our panel of 20 odorants

(GCaMP3, Table S1, Odor Set B). We computed the correlation

(uncentered correlation coefficient, STARMethods) between the

response vectors before versus after muscimol application.

Scaled-up responses after muscimol (gain control model) would

lead to very similar odor response vector ‘‘shapes’’ and result in

correlation values close to 1. In contrast, re-structured neural ac-

tivity would correspond to different odor response vectors and

thus to significantly lower correlation values. The analysis

showed a substantial difference between individual MCs and

TCs. TC odor response vectors were significantly more similar

before and after muscimol suppression (of ipsilateral or contra-

lateral AON) with a distribution of correlation values close to 1

(mean 0.95 ± 0.003). In comparison, MC responses before and

after muscimol suppression of ipsi-aPCx were different, and

the correlations were significantly lower (mean 0.71 ± 0.027),

consistent with our hypothesis (Figure 5C).

We also computed the correlation between the cell response

vectors to the same odor before and after cortical inactivation

and reached the same conclusions (Figures 5D–5H) both when

analyzing independently each FOV (Figure 5F), as well as when

accumulating responses across FOVs (Figures 5H and S7A).

We verified that the differential effect on MC versus TC ensem-

bles was specific to the drug condition and absent in saline
Neuron 110, 1–16, December 7, 2022 7



Intact circuit aPCx suppression Intact circuit ipsi-AON suppression

Odor number Odor number

0.250.1

Ex
am

pl
e 

m
itr

al
 c

el
ls

Ex
am

pl
e 

tu
fte

d 
ce

lls

dF/F0

0 10 20 0 10 20 0 10 20 0 10 20

Odor response spectra Odor response spectraA B C

D
Intact circuit vs. ipsi-AON suppression 

TC
Intact circuit vs.ipsi-aPCx suppression

MC E

Cell number
0

0.5
dF/F0

O
do

r # 
3

# 
1

# 
12

# 
9

35 70

# 
3

0.2
dF/F0

# 
1

Cell number

# 
12

# 
9O

do
r

0 50 100

ipsi-aPCx MC
ipsi-AON TC
contra-AON TC

-0.5 0 0.5 1.0
0.0

0.5

1.0

Correlation of responses to the same odor
(intact circuit vs. cortical suppression)

C
um

ul
at

iv
e 

fra
ct

io
n

F

H

0.4 0.6 0.8 1.0

0.0 0.4

0.4

0.6

0.8

1.0
0.0

0.2

0.4

Correlation
(before vs. after muscimol)

ipsi-aPCx MC

C
or

re
la

tio
n

(b
ef

or
e 

vs
. a

fte
r m

us
ci

m
ol

)
ip

si
-A

O
N

 T
C

Saline

0.0 0.4

I

0.4 0.6 0.8 1.0
0.4

0.6

0.8

1.0
0.0

0.2

0.4

Correlation
(before vs. after saline)

ipsi-aPCx MC

C
or

re
la

tio
n

(b
ef

or
e 

vs
. a

fte
r s

al
in

e)
ip

si
-A

O
N

 T
C

MuscimolG

Muscimol

MC

C
el

l n
um

be
r

Before m
usci

mol

Afte
r m

usci
mol

Correlation x1

C
el

l n
um

be
r

TC

Correlation y1

y1

x1

correlation
across conditions
for odor i

High

HighLow
Low

MC Correlation

TC
 C

or
re

la
tio

n
dF/F0

Odor i

-0.2 0.0 0.5 1.0
0.0

0.5

1.0

Correlation of odor response spectra
(intact circuit vs. cortical suppression)

C
um

ul
at

iv
e 

fra
ct

io
n 

of
 n

eu
ro

ns

ipsi-aPCx MC
ipsi-AON TC
contra-AON TC

Figure 5. Cortical feedback controls the gain of TC odor representations and restructures MC responses beyond simple scaling

(A and B) Odor response spectra of example MCs (A) and TCs (B) before (black) and after (blue/red) muscimol suppression of ipsi-aPCx (blue) or ipsi-AON (red)

activity. Non-significant responses were set to zero for visualization purposes.

(C) Cumulative distributions of correlation of odor response spectra of individual MCs (blue) and TCs (red) before versus after suppression of aPCx (blue) or ipsi-

AON (red, solid line) or contra-AON (red, dashed line) activity.

(D) MC response spectra from one field of view to example odors before (upward, black) and after suppression of aPCx (downward, blue).

(E) Same as (D) for TC response spectra before (upward, black) and after suppression of ipsi-AON (downward, red).

(F) Cumulative distributions of correlation of MCs (blue) and TCs (red) responses to individual odors before versus after suppression of ipsi-aPCx (blue, 5 FOVs, 4

mice), ipsi-AON (red solid line, 4 FOVs, 4 mice), or contra-AON (red dashed line, 3 FOVs, 3 mice) activity. Correlation is calculated for each FOV independently.

(legend continued on next page)
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control experiments (Figure 5I). Indeed, when comparing the

similarity in cell response spectra for each odor before and after

injection of saline (Figure 5I), both TC and MC response correla-

tion distributions were very high, indicating no change in their

odor tuning upon injection of saline. The effect on the MC

response similarity could not be explained by the overall in-

crease in response amplitude after cortical inactivation. In partic-

ular, we asked whether scaling down the post-muscimol re-

sponses by a gain factor can account for the effect of

muscimol suppression of cortical activity on TC versus MC re-

sponses (gain control model). For each cell type, the post-mus-

cimol responses were scaled down (independently for each

odor), so as to match the average odor response strength of

the distribution of pre-muscimol responses. We found that the

correlation between the scaled-down post-muscimol responses

and the pre-injection MC responses did not increase

(Figures S7B–S7D). Therefore, factors other than simply scaling

up the responses (gain control) appear to be at play in shaping

the post-muscimol responses of the MCs. In comparison,

when the same analysis was performed for the TCs, the correla-

tion coefficients stayed high (Figures S7B–S7D; STARMethods),

consistent with our gain control hypothesis.

Taken together, we find that the cortical target of each OB

output cell type predominately controls the activity of its own

major input. Furthermore, the net effect of top-down feedback

originating in AON versus the anterior PCx appears to differ in

regulating the activity of TCs versus MCs. AON feedback regu-

lates the gain of TC responses without substantially changing

their odor tuning. In contrast, the effect of anterior PCx feedback

is to restructure the MC odor representations beyond simply

scaling their response amplitude (Otazu et al., 2015).

Different impact of cortical feedback on decoding of
odor identity and concentration by MCs and TCs
Since our experiments measure the activity of the same cells

before and after cortical suppression, we investigated whether

decoding odor identity and/or concentration (Figures 1 and 2) re-

quires cortical feedback from the aPCx or AON. For both decod-

ing schemes considered (generalization across concentrations

and odor identification and concentration decoding), suppress-

ing cortical activity reduced the overall decoding performance

for both tufted and mitral ensembles (Figures 6A–6H). However,

the drop in performance was substantially smaller for the TCs

(when inactivating AON) compared with MC-based decoders

(when inactivating aPCx), as quantified using both d0 and a per-

formance difference index (difference between the mean classi-

fication performance before versus after cortical suppression

normalized by their sum, STAR Methods; Figures 6D and 6H).

Similarly, a stronger impact of cortical feedback on the MCs
(G) Cartoon schematics of calculating the correlation ofMC (top) and TC (bottom) r

cortical activity (aPCx or AON).

(H) Scatter plot and histograms of the correlation of responses to individual odors

mice) and after ipsi-AON suppression for TCs (red, 4 FOVs, 4 mice). Each data

muscimol, accrued across FOVs.

(I) Same as (H), but for saline injection into ipsi-aPCx (4 FOVs, 3 mice) and ipsi-AO

and (I).

See also Figure S7.
compared with TCs’ performance was observed when decoders

were specifically trained to assign odor identity irrespective of

stimulus concentration (odor recognition, Figures S8A–S8H). In

the presence of piriform feedback, the performance of MC-

based decoders was significantly higher compared with when

piriform activity was suppressed; importantly, the performance

of MC-based decoders in the intact circuit was lower than that

of TC-based classifiers even after AON suppression. These re-

sults suggest that TC ensembles can be used to simultaneously

decode odor identity, as well as stimulus concentration using

predominantly feedforward processing.

Animals often sample and discriminate between several odor

sources in the same sensory scene. To investigate the perfor-

mance of MC and TC ensembles under more naturalistic condi-

tions, we trained classifiers to perform binary odor discrimina-

tions of a target odorant from an increasing number (1–19) of

non-target odorants (STAR Methods; Figures 7A–7E). For

discrimination involving only two odorants (one target versus

one non-target odor), the ensemble tufted as well as mitral

cell decoding accuracy reached 95% within 300–400 ms

(Figures 7B and 7C). Increasing the number of non-target odor-

ants led to a gradual drop in the TC classification accuracy and

an increased latency to reach the same performance criterion

(Figures 7B–7E). In comparison, MC decoders were slower

and fared poorer in discriminating the target odor from non-tar-

gets, across the range of discrimination difficulty tested

(Figures 7B–7E). The difference in classification performance

between MCs and TCs progressively increased with increasing

number of distractor odorants (Figures 7C–7E). Moreover, over

this range, the relative impact of cortical feedback was substan-

tially higher for the MCs compared to TCs (Figures 7B, 7E, bot-

tom, and 7D, center, right).

We verified that the decoding performance of TCs cannot be

attributed simply to their relative higher response amplitude or

to SNR differences compared with MC ensembles

(Figures S1B–S1D, S8I, and S9; STAR Methods). The superior

performance of TC- versus MC-based decoders did not depend

upon the specifics of the decoders employed and was consis-

tent across all decoding schemes investigated (Figures 2, 6, 7,

S2, and S8).

DISCUSSION

We investigated whether key odorant features such as identity,

concentration, as well as concentration invariant identity can

be decoded from the two OB output cell types, and the degree

to which the decoding efficiency depends upon cortical feed-

back from their major targets (PCx and AON). Distinct separation

of the OB outputs into MCs and TCs is a feature of land
esponses to a given odor in the panel (Odor i) before versus after suppression of

before and after ipsi-aPCx suppression for mitral ensembles (blue, 5 FOVs, 4

point corresponds to correlation of responses to one odor before and after

N (3 FOVs, 3 mice). No thresholding was applied for the analyses in (C), (F), (H),

Neuron 110, 1–16, December 7, 2022 9



447

447 458

1 1

1

C
el

ls

C
el

ls

C
el

ls

C
el

ls

***

0.0 1.60.8

-0.1 0.0 0.1 0.2

***

1.0

0.5

0.0

1.0

0.5

0.0

C
um

ul
at

iv
e 

pr
ob

ab
ilit

y

1 s

C
la

ss
ifi

er
 p

er
fo

rm
an

ce
 (%

)

0

50

100

458

1

f(neuron 1)
f(neuron 2)

f(neuron 3)
f(neuron 4)

f(neuron 5) Odor A
Odor B

Odor identification 
& concentration decoding

A B D

***

0 2 4 6 8

0.0 0.5 1.0-0.5

***

1.0

0.5

0.0

1.0

0.5

0.0

Sensitivity index
     (d-prime) 0

50

C
la

ss
ifi

er
 p

er
fo

rm
an

ce
 (%

)

f(neuron 1)
f(neuron 2)

f(neuron 3)
f(neuron 4)

f(neuron 5) Odor A
Odor B

C
um

ul
at

iv
e 

pr
ob

ab
ilit

y

Generalization to 
novel concentrations

447

447 458

1 1

1

C
el

ls

C
el

ls

C
el

ls

C
el

ls
Time since odor onset (s)

Time since odor onset (s)

1 s

458

1

E F H

Tufted Cells
Mitral Cells 

1
2

3
4

1
2

3
4

100

Δ performance
  (normalized) 

C

20
40
60
80

100 1.0s

20
40
60
80

100 1.5s

C
la

ss
ifi

er
 p

er
fo

rm
an

ce
 (%

)

20

60
80

100

40

20

60
80

100

40C
la

ss
ifi

er
 p

er
fo

rm
an

ce
 (%

)

G 1.0s

1.5s

MC Intact 
MC --aPCx 
TC Intact 
TC --AON 

0

0

0

0

MC Intact 
MC --aPCx 
TC Intact 
TC --AON 

Sensitivity index
     (d-prime) 

Δ performance
  (normalized) 

MC

aPCx suppression

TC

AON suppression

Intact circuit Intact circuit

MC TC
Intact circuit Intact circuit

aPCx suppression AON suppression
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(A) Generalization to a novel concentration (same as Figure 2A).

(B) 2D decoder performance map (SVM, non-linear) as function of time (abscissa, bin size = 200 ms) while varying the number of neurons included in the analysis

(ordinate, bin size = 5) for MCs (left, 5 FOVs, 5 mice) and TCs (right, 6 FOVs, 5 mice) in the presence (top) and after suppressing feedback (bottom) from the

preferred cortical target (aPCx for MCs and AON for TCs).

(C) Classifier performance (Avg. ± 95% confidence interval) evaluated at two time points (1.0 and 1.5 s) for the MC- (blue) and TC- (red) based decoders.

(D) Summary of the generalization to novel concentrations decoding scheme: for both MCs (blue, 5 FOVs, 5 mice) and TCs (red, 6 FOVs, 5 mice), classifier

performance difference with and without cortical feedback is quantified using d-prime or a performance difference index (D performance normalized, STAR

Methods). *** indicates p < 0.001, paired t test.

(E) Cartoon schematics for the odor identification and concentration decoding (same as Figure 2D).

(F–H) Same as (B–D), respectively, for odor identification and concentration decoding.

See also Figures S8 and S9.
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vertebrates, largely absent in fish and amphibians (Andres,

1970), which appears correlated with the emergence of paleo-

cortex. Over the past decades, experimental work and computa-

tional models have proposed that decoding of odor identity (in-

dependent or not of intensity) is a central function of the PCx

which is strongly innervated by MCs (Bolding and Franks,

2018; Pashkovski et al., 2020; Stettler and Axel, 2009; Wilson

and Sullivan, 2011). The recurrent architecture of the PCx is

thought to reformat theMC input so as to generate concentration

invariant odor identity representations (Bolding and Franks,
10 Neuron 110, 1–16, December 7, 2022
2017; Stettler and Axel, 2009). We found that the TCs, acting

to a substantial degree in a feedforward manner, outperform

MCs in decoding both odor identity and concentration (Figures 1,

2, 6, and 7). Cortical feedback signals from the PCx and AON

preferentially regulate the activity of MCs versus TCs, respec-

tively, matching biases in feedforward connectivity and perform

different roles (Figures 3, 4, and 5). Piriform feedback specifically

restructures MC responses, while feedback from the AON pref-

erentially controls the gain of TC representations without sub-

stantially altering their odor tuning (Figure 8). Overall, the
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reference odor for a given classification, so as to discriminate any odor in the panel from any other. The number of odors included in the analysis is varied
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(B) 2D classification performancemap (SVM, non-linear) for all four experimental conditions (MC: 5 FOVs, 4mice, TC: 4 FOVs, 4mice) in the discrimination across

a larger (20) odor set decoding scheme. Abscissa represents the time axis (bin size = 200 ms), whereas the ordinate indicates varying the number of odors

included using bootstrap re-sampling (ordinate, bin size = 1 odor).

(C) Classifier performance (Avg. ± 95% confidence interval) evaluated at two time points (0.4 and 1.0 s) for the MC (blue) and TC (red) decoders engaged in binary

(left) and ten odor (right) discrimination.

(D) 2D performance difference index maps with increasing number of odor distractors (ordinate) and increasing time from odor onset (abscissa). (Left) TC- versus
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(E) Difference in classifier performancewith increasing number of odor distractors. (Top) TCs versusMCs (black line) evaluated at 1.0 s since odor onset; (bottom)

intact circuit versus preferred cortical target feedback suppression for MCs (blue) and TCs (red) separately. Baseline level performance of the decoder is 0.

See also Figures S8 and S9 and Table S2.
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contribution of cortical feedback from the piriform and AON to

the decoding ability of MC and TC ensembles increased with

the complexity of the task. Our results identify distinct functional

feedforward-feedback loops supported by theMCs and TCs and

their preferred cortical targets. As TCs innervate mainly brain re-

gions other than the PCx, such as the AON and olfactory striatum

(tubercle), these findings open venues for investigating the logic

of the downstream neural circuits supporting decoding odor
identity beyond the canonical mitral-to-PCx pathway. Although

activity from both the TCs-to-AON and MCs-to-PCx loops can

be integrated to support the decoding of odor identity, these re-

sults indicate that the TCs-to-AON pathway plays a major role

(Figure 8).

Our results are consistent with the proposed role of the AON in

olfactory navigation, as comparator of differences in stimulus in-

tensity across nostrils (Esquivelzeta Rabell et al., 2017; Kikuta
Neuron 110, 1–16, December 7, 2022 11
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et al., 2010), and also further suggest that TC targets such as the

AON andOT play key roles in representing odor identity (Haberly,

2001). Recent work indicates that activity in the tubercle reflects

the association between odorants and reward outcome (Gad-

ziola and Wesson, 2016; Gadziola et al., 2015; Millman and Mur-

thy, 2020) and is re-organized in selective attention tasks (Carl-

son et al., 2018). The tubercle receives direct input from the

bulb via both TC and MC axons (Haberly and Price, 1977; Na-

gayama et al., 2004; Skeen and Hall, 1977), as well as indirect

input via the AON and PCx. Future investigation is necessary

to determine the relative contribution of MC versus TC pathways

in supporting these computations.

One potential limitation of the study is that we did not investi-

gate the fast temporal patterning of spiking in specific se-

quences with respect to the respiration cycle, which may also

contribute to identity decoding (Cury and Uchida, 2010; Dhawale

et al., 2010; Gollisch and Meister, 2008; Hopfield, 1995; Li et al.,

2015; Tank and Hopfield, 1987; Wilson et al., 2017). Although the

temporal dynamics of calcium responses is slower compared

with electrophysiology methods, technical constraints are un-

likely to account for the differences reported in the performance

of MC and TC ensembles (see STAR Methods). We cannot how-

ever rule out spike-timing-based decoding strategies where

select group of neurons are responsible for representing the

identity of specific stimuli. Thus, further investigation is required

to elucidate the potential differences between TC and MC

ensemble representations with spike-time resolution.

The specificity and functional segregation of cortical feedback

action, preferentially targeting the dominant input cell type (Fig-

ures 3, 4, and 5), is surprising, given the wide potential for

cross-talk either via reciprocal anatomical connections between

the AON and PCx ipsilaterally (Hagiwara et al., 2012) or via dedi-

catedTC- andMC-specific interneuronswithin the bulb (Geramita

et al., 2016) thatmay receive convergent inputs from the AON and

aPCx. Indeed, our observations that feedback originating in AON,

although strongly regulating TC activity alsomodulates, albeit to a

lesser degree, the responses of MCs ipsilaterally could be due to

such cross-interactions. The differential effect on MC and TC re-

sponses, depending on the site of cortical inactivation, is consis-
12 Neuron 110, 1–16, December 7, 2022
tent with the presence of distinct granule cells that preferentially

target each cell type (Geramita et al., 2016).

A feedforward-feedback loop architecture engaging multiple

pathways enables both implementing different computations

on inputs from the sensory periphery (e.g., bulb) via parallel

streams, as well as cross-talk and comparisons across streams.

Indeed, parallel functional streams have been identified in other

sensory modalities (Dijkerman and de Haan, 2007; Goodale and

Milner, 1992; Mishkin and Ungerleider, 1982; Rauschecker and

Romanski, 2011; Schneider, 1969). The net effect of feedback

from the AON is to proportionally suppress the feedforward input

drive for each stimulus, thereby regulating the gain of tufted

ensemble activity. This may prevent runaway excitation, without

altering the specificity of responses (Figures 5 and 6). In contrast,

the feedback from piriform specifically shapes the odor repre-

sentations of MCs (modifies their odor tuning) and cannot be ex-

plained only by a simple gain control model (Figures 5 and S7).

For both MC and TC decoding performance, cortical feedback

became increasingly necessary for hard odor discriminations

(Figures 6 and 7), in agreement with previous results (Lepousez

et al., 2014; Li et al., 2018).

Given our findings, and consistent with previous work (Frank

et al., 2019; Kay and Laurent, 1999; Lepousez et al., 2014; Li

et al., 2018; Wilson and Sullivan, 2011), an interesting possibil-

ity is that the MCs-to-PCx loop is not primarily involved in the

sensory aspects of odor identification, which appear well-sup-

ported by the TCs-to-AON pathway analyzed here. Recent

work identified drift in the piriform odor responses which im-

poses constraints for robust representations of odor identity

(Schoonover et al., 2021). Rather, the mitral-to-piriform loop

may perform different computations ranging from specifically

modifying odor representations during contextual learning

and/or relaying sensory and sensorimotor predictions and er-

rors in complex, fluctuating olfactory scenes. Within this frame-

work, the tufted-to-AON pathway conveys odor identity and in-

tensity information (Haberly, 2001) to the PCx that further uses

it to engage these computations (Figure 8). Many studies em-

ploying either multiphoton imaging or electrophysiology estab-

lished that the activity of MCs/TCs and the accuracy for
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odorant identity decoding depends on the behavioral state. De-

coding accuracy increases substantially as animals learn to

differentiate odorants (Chu et al., 2016; Gschwend et al.,

2015; Kudryavitskaya et al., 2021; Li et al., 2015; Losacco

et al., 2020; Yamada et al., 2017). MC/TC odor representations

are modulated as a function of prior experience (Kato et al.,

2012; Vinograd et al., 2017), learning (Chu et al., 2016;

Gschwend et al., 2015; Li et al., 2015; Losacco et al., 2020; Ya-

mada et al., 2017), context (Koldaeva et al., 2019), and stimulus

contingency (Kay and Laurent, 1999; Kudryavitskaya et al.,

2021; Li et al., 2015). For example, while learning a binary

discrimination task, MC ensembles became substantially

more decorrelated compared with TCs, whereas both cell

type responses were re-formatted (Yamada et al., 2017). In

addition, following changes in odor-reward rules across

different tasks, MC responses re-organized according to the

odor value (Kudryavitskaya et al., 2021). Future investigation

will elucidate the mechanisms by which the TCs-to-AON and

MCs-to-PCx loops described here remain specific, the extent

of their cross-talk and how they support relevant computations

for guiding olfactory behaviors as a function of olfactory scene

complexity, perceptual task, and stimulus contingency.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

For our experiments, we used adult (>12 weeks old, 25-30g) mice (males and females) of the following strains: B6J.Cg-Gt(ROSA)

26Sortm95.1(CAG-GCaMP6f)Hze/MwarJ (AI95); B6;129S-Gt(ROSA)26Sortm38(CAG-GCaMP3)Hze/J (AI38), B6;CBA-Tg(Tbx21-

cre)1Dlc/J (TBET-Cre) and B6;129S-Slc17a7tm1.1(cre)Hze/J (vGlut1-Cre). All animal procedures conformed to NIH guidelines and

were approved by the Animal Care and Use Committee of Cold Spring Harbor Laboratory.
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METHOD DETAILS

Surgery
38 adult Tbet-Cre X AI95 or AI38 mice (males and females > 12 weeks old, 25 – 30 g) were administered meloxicam (5mg/kg) and

dexamethasone (1mg/kg) 2 hours before surgery. Mice were anesthetized with ketamine/xylazine (initial dose 70/7mg per kg),

and supplemented every 45 minutes. Lack of pain reflexes was monitored throughout the procedure. Mice were positioned such

that the skull dorsal surface is horizontal, and implanted stereotaxically with cannulae (26 Gauge, Plastics One) bilaterally in the piri-

form cortex (inserted at 50 degrees from the normal to the brain surface, -4.0 mm (A-P) and 2.4 mm (M-L) from bregma, 7.5 mm deep

from surface, corresponding to +1.7 mm A-P, 2.4 mm M-L, 4.0 mm depth from surface at 0 degrees from the normal), and respec-

tively unilaterally in the AON (at 56 degree from the normal, -4.0 mm (A-P) and 1.0mm (M-L) from bregma, 7.5 mmdeep from surface,

corresponding to +2.25mmA-P, 1.0mmM-L, 4.0mmdepth from surface at 0 degrees from the normal, AONposterior part - AOP). At

the same time, a chronic windowwas implanted above the dorsal aspect of the olfactory bulbs, and a titanium headbar was attached

to the skull as previously described (Otazu et al., 2015) to fixate the animal during the imaging sessions. Meloxicam (5mg/kg) was

administered for 5 – 7 days following surgery. Mice were allowed to recover for at least 10 days and further habituated before multi-

photon imaging.

Odor Stimulation
Custom-built odors delivery machines were used to present odors automatically under computer control of solenoid valves (Chae

et al., 2019; Otazu et al., 2015). Two sets of odors were used: Odor Set A comprising of 5 odors across 4 concentrations, spanning

1:104 to 1:101 nominal oil dilutions, and Odor Set B, comprising of 20 odors, sampled at 1:100 mineral oil dilution, Table S1. Odors

(1 l/min) were presented in 4s pulses every 1 minute preceded by the acquisition of 10-12s of air baseline and followed by 7-10s of air

recovery periods. To minimize odor contamination across trials, during the inter-trial interval, a high flow air stream (>10 l/min) was

pushed through teflon coated tubing conduits of the odor delivery machines to an exhaust vent, while the animal’s snout was

exposed to fresh air matched at 1 l/min flow rate. Each stimulus was typically repeated 3-5 times before, as well as after-muscimol

or saline injections. The concentration of the odors delivered to the mouse for concentration experiments was characterized using a

photo-ionization device (PID; Aurora Scientific) and spanned a range between�0.02% and 10% saturated vapor pressure (Banerjee

et al., 2015; Otazu et al., 2015). The same PID was used to determine the time course of the odor waveform and the reliability of odor

stimulation. On average, across odors and concentration range sampled, stimuli took 315 +/- 119ms to reach 80% of peak PID value

(rising time, Figure S1A). This delay in stimulus delivery was accounted for in the decoding analyses (Figures 2, 6, 7, S2, S8, and S9) by

removing the corresponding frames from the analysis. For bothmitral and tufted cells, responses to Odor Set Aweremonitored using

multiphoton imaging of GCaMP6f signals and toOdor Set B of GCaMP3 signals respectively. For each odor set and activity indicators

considered, matched numbers of responsive mitral and tufted cells were included in the analysis.

Multiphoton imaging
We used a custom-built multiphoton microscope coupled with Chameleon Ultra II Ti:Sapphire femtosecond pulsed laser (Coherent).

The scanning system projected the incident laser beam tuned at 930nm through a scan lens and tube lens to backfill the aperture of

an Olympus 20X, 1.0 NA objective. The shortest possible optical path was used to bring the laser onto a galvanometric mirrors scan-

ning (6215HB, Cambridge Technologies) or resonant scanning head (12 KHz, High Stability 8315K - CRS-12 Set, Cambridge Tech-

nologies). Signals were acquired using a GaAsP PMT (H10770PB-40, Hamamatsu), amplified, filtered (DHPCA-100, Femto) and

digitized at 200 MHz (NI PXIe-7966R FPGA Module, NI5772 Digitizer Adapter Module). Acquisition and scanning (10 Hz: Odor Set

B or 50Hz: Odor Set A) were performed using custom-written software in Labview (National Instruments) including Iris (Keller Lab,

FMI). During a typical imaging session, animals were head-fixed under the two photon microscope and habituated to odors and

the sound of the scanning galvos (45 min). Laser power was adjusted to minimize bleaching (<40 mW). Tufted cells were identified

based on the location of their somata in the external plexiform layer (125-175 mm from the surface), whilemitral cells were identified as

a densely packed monolayer of larger somata located 225-275 mm deep from bulb surface. Spread across the external plexiform

layer, several subclasses of tufted cells have been described (superficial, middle, internal) at varying depths from bulb surface

(Mori et al., 1983; Schwarz et al., 2018). Here, we probed primarily the activity of middle tufted cells, and further investigation is

needed to determine whether different tufted cell subsets relay distinct odor representations.

Pharmacology
Cannulae were implanted bilaterally for aPCx and unilaterally for AON suppression experiments (Figure S3). Piriform cortex feedback

to the OB originates mainly in the anterior apart of the piriform cortex, hence we focused our muscimol suppression experiments on

aPCx (Boyd et al., 2012; Markopoulos et al., 2012; Oswald and Urban, 2012; Otazu et al., 2015). For a given imaging session, mus-

cimol/saline was injected in only one hemisphere. After imaging a given field of view (baseline), muscimol (muscimol hydrobromide,

MW=195.01, Sigma) dissolved in cortex buffer was used to suppress neuronal activity in the aPCx or AON (0.5mg/ml, 1ml injected into

aPCx over 5min, 0.7 ml injected into AON over 3.5min). To avoid the spread of muscimol into the olfactory bulb, and accounting for its

smaller size, we injected less volume into the AON (0.7 ml) than aPCx (1 ml). Care was taken to identify the same cell bodies in the field

of view before and after the injection of muscimol or saline, waiting 20-30 minutes post-injection before re-starting the imaging
e2 Neuron 110, 1–16.e1–e7, December 7, 2022
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session. No apparent changes in animals’ sniffing, whisking or motor behaviors were observed upon muscimol injection. In a previ-

ous study (Otazu et al., 2015), we have quantified the spread of muscimol into aPCx, calibrating it using comparatively larger volumes

of fluorescent muscimol bodipy (Life Science Technologies) to account for the difference in their molecular weights. In this study, we

used the same muscimol injection protocol, and identified the injection site (for either muscimol or saline) once the imaging session

was completed, by injecting fluorescent muscimol as previously described (Otazu et al., 2015). Note that any spread of muscimol

from AON to aPCx or vice versa would only result in decreasing the specificity observed in the AON or aPCx feedback action on

the mitral versus tufted cells. Brains were perfused in PFA, and 100-200mm sagittal slices were cut and imaged under an epifluor-

escence microscope. For control experiments (saline), only cortex buffer was used.

Since AON is a functionally heterogeneous structure comprised of several nuclei (Brunjes et al., 2005; Shepherd, 2003) which may

multiplex information ranging from odor localization and identification to episodic memory (Aqrabawi and Kim, 2018) and social cues

(Oettl et al., 2016; Wang et al., 2020), further studies are necessary to investigate any differences in feedforward-feedback action

across different AON nuclei and tufted cell ensembles.

We have performed experiments lasting up to two hours after muscimol injection. For the whole duration of the experiment, we

observed an increased in the response amplitude, number of responses per cell and pairwise odor correlation, as compared to saline

controls, suggesting that the effect of the muscimol was still present throughout the imaging session. This is consistent with other

studies using comparable dosage of muscimol, where the effect has been shown to last at least 2 hours (Miri et al., 2017; Okobi

et al., 2019). Note that if the effect of the muscimol diminished gradually during the experiment, this would impose a lower bound

interpretation on the effects that we report upon cortical suppression. We also observed an increase in the baseline fluorescence

post-muscimol, but could not quantify it directly given the parallel tendency of decrease in signal across time during the imaging ses-

sion. In addition, post-muscimol injection, the fraction of suppressed responses was lower than before muscimol.

Previous reports showed that the duration of responses in the olfactory cortex is shaped by several factors including the duration

and strength of odor stimulation and the brain state (Poo and Isaacson, 2011; Rennaker et al., 2007; Roland et al., 2017; Schoonover

et al., 2021; Stettler and Axel, 2009; Tantirigama et al., 2017). Here we suppressed the cortical feedback over many hours by injecting

muscimol in the aPCx or AON. Future investigation is required to evaluate the role of transient of cortical inactivation as a function of

odor statistics.

Tracing of feedback fibers
Wechecked the distribution of cortical feedback fibers originating in the aPCx (+1.7mmA-P, 2.4mmM-L, 4.0mmdepth from surface

at 0 degrees from the vertical), and AON (+2.25mmA-P, 1.0 mmM-L, 4.0 mmdepth from surface at 0 degrees from the vertical, AON

posterior part - AOP), post labeling them using targeted viral injections. For visualization purposes, vGlut1-Cre mice were used such

as to minimize spurious labeling of migrating (GABAergic) granule cells (and their neuropil) passing in proximity of AON on the way to

the bulb. 100nl of AAV2.9-FLOXED-GFP was injected in the AON or aPCx unilaterally and expression was checked 2 weeks post-

infection. 100mm sagittal and coronal bulb slices were obtained after perfusing the brain in PFA. GFP expression was checked under

a multiphoton microscope (Figure S3).

Histology
Animals were perfused intra-cardially, the brains preserved in PFA and sliced sagittaly in 100mm thick sections. Slices were mounted

on slides using VECTASHIELD Mounting Medium and imaged using an epifluorescence microscope.

Experimental design
For the concentration-series experiments, 16micewere employed (aPCx saline – 5mice, 5 FOVs; aPCxmuscimol – 5mice, 5 FOVs; 9

mice for aPCx saline or muscimol; AON saline – 4mice, 5 FOVs; AONmuscimol – 5mice, 6 FOVs; 7mice for AON saline or muscimol).

In a subset of the aPCx suppression experiments, the same animal was imaged more than once. Two mice (4 FOVs) were injected

with saline, as well as muscimol in AON, while allowing at least 3 days of intervening recovery time between injections. Each FOV

represents a non-overlapping set of mitral or tufted cells. For the larger-odor panel experiments, 22 animals (8 mice for aPCx; 14

mice for ipsi- and contra-AON experiments) were used. For most experiments, a given brain hemisphere was injected with either

saline or muscimol only once. For a subset of experiments (n = 8 mice), both saline and muscimol were injected in the same hemi-

sphere at different times while allowing at least 3 days of intervening recovery time between injections.

QUANTIFICATION AND STATISTICAL ANALYSIS

Pre-processing and detection of significant odor responses
Images were registered laterally (X-Y), and fast Z-movements across individual frames accounted for as previously described (Chae

et al., 2019; Otazu et al., 2015). Regions of interest (ROIs, mitral and tufted cell somata) were manually selected based on anatomy

performed using custom routines in Matlab. To determine the degree of signal contamination by the neighboring neuropil, in a subset

of fields of view, for each ROI, a peri-somatic neuropil annulus (10-20mm from the outer edge of the ROI) was generated. Pixels

belonging to neighboring non-neuropil ROIs were not included in the annuli. Fluorescence transients were neuropil-corrected as pre-

viously described (Kerlin et al., 2010; Peron et al., 2015) (FROI-corrected = FROI - aFneuropil). For each ROI, the a parameter was
Neuron 110, 1–16.e1–e7, December 7, 2022 e3
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systematically varied between 0 to 1 in 0.25 increments, and the correlation between neuropil-subtracted and raw fluorescence

change signals assessed for both z-scored and non-z-scored data. In the z-scored data, neuropil-subtracted signals matched

the raw signals with high correlation (slope�1) for all a-s considered. In the non-z-scored data, the neuropil-subtracted and raw sig-

nals were highly correlated (slope�1) for a% 0.75 (recent studies used a values ranging from 0.5 to 0.7; Chen et al., 2013; Kerlin et al.,

2010; Khan et al., 2018; Peron et al., 2015). Thus, neighboring neuropil contamination does not appear to significantly change the

odor responses of the sampledmitral and tufted cells (Figure S1E). However, given the lack of ground truth for a calling, for the dimen-

sionality reduction and all decoding analyses described in Figures 1, 2, 6, 7, S1, S2, S8, and S9 we used the z-scored data without

neuropil subtraction.

To determine significance, for each trial and each ROI, we compared the odor evoked normalized fluorescence with values calcu-

lated during the air period preceding odor presentations in the session. For calculating F0, we used the median fluorescence value

during the odor period for each trial for each region of interest. Responses that exceeded 99.5 percentile of the air period fluores-

cence distribution, accumulated across all stimuli and repeats for that ROI, were called significantly enhanced as previously

described (Otazu et al., 2015). Responses that were below the 0.5 percentile of the air fluorescence distribution were considered

significantly suppressed. An ROI that showed significant responses to an odor in at least two repeats was considered responsive

to that odor. Non-significant responses were set to 0 (Figures 3F, 3G, 4A–4C, 5A, 5B, 5D, 5E, S4F, S5, S6B, S6C, S6F–S6I, and

S7F–S7H). For the analyses performed in Figures 1, 2, 5C, 5F, 5H, 5I, 6, 7, S1, S2, S7A–S7E, S8, and S9, no thresholding was applied.

For Figures 3D, 3E, S4C–S4E, S5, S6A, S6D, and S6E only response pairs significant in at least one condition (pre- or post-)

were used.

For investigating whether the changes in the mean response amplitude, number of responses per cell and pairwise odor similarity

(Figures 3E, 3G, and 4C) are statistically significant, we used the Wilcoxon sign-rank / rank-sum tests because they are non-para-

metric and do not assume that the difference between the paired samples is distributed normally. We used the one-sided sign-

rank test for the matched samples to explicitly check the hypothesis that the response amplitude increased after muscimol instead

of testing whether they are different. For all these comparisons, we further verified that our results are robust and are deemed sig-

nificant when using a t-test or two-sided versions of the Wilcoxon test as well.

We calculated the signal-to-noise ratio (SNR) of mitral and tufted cell responses as the average signal / standard deviation of signal

across individual repeats before and after muscimol suppression of cortical activity. The SNR of mitral and tufted cell responses were

comparable (largely overlapping distributions, slightly higher for tufted cell vs. mitral cell ensembles, Figures S1G and S9). Suppress-

ing aPCx or AON activity resulted in increased SNR for both the mitral and tufted cell responses (Median SNRmitral cells post-mus-

cimol = 4.99 vs. 3.25 pre-muscimol; 1,809 cell-odor pairs; Median SNR tufted cells post-muscimol = 7.03 vs. 4.46 pre-muscimol;

2,138 cell-odor pairs), while the decoding performance showed a considerable decrease for the mitral cell based decoders, and

to less degree for the tufted cell decoders (Figures 6 and 7).

Odor similarity (odor correlation)
The uncentered odor correlation (odor similarity, SðA;BÞ) was calculated from the population responses vectors of each pair of odors

(A, B) in the panel, in each field of view. Cells responsive to least two odors in the panel were included in the similarity analysis.

SðA;BÞ =

Pn
j = 1r

ðAÞ
j , rðBÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j = 1r
ðAÞ
j , rðAÞj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j = 1r

ðBÞ
j , r

ðBÞ
j

qr

where rAj = response of ROI rj to odor A, rBj = response of ROI rj to odor B, n = number of ROIs.

Same analysis was also performed using Pearson’s correlation, obtaining qualitatively the same results with respect to changes in

pairwise odor similarity of mitral versus tufted cell ensembles when suppressing activity in aPCx versus AON (data not shown). We

have considered cells responding to at least two odorants, since over time during the imaging sessions responses tend to decrease in

amplitude (as observed across repeats in both before-injection and after-saline injections, and as stated in the submitted manu-

script). Hence cells which, to begin with, respond to only one odorant would be more likely to be affected by this non-specific decay.

We verified that all the changes reported in pairwise odor similarity, response amplitude and number of responses for the mitral vs.

tufted cell ensembles upon suppression of the aPCx vs. AON also hold when cells responding to at least one odorant in the panel

were included in the analysis.

Correlation between same odor responses across conditions
The uncentered correlation coefficient was calculated from the population cell response vectors for individual odor across condi-

tions (before- vs. after-muscimol / after-saline injection) accumulated across fields of view (Figures 5H, 5I, and S7A–S7D), or for

each field of view (Figures 5C and 5F). Cells responsive to least two odorants in the panel were included in the correlation analysis.

After-injection responses were scaled down (Figures S7B–S7D) such as to match the mean of their before-injection responses.

Cells responsive in both conditions, as determined by identifying significant odor responses, were used calculate the scaling

down factor. Cell responses to each odor were scaled down independently. Non-significant responses after-injection were left

unchanged.
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Dimensionality reduction (PCA and dPCA)
Extracted ROI time courses were assembled in a data cube (N by S by T) of trial averaged dF/F0 responses, where N stands for the

total number of neurons included, S is the total number of stimuli and T is the total number of time-bins. To reduce the dimensions of

the neuronal population, this data cubewas re-shaped into a data matrix (N by ST) and normalized (z-scored) such that each stimulus

as a function of time represents a point in an N dimensional neural state space. Neural responses were z-scored to avoid biasing the

results to differences in absolute values of response magnitude between the two neuronal classes analysed (mitral versus tufted

cells). To find a set of orthogonal directions that maximizes the variance captured from the data, we performed principal component

analysis (PCA) and identified the eigen vectors of the associated covariance matrix. PCA was performed using built-in ‘princomp’

function in MATLAB. Data projected onto the first three principal components (PCs) is plotted in Figure S1. The variance explained

by each PC is given by the ratio of its eigen value to the sum of all the eigen values.

Demixed PCA, a linear dimensionality reduction technique developedby theMachens group (Kobak et al., 2016) (https://github.com/

machenslab/dPCA/tree/master/matlab) was adopted here to decompose the population neural responses into individual components

along different features of the odor stimuli. Individual OB output neuron responsesmultiplex odor identity and concentration represen-

tations (Figures 1C–1F). Demixed PCA attempts to linearly un-mix these ensemble representations into certain user-defined compo-

nents, and reveal the dominant neural activity modes (demixed-PCs). In Figures 1C–1F, the components were odor identity (I) and

odor concentration (C). Data projected onto the first three demixed ‘identity’ PCs or ‘concentration’ PCs are plotted in Figures 1E

and1F. The sameanalysiswasperformed separately formitral and tuftedcells populations.Success inde-mixingodor identity andcon-

centration dimensions implies that a particular linear combination of neurons exists that can ‘decode’ odor identity with concentration

invariance,while, at the same time, adifferent linear combinationof the sameneural responsescanbeused to infer theabsolutestimulus

concentration, irrespective of the odor identity.

Decoding odor identity (sparse logistic regression and support vector machines)
Odor classification from population neural data was performed using a sparse logistic regression-based decoder with L1 minimization

(lassoglm function in MATLAB, Figure S8G) and a support vector machine (fitcsvm function in MATLAB, Figures 1, 6, 7, S2, S8, and S9)

based decoderwith either linear or non-linear polynomial kernels. The feature vectorswere z-scoredmeanodor responses for each cell.

Decoding accuracy at any timepoint (in 200ms bins) was evaluated based onmean neuronal responses fromodor onset up to that time

point. For example,decodingaccuracyat400ms takes intoaccountmeanneuronal responses fromodoronset up to400ms.All neurons

recorded frommultiple field-of-views were pooled, and the number of neurons used in the analyses was varied by sub-sampling (boot-

strapping) from this set. The total number of mitral cells (n = 447) and tufted cells (n = 458) were within 2.5% of each other and can be

therefore assumed to be approximately 1:1. In all cases, odor classificationwas analyzedwith cross-validation using held-out test data-

set. The number of cells considered in the analysis was increased systematically (steps of 5) until all imaged cells were included

(Figures 2B and 2E). For each subset of k cells considered, a bootstrap strategy was run 10 times; in each iteration, the decoders

were trained and further cross-validated using response from a set of k cells was picked randomlywith replacement from all cells. Clas-

sificationperformanceasa functionof timesinceodoronset (Figures2B,2C,2E, and2F)wasevaluated fora fixednumberofneurons (n=

200). This procedurewasperformed10 times,where 200neuronswere randomly sub-sampled fromall neurons recorded.Classification

performance as a function of neurons (Figures 2B and 2E) was evaluated at a fixed latency from odor onset (t = 1 s). The SVM was not

constrained to pick the best among the alternative possibilities, which would have resulted in chance accuracy of 20% for a five-odor

stimulus panel. Instead, failure to accurately classify the corresponding odor identity resulted in a chanceperformance accuracy of zero.

The difference between performance distributions across cell-types or pharmacological manipulations, were quantified in two

ways - the sensitivity index equivalent to the d-prime (Figures 2, 6, and S8) and performance difference index (D performance,

normalized, Figures 6, 7, and S8). Sensitivity index (d-prime), evaluated at each time bin, measured the difference between mean

classification performance of the two distributions (m1 and m2) normalized by their standard deviations (s1 and s2) as follows:

d � prime =
jm1 � m2jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5

�
s12 + s22

�q

Performance difference index (PDI = D performance, normalized) was calculated as:

PDI =
ðm1 � m2Þ
ðm1+m2Þ

For classification performance comparisons before and after cortical inactivation (Figures 6 and 7), decoders were trained on intact

circuit neural responses and then tested using responses from the same neurons after inactivation. In Figure S8H, decoders were re-

trained after cortical inactivation separately and cross-validated performance was calculated using held-out trial repeats.

Details of the exact type of cross-validation depend on the four different decoding schemes investigated, as described below:

Generalization to novel concentrations
The decoder learned to group any three of four concentrations sampled for a given odorant together. The cross-validated perfor-

mance was tested on the ability to classify the novel fourth concentration previously not used to train. In Figure 2B, training for
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the lowest two and highest concentrations and testing for the third (second strongest) is shown as example. Figure 2E shows the

performance of the decoder in time averaged across all 4 possible combinations of train and test concentrations while varying

the number of cells included in the analysis. Our stimulus panel has five odorants each presented at four different concentrations.

For example, in the training set, the classifier neuron for Odor 1, should learn to fire (value = 1) each time Odor 1 is presented and

not fire (value = 0) for all other stimuli. This corresponds to the top row of the desired objective matrix plotted in Figure 2A. We further

tested how well the classifier performs on the held-out concentration. Given that there are five odorants, one may expect that the

chance performance is 0.2. However, the classifier is not set up to pick randomly one of the five odorants. Instead, complete failure

to identify an odorant results in 0 value performance, while perfect identification corresponds to 1 as explained above. The perfor-

mance values can, therefore, be interpreted on a scale between 0 and 1.

Odor identification & concentration decoding
Similar to previous schemes, each odorant has a corresponding classifier neuron. However, each classifier neuron was tasked with

identifying the presence of the corresponding odorant (non-zero value), and also simultaneously reporting the relative concentration

(on a log scale). The cross-validated performance was evaluated on held-out trials (80% training and 20% testing) same as for odor

recognition. Classification performance was calculated as a correlation of the decoder output with the objective matrix (Figures 2E,

6F, and 6G).

Concentration-invariant odor recognition
Neuronal responses to 20 stimuli – 5 odors across 4 different concentrations were used for this scheme and required the classifica-

tion of all concentrations of each odor as one odor identity. Thus, 100% success would be achieved if each output classifier neuron

corresponding to one odorant fired exactly four times, one for each concentration sampled of that odorant, and did not fire in

response to any of the other stimuli (Figure S2). Cross-validated performance was evaluated by training and testing data-sets, which

were taken as different (non-overlapping) repeats of the experimental data (for example, train on 3 repeats and test on the 4th). The

plotted decoder performance is averaged across all possible combinations. To test whether the performance of the classifier indeed

depended on odor concentrations, for Figure S2E, training and testing procedures were identical except concentration labels of each

odorant were randomly shuffled for each iteration.

Discrimination across a larger (20) odor set
Ensemblemitral and tufted cell responses to 20 diverse odor stimuli were used for this task. For each odor, we considered one output

classifier neuron. In the full task, the decoder learns to call the target odor from all other nineteen stimuli. The number of possible

odors included in the analysis was varied systematically from 2 to 20 using bootstrap sub-sampling (n=10). Cross-validated perfor-

mance was evaluated by training and testing data-sets which were taken as different (non-overlapping) repeats of the experimental

data. Performancewas plotted as average across all possible combinations, while varying the number of odors included (Figures 7B–

7E). Performance difference index (see above) was calculated as a function of the total number of distractor odorants.

Quantifying the effect of cortical feedback suppression
Saline regression was performed using all cell-odor pairs (for both response amplitude and odor similarity analyses) before and after

saline injection into ipsi-aPCx or ipsi-AON. Combining all imaged fields of view, a regression line was obtained by minimizing the

Euclidian distances from this line to the cell-odor pairs included in the analysis (Figures 3G, 4B, 4C, S4C–S4F, S5B–S5E, S6B,

S6C, and S6F–S6I). A 95% percentile confidence interval with respect to the saline regression line was imposed when calculating

the significance of muscimol-induced changes in response amplitude or pairwise similarity. For the response amplitude analysis,

only cell-odor pairs showing significant responses in at least in one condition (before or after injection) of saline or muscimol were

included.

Odor similarity-matching number of mitral cells and tufted cells
To match the number of mitral cells and tufted cells used to construct the population responses vectors, we randomly selected 40

cells per field of view, sampling 4 fields of view of mitral cells and 4 fields of view of tufted cells for each iteration of the bootstrap

analysis (100 iterations). Saline regression was performed independently for each iteration using the same number of cells and fields

of view, and the effects of muscimol injection computed accordingly (Figures S6D–S6I).

Additional considerations for the decoding analyses
We investigated the performance of mitral and tufted cell based decoders in several decoding schemes inspired from analogous

computations necessary for solving olfactory behavioral tasks. When analyzing specific tasks (e.g. generalization across concentra-

tions and odor identification and concentration decoding schemes, Figures 2A, 2B, versus 2D), we observed differences in perfor-

mance that weremore apparent for themitral cell-based decoders. Generalizing odor identity to novel concentrations can be thought

of as a harder problem than decoding odor identity as well as concentration, since odor responses vary considerably across con-

centrations, especially when sampling over a range of three orders of magnitude. To correctly identify odorants, the olfactory system

(as well as our classifiers) may need to impose additional constraints, i.e. disregard the intra-odorant variations, while learning the
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inter-odor differences. This is indeed reflected in our analyses: classifier performance for Figures 2A and 2B was lower than for

Figures 2D–2F. Mitral cell responses are largely non-monotonic and diverse across concentrations of a given odor. Thus, assigning

the same value to different concentrations of the same odor (binding them together as one category) may be harder than differen-

tiating across concentrations of the same odor. Compared to mitral cells, tufted cell responses are more monotonic with respect

to concentration; this likely makes it easier for odor identification to generalize across different concentrations (Figures 2A–2C).

Importantly, in both cases, classifiers based on tufted cell responses performed substantially better than those based on mitral

cell responses.

Given that the classifiers employed in these tasks were trained using small number of samples for a given stimulus (�4 repetitions)

and using random sets of neurons sampled across animals, the overall decoding performance of both tufted and mitral cells ensem-

bles reported may represent a lower bound. Further, these observations can be taken as a conservative estimate of the tufted cells’

decoding performance, since in our analysis we considered a 1:1 ratio of tufted-to-mitral cells, while recent anatomical reports es-

timate this ratio to be substantially higher (4:1) (Schwarz et al., 2018).

Technical comments on response strength and its temporal dynamics
We discuss below potential issues in the interpretation of our results obtained via optical imaging of calcium signals related to dif-

ferences in the signal to noise ratio and the temporal dynamics of mitral versus tufted cell responses.

Signal to noise ratio (SNR)
Suppressing aPCx or AON activity augmented the response amplitude (Figures 3B–3E, S4C–S4E, S6A, S6D, S6E, and S8F) and

increased the SNR of both mitral and tufted cell responses (Median SNR mitral cells post-muscimol = 4.99 vs. 3.25 pre-muscimol;

1,809 cell-odor pairs; Median SNR tufted cells post-muscimol = 7.03 vs. 4.46 pre-muscimol; 2,138 cell-odor pairs, Figure S9). How-

ever, the decoding performance showed a considerable decrease for themitral cell based decoders, and to less degree for the tufted

cell decoders (Figures 6 and 7). Therefore, an increase in SNR does not necessarily imply a higher decoding accuracy, and SNR dif-

ferences could not explain the differential effects of cortical feedback suppression onmitral and tufted cell ensembles. Training clas-

sifiers separately on the pre- and post- cortical silencing data sets did not change the advantage of tufted-versus-mitral cell decoders

(Figure S8H).

Temporal dynamics of responses
Previous work proposed that for decoding odor identity a small number of early responsive glomeruli / second order neurons and

their relative timings may be responsible for setting the perceptual qualities of an odor (Chong et al., 2020; Hopfield, 1995; Wilson

et al., 2017). We found that subsets of tens of tufted cells randomly picked appear sufficient for fast decoding of odor identity in a

concentration invariant manner for conditions where the number of stimuli to discriminate is relatively low (Figures 2 and 6).

Throughout the study, we imaged calcium signals in mitral and tufted cells. These are slower than measuring spike times using

electrophysiology methods. We outline below several reasons why this does not impact our main conclusions that tufted cells

respond substantially faster compared to mitral cells, and that tufted ensembles outperform mitral cell ensembles at decoding

odor identity and intensity all throughout the duration of the odor presentation. First, while the calcium signals (as reported by

GCaMP3/6f at up to 50Hz sampling rate) are slower to decay (half time �250 ms), they are fast (�10-20 ms) in their onset. This is

several times faster than the behavioral response time-scales for odor identification, enabling us to evaluate the decoding perfor-

mance of neuronal ensembles in the olfactory bulb. Second, both mitral and tufted cells showed high (�95%, Figures 7B and 7C)

decoding accuracy, as early as first few hundred milliseconds in the easier versions of the odor discrimination task (e.g. binary

odor discrimination) and matched reports of behaviorally performance of mice engaged in olfactory tasks (Abraham et al., 2004; Ma-

this et al., 2016; Rokni et al., 2014; Uchida andMainen, 2003; Uchida et al., 2006; Zariwala et al., 2013). This would be impossible if the

temporal resolution of our experimental technique were limiting. The differences we report between the decoding performance of the

mitral and tufted cell ensembles became more pronounced with increasing the task difficulty (Figures 1, 2, 6, and 7). Third, two

photon imaging of GCaMP signals afforded the temporal resolution for distinguishing between the fast responding tufted versus

the lagging mitral cells (Figure S1C). In our experiments, tufted cells were generally more proficient than mitral cells at decoding

odor identity and/or concentration. This occurred not only as early as a few hundreds of milliseconds from odor onset (Figures 2,

6, and 7), but all throughout the odor period. Our observations are consistent with whole-cell and cell attachedmillisecond-resolution

recordings showing that tufted cells are faster thanmitral cells (response latency�100ms vs. 300ms; Igarashi et al., 2012), stronger in

response amplitude (Fukunaga et al., 2012; Igarashi et al., 2012; Jordan et al., 2018; Nagayama et al., 2004) and more reliably driven

by olfactory sensory neuron input (Gire et al., 2012). The results reported here bring new insight by quantifying, acrossmany cells and

several odor decoding schemes, the ability of tufted cell ensembles to represent both odor identity and intensity over a wide range of

concentrations. They were enabled by multiphoton imaging which affords substantially higher yield compared to whole-cell record-

ings and distinguishes between mitral and tufted cells (Chae et al., 2019; Kapoor et al., 2016; Kato et al., 2012; Kikuta et al., 2013;

Otazu et al., 2015; Yamada et al., 2017). Further investigation is nonetheless required to elucidate potential differences between

tufted and mitral cell ensemble representations with spike-time resolution.
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