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Static and dynamic coding in distinct cell
types during associative learning in the
prefrontal cortex

Francesco Ceccarelli 1, Lorenzo Ferrucci 1, Fabrizio Londei 1,2,
Surabhi Ramawat 1, Emiliano Brunamonti1 & Aldo Genovesio 1

The prefrontal cortex maintains information in memory through static or
dynamic population codes depending on task demands, but whether the
population coding schemes used are learning-dependent and differ between
cell types is currently unknown. We investigate the population coding prop-
erties and temporal stability of neurons recorded frommale macaques in two
mapping tasks during and after stimulus-response associative learning, and
thenwe use a Strategy task with the same stimuli and responses as control. We
identify a heterogeneous population coding for stimuli, responses, and novel
associations: static for putative pyramidal cells and dynamic for putative
interneurons that show the strongest selectivity for all the variables. The
population coding of learned associations shows overall the highest stability
driven by cell types, with interneurons changing fromdynamic to static coding
after successful learning. The results support that prefrontal microcircuitry
expresses mixed population coding governed by cell types and changes its
stability during associative learning.

Adaptive behavior requires the ability to generate an associative
mapping between sensory information and the correct behavioral
responses to achieve a goal. Depending on how familiar the context is,
such a process may require either learning new associations or recal-
ling those already established. The prefrontal cortex (PFC) is thought
to be essential in the generation of associative mechanisms in goal-
directed behavior1. Several neurophysiological studies have shown
that cells in the PFC encode sensory cues2,3, motor responses4–6,
abstract rules7,8, and stimulus-response (S-R) associations9,10.

Considerable effort has been made to investigate how the PFC
maintains the representation of such task-related information over
time11–16 through a persistent2,11,17–21 or a transient and flexible
selectivity22–25 resulting in either a static15,26,27 or dynamic28,29 coding
scheme at the population level. Another line of research has focused
on investigating the role of putative pyramidal cells and interneurons
in task-related information processing in the PFC3,30–38. Pyramidal
glutamatergic cells and GABAergic interneurons constitute the

building blocks of cortical microcircuitry39,40, providing local
mechanisms for processing information in the PFC and for projecting
such information to external areas in the case of pyramidal neurons32.
Converging evidence from intracellular and extracellular recordings,
coupled with the morphological characterization of the cells, indi-
cates a consistent dissociation in firing patterns and action potential
duration between cell types in different animal models41–46, with
pyramidal cells characterized by low firing rates and broad action
potentials, and interneurons by narrow action potentials and high
firing rates.

Despite the clear role of PFC in associative learning, the con-
tribution of distinct cell types to associative learning and how the
plastic adaptation induced by extended learning affects the micro-
circuitry are still anopenquestion. Specifically, howS-Rassociations or
mappings are established and maintained at the local microcircuitry
level and the temporal dynamics of their coding during learning and
after such associations are consolidated by familiarity have not yet
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been investigated. Similarly, the contribution of distinct cell types in
driving the magnitude of associative coding in PFC microcircuitry
remains uncertain, since conflicting evidence has been presented
while studying different task-related information in PFC and other
cortical areas31–34,36,47.

Our previously acquired datasets in the PFC with a novel (Novel-
Map) mapping task, a familiar (FamMap) mapping task, and a Strategy
task7 (Fig. 1a, b) are ideal for addressing the study of such coding
properties of the local microcircuitry. In the NovelMap and FamMap
tasks, monkeys were required to map associations between three
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Fig. 1 | Experimental tasks, recording locations and learning curves. a The
sequence of events in common between the three experimental tasks. Black
squares represent the video screen, the white dot indicates the fixation spot, the
empty white squares show the response targets, and the dotted lines represent the
gaze of the monkey on the chosen target. b Examples of instructor stimulus sets
used in the recording sessions in FamMap unchanged throughout the recording
days,NovelMap, and Strategy taskwith the stimulus sets changed in each recording
session and shared between the two tasks. A sequence of trials is shown in the
Strategy task, and the two classes of trials and strategies (repeat and change trial,

stay and switch strategy) of the task. Red arrows indicate the correct response for
that trial. c Penetration sites of the recordings in the two monkeys. Percentage of
correct choices in the initial 50 trials (second to 50th trial) of the NovelMap (d) and
FamMap (e) task sessions dividedby eachmalemonkey. Dashed lines enclosing the
curves indicate the 95%confidence interval (CI) limits. The vertical solid anddashed
lines (d) correspond to the mean trials of learning completion (see Methods) and
±1 standard error of the mean (SEM), respectively. AS Arcuate sulcus, PS Principal
sulcus, ASS. Stimulus-response association. Source data are provided as a Source
Data file.
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instruction stimuli (IS) and three response targets. In the NovelMap
sessions, they were required to learn the associations for a new set of
stimuli each time, whereas in the FamMap sessions, highly familiar ISs
were presented. In the Strategy task, monkeys were trained to use two
abstract response strategies: a repeat-stay strategy that required
stayingwith theprevious responsewhen the same ISwas repeated, and
a change-shift strategy requiring a response shift when the IS changed
from the previous trial. We used the Strategy task to study an addi-
tional task context not involving learning, and to investigate the cod-
ing properties of responses and stimuli separately because no
association was required for the task.

Recent studies have demonstrated the copresence of both static
and dynamic population coding48,49 associated with distinct neuronal
ensembles50 and differentiated by functional discharge properties (i.e.,
timescales)51,52 at the population level in the PFC. Such studies have
helped to move away from a dichotomous view of populations char-
acterized by only fixed static or dynamic coding mechanisms by sug-
gesting theirmixed contribution to the localmicrocircuitry of the PFC.

What has not yet been determined is whether such coding
schemes are associated with the activity of specific cell types. Here, we
find that both novel S-R associations in the learning context of the
NovelMap task, and responses and stimuli in the Strategy task are
encoded with a mixed coding scheme in the PFC: strongly static by
putative pyramidal cells and dynamic by interneurons. Finally, we
observe a general increase in stability in the presence of well-
established associations in the FamMap and after the learning phase
of the NovelMap task driven primarily by a flexible change in the
coding scheme of interneurons from dynamic to static.

Results
Behavioral results
In the Strategy task, both monkeys performed accurately overall in
repeat and change trials, with an average performance of 98.7% per-
cent and 97.8% corrected trials, respectively. We applied a moving
averagemethod53 (seeMethods) to identify the trial when learningwas
completed in the NovelMap task.We found that bothmonkeys quickly
learned the three S-R associations (Fig. 1d), on average within 16 ±0.7
trials (monkey 1: 17.3 ± 1.1 trials, monkey 2: 14.3 ± 0.9 trials, two-sided
Wilcoxon rank-sum test between monkeys p =0.23), with an average
overall performanceof 93.0% correct responses over all trials (monkey
1: 93.6%, monkey 2: 92.4%). In the FamMap task, the monkeys with
familiar associations performed almost perfectly (Fig. 1e), with an
average performance of 98.6% (monkey 1: 98.0%, monkey 2: 99.1%).

Waveform classification results
Our database included 1457 singleunits (monkey 1: 816;monkey 2: 641)
after an initial preselection (seeMethods) thatwere recorded in at least
one (cells recorded in one task: 575, two tasks: 482, three tasks: 400) of
the three tasks (Strategy task: 1306, 725 from monkey 1 and 581 from
monkey 2; NovelMap task: 881, 514 from monkey 1 and 367 from
monkey 2; FamMap task: 552, 275 frommonkey 1 and 277 frommonkey
2). The recordings were made in the dorsolateral and dorsomedial
prefrontal cortex (Fig. 1c), mainly extending to area 46 and dorsal
area 97.

To classify the cells in our database as narrow waveforms spiking
(NW) putative interneurons and broad waveforms spiking (BW) puta-
tive pyramidal cells, we first calculated the trough-to-peak duration
from the interpolated mean waveforms, and a two Gaussian mixed
model was fitted on the obtained trough-to-peak distribution (see
Methods). To increase the classification’s statistical power, we pooled
together data from all the three tasks47. The Hartigan dip test con-
firmed the bimodality of the trough-to-peak distribution (original
Hartigan dip test p =0.0021; calibrated Hartigan dip test p < 0.001),
and both Akaike’s and Bayesian information criteria indices were
reduced (from −2357 to −3043 and from −2346 to −3016, respectively)

by performing a fit with the two-Gaussianmodel with respect to a one-
Gaussian model. Such a best fit justifies the use of a two-Gaussian
model38,47,54. Figure 2a shows the trough-to-peakdistribution andmean
waveforms of populations classified as BW and NW in the overall
database.Our classification approach allowedus to classify 987 (67.7%)
cells as BW and 332 (22.8%) cells as NW, while 138 (9.5%) cells were left
unclassified (NC) due to their positionwithin the distribution affecting
the area between the two cutoffs of the Gaussian fits (see Methods)38.
The classification of cell types was robust in all tasks (Table 1), and the
proportions did not differ significantly between the classifications
performed with the entire database (Chi-square test: BW pooled tasks
vs BW Strategy task, p =0.99; BW pooled tasks vs BW NovelMap task,
p =0.34; BW pooled tasks vs BW FamMap task, p = 0.87; NW pooled
tasks vs NW Strategy task, p =0.82; NW pooled tasks vs NW NovelMap
task, p = 0.55; NW pooled tasks vs NW FamMap task, p = 0.84; NC
pooled tasks vs NC Strategy task, p =0.77; NC pooled tasks vs NC
NovelMap task, p = 0.50; NC pooled tasks vs NC FamMap
task, p = 0.59).

Several previous studies have categorized BW and NW cells in
relation to their different intrinsic firing properties as regular and fast-
spiking neurons35,36,41,43,47. Taking these previous studies into con-
sideration in order to further validate our classification, we analyzed
three firingmetrics during the fixation period (0.0–1.0 s; see Fig. 1a for
the task timeline),whichweconsidered as our baselineperiod, in order
to investigate the intrinsic firing properties of cell types. We calculated
the Fano factor,mean firing rate, and the coefficient of variation of the
interspike interval distribution (CV) for each neuron during this period
(see Methods). Figure 2b–d shows the three calculated metrics. Con-
sistent with previous studies, NW cells showed a higher average firing
rate than BW cells (p = 6.7 × 10−15, two-sided Wilcoxon rank-sum test).
BW cells also exhibited lower spiking variability, suggesting more
regular firing activity over time than NW cells, as shown by the Fano
factor (p = 5.2 × 10−19, two-sided Wilcoxon rank-sum test) and CV
(p = 1.4 × 10−12, two-sided Wilcoxon rank-sum test).

Population results
We investigated the contribution of cell types and the magnitude of
their selectivity, measured as the percentage of explained variance
(ω2), for novel and familiar S-R associations in the NovelMap and
FamMap tasks, and for both response and stimulus in the Strategy
task. For novel and familiar S-R associations in the NovelMap and
FamMap tasks, we analyzed only correct trials where each of the
three stimuli was associatedwith only one response following the S-R
mappings defined by the specific task rule. Associations between
stimuli and responses were not changed during the mapping ses-
sions. Consequently, we did not distinguish the contribution of
response and stimulus cell selectivity to the coding of the S-R asso-
ciations. However, as shown later, we used the Strategy task to study
the coding of different cell types for stimulus and response inde-
pendently. For the response and the stimulus in the Strategy task, we
selected the correct trials inwhich the response corresponded to one
of the three possible correct target positions (top, right, left) and the
three stimuli displayed, respectively. We compared the average ω2

across the BW and NW neurons to evaluate the amount of variability
in neuronal activity explained by the two types of cells in encoding
the task variables during the time course of the trial (see Methods).
We considered the IS period as the epoch of interest for all sub-
sequent analyses, which includes the period from the IS onset to
1 second after it (see Fig. 1a for the task timeline). Cells recorded for
less than 10 correct trials in each task variable condition (each vari-
able of interest had 3 conditions) were excluded from this analysis.
Our final database of cells in the associative tasks that we used for the
analysis included 487/580 BW and 190/210 NW cells recorded in the
NovelMap task and 275/376 BW and 98/128 NW cells in the FamMap
task. Our final database of cells in the Strategy task included 674/885

Article https://doi.org/10.1038/s41467-023-43712-2

Nature Communications |         (2023) 14:8325 3



BW and 232/293 NW cells for the stimulus and 664/885 BW and 226/
293 NW cells for the response.

The analysis of the amount of variability explained by both the
population of BW and NW cells revealed that both groups of neurons
significantly encoded the S-R associations in both the NovelMap
(cluster-based permutation test, p <0.001) and FamMap (cluster-
based permutation test, p <0.001) tasks throughout the duration of
the IS period (Fig. 3a, b, blue and red bars, for BWandNWpopulations,
respectively). Interestingly, the coding in the two tasks differed for
latency and peak of activity between the two populations. In the NW
population, the associations were coded with shorter population
latency and a clear peak in the early phase of the IS period than in the
BW population. To test for a difference in the selectivity latencies, we
identified the first significant time bin within the IS period in the two
cell type populations. We found that NW population coded sig-
nificantly earlier, both novel (NovelMap, mean onset time, from IS
onset: NW 226.9ms; BW 289.7ms, Kruskal-Wallis between time onset
distributions, p = 0.024) and familiar associations (FamMap, mean
onset time, from IS onset: NW 179.1ms; BW 265.4ms, Kruskal-Wallis
between time onset distributions, p = 0.016). Moreover, we found a
significant decrease in latencies of familiar versus novel associations

coding, in the NW population (Kruskal-Wallis between NW time onset
tasks distributions, from IS onset, p = 0.034), but not in the BW
population (Kruskal-Wallis between BW time onset tasks distributions,
from IS onset, p =0.40). In addition, the coding of the associations
decreased in the late phase of the ISperiod in theNWbut not in the BW
population, which was instead characterized by a more constant
coding throughout the IS period. In the NovelMap task, the NW
population selectivity was higher than the BW population throughout
the early IS and part of the late IS period (cluster-based permutation
test, p <0.001; first bin time: 160ms, last bin time: 745ms, from IS
onset). In contrast, in the FamMap task, such higher selectivity for the
NW population was limited to the early phase of the IS period (cluster-
based permutation test, p <0.001; first bin time: 130ms, last bin time:
415ms, from IS onset) (Fig. 3a, b, black bars). To further investigate the
engagement of BW and NW populations in associative coding, we
recomputed ω2 in two time bins reflecting the two phases of the IS
period and identified the cells modulated significantly (early:
50–450ms and late: 500–900ms IS period, cluster-basedpermutation
test, p <0.05). As shown by the histograms in Fig. 3a, b, we found an
overall larger engagement of the NW population than the BW popu-
lation,measured in terms of percentages of cells modulated by the S-R
associations (NovelMap early IS period, NW: 32%; BW: 16%; NovelMap
late IS period,NW: 31%; BW: 17%; FamMapearly IS period,NW: 32%; BW:
14%; FamMap late IS period, NW: 21%; BW: 19%). Explained variance
cells’ distributions in the investigated sample for novel and familiar
associations confirmed an important involvement of both cell type
populations in the IS early period and the highest population coding of
the NW population (Supplementary Fig. 1a, b).

To further study the distinct cell types’ contribution in the asso-
ciative codingduring the learning and thepost-learningperiods,where

Table 1 | Number and percentage of cells classified for each
experimental task

Task Broad cells (%) Narrow cells (%) Unclassified (%)

Strategy 885 (67.8%) 293 (22.4%) 128 (9.8%)

NovelMap 580 (65.8%) 210 (23.8%) 91 (10.3%)

FamMap 376 (68.1%) 128 (23.2%) 48 (8.7%)

a

*** ***

0

1

2

3
Fa

no
 F

ac
to

r

0

0.4

0.8

1.2

1.6

CV

0

1

2

3

M
ed

ia
n 

Sp
ik

e/
s ***

b c d
BW
NW

-0.2 0 0.2 0.4
TIME (ms)

-1

-0.5

0

0.5

1

N
O

RM
AL

IZ
ED

 A
M

PL
IT

U
DE

0.2 0.3 0.4 0.5 0.6
0

50

100

150

N
EU

RO
N

S

TROUGH-TO-PEAK (ms) 
NC

Fig. 2 | Cell types classification. aComplete database of the waveforms trough-to-
peak duration distribution in milliseconds (left). Colors indicate cells classified as
BW (blue), NW (red), and NC (yellow); normalizedmean interpolatedwaveforms of
BW and NW populations (right), shaded areas represent standard deviation (SD).
b–d Firing metrics calculated separately for BW and NW populations during the
baseline period of fixation (0-1 s): firing rate (b), Fano factor (c) and coefficient of

variation (CV) (d). Colored circles indicate the median values and error bars show
the standard error of mean (SEM) (BW: 778 cells; NW: 274 cells, with at least 30
completed trials). Two-sided Wilcoxon rank-sum test: ***p <0.001 (b),
p = 6.7 × 10−15; (c), p = 5.2 × 10−19; (d), p = 1.4 × 10−12). Source data are provided as a
Source Data file.

Article https://doi.org/10.1038/s41467-023-43712-2

Nature Communications |         (2023) 14:8325 4



associations are consolidated, we identified in each NovelMap session
the trial when learning was completed and accordingly split the
recorded sessions into two blocks of trials: the learning (from the first
trial to the learning completion trial) and the post-learning block (from
the trial after the learning completion trial to the last one recorded in
the session). In this analysis, we selected the cells from the previously
analyzed sample with at least 6 trials for each association in the
learning (NovelMap learning block, NW: 42/210; BW: 87/580) and post-
learning blocks (NovelMap post-learning block, NW: 152/210; BW: 376/
580). The results observed mirrored the selectivity profiles found
between NovelMap and FamMap using the whole session (Supple-
mentary Fig. 2a–d). Populations of both the cell types encoded the
associations over the entire IS period in both the learning and post-
learning blocks (cluster-based permutation test, p <0.001). In the
learning block, the NW population encoded the associations stronger
than the BW population for most of the IS period (cluster-based per-
mutation test, p <0.001; first bin time: 220ms, last bin time: 775ms,
from IS onset). However, in the post-learning block, the stronger
selectivity, was restricted mostly to the early IS period (cluster-based
permutation test, p < 0.001; first bin time: 70ms, last bin time: 595ms,
from IS onset), to vanish later.

Next, we investigated whether the stronger coding of the task
variables displayed by the NW population could be generalized to the
non-associative context of the Strategy task. In this task, each stimulus
is not associated with any fixed response, since the response depends
on the strategy used (Fig. 1b, Strategy task trial sequence). Because of
this, the Strategy task allows us to dissociate stimulus and response
signals, which is not possible in the associative tasks. Similar to the
previous results, even in the Strategy task, the NW population was

more selective than the BW population for coding both the response
(Fig. 3c; cluster-based permutation test, p <0.001; first bin time:
160ms, last bin time: 805ms, from IS onset) and the stimulus infor-
mation (Fig. 3d; cluster-based permutation test, p <0.001; first bin
time: 115ms, last bin time: 925ms, from IS onset). We found, as for the
associative coding, a significantly greater percentage of cells encoding
response and stimulus (Fig. 3c and 3d, histograms) in the NW than in
the BW population (Strategy response early IS period, NW: 22%; BW:
14%; Strategy response late IS period, NW: 30%; BW: 20%; Strategy
stimulus early IS period, NW: 22%; BW: 9%; Strategy stimulus late IS
period, NW: 21%; BW: 10%). The distribution of the explained variance
confirms the involvement of both cell types along with a higher
selectivity of the NW population (Supplementary Fig. 1c, d). The NW
population encoding of the response peaked in the early phase of the
IS period and progressively decreased in its late phase, in contrast to a
more constant coding of the BW population. The NW population
encoding of the stimulus reached themaximum coding capacity in the
early IS period, decreasing thereafter with a similar temporal trend as
in the BW population. Latency analyses revealed a tendency in the NW
population to encode both the response (Strategy response, mean
onset time, from IS onset: NW 289.3ms; BW 327.1ms, Kruskal-Wallis
between time onset distributions, p =0.084) and the stimulus (Strat-
egy stimulus, mean onset time, from IS onset: NW 229.2ms; BW
283.5ms, Kruskal-Wallis between time onset distributions, p =0.21)
earlier in the Strategy task, when compared to the BW population,
however without achieving statistical significance.

Finally, we assessed the impact of some additional factors that
might affect the magnitude of coding. To test for a possible confound
from the firing rate differences between BW and NW populations on
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the observed differences in the codingmagnitude, we recomputed the
average firing rate during the 1-s fixation period for each task and
variable analyzed. As expected, the results confirmed the inherent
difference in firing activity between BW and NW populations for sti-
mulus (2.1 ± 0.1 sp/s, 5.1 ± 0.4 sp/s) and response (2.2 ± 0.1 sp/s,
5.1 ± 0.4 sp/s) in the Strategy task and for novel (2.1 ± 0.1 sp/s,
5.0 ± 0.4 sp/s) and familiar (2.1 ± 0.1 sp/s, 4.4 ± 0.5 sp/s) associations in
NovelMap and FamMap, respectively. We further matched the firing
rates to rule out the possibility that neurons with high firing rates were
responsible for the differences in coding strength. We sorted neurons
in the NW population by firing rate, and then we removed cells from
the population (44 for response and stimulus Strategy task, 39 novel
associations NovelMap, 15 familiar associations FamMap) until the
mean rate was lowered5 to 2.5 ± 0.2 sp/s, making the firing rates com-
parable to those in the BW population. We then repeated the ω2 ana-
lysis, confirming the results shown in Fig. 3. For each variable, the
coding was significant in the whole IS period, as it was the greater
coding of the NW population (Strategy response, cluster-based per-
mutation test, p < 0.001; first bin time: 145ms, last bin time: 715ms;
Strategy stimulus, p <0.001, 115ms, 880ms; NovelMap, p <0.001,
160ms, 580ms; FamMap, p < 0.001, 130ms, 385ms, from IS onset)
(Supplementary Fig. 3a, d, g, j, black bars). We next assessed whether
the presence of cells notmodulated by the tasks reduced the observed
ω2 values. We defined neurons as task-related if their firing rate in the
baseline period (fixation period: 0.0-1.0 s) differed significantly
(Kruskal-Wallis, p <0.05) from any of the two phases (early IS period:
50–400ms; late IS period: 400–900ms) of the IS period (Strategy
response, BW 567/664 and NW 200/226; Strategy stimulus, BW 574/
674 and NW 203/232; NovelMap, BW 377/487 and NW 151/190; Fam-
Map, BW 201/275 and NW 84/98). We found that overall, the BW and
NW task-related populations had higherω2 values and a higher coding
magnitude in the NW population, comparable to the results in Fig. 3
(Supplementary Fig. 4a, d, g, j). Finally, we tested whether the results
were affected by cells with low firing rate. For this analysis, we elimi-
nated the cells with a firing rate less than or equal to 0.5Hz throughout
the recording session (Strategy response, BW 475/664 and NW 192/
226; Strategy stimulus, BW 481/674 and NW 195/232; NovelMap, BW
350/487 and NW 160/190; FamMap, BW 203/275 and NW 81/98). Such
selection criterion also did not result in any change in the previously
observed effects (Supplementary Fig. 5a, d, g, j).

Cross-temporal decoding results
After evaluating how both cell type populations encoded the task
variables in terms of strength and latency, we examined how the
representation of these variables evolved over time during the IS
period. For this purpose, we performed a cross-temporal decoding
analysis in which we trained and tested a linear classifier using all the
possible pairs of time bins28,29, limiting the analysis to the IS period.
This approach produces a classification accuracy matrix (i.e., the
ability of the classifier to discriminate the conditions of the variable
under consideration), in which the off-diagonal values allow us to
evaluate the similarity of the representation across the time bins when
directly compared to the corresponding on-diagonal values (i.e., the
timebins used to train and test the classifier in the specific off-diagonal
data point)26,55,56, according to a dynamic or static scheme57. In this
context, if the classifier’s performance would not be affected using
different time bins, the coding scheme can be defined as static over
time. Otherwise, if the classifier’s performance is reduced, remaining
constant only for time bins close in time, the coding scheme can be
defined as dynamic.

We quantified and statistically tested the difference between the
on- and off-diagonal prediction accuracies of the classifier by com-
paring the off-diagonal prediction accuracies with the predictions
obtainedwhen the training and testbinswere identical, that are theon-
diagonal values (see Methods). Figures 4 and 5 show the cross-

temporal decoding normalized matrices and the associated classifi-
cation matrices of the static off-diagonal data points for the associa-
tions in the NovelMap (Fig. 4a, b) and FamMap (Fig. 4c, d) tasks and for
the response (Fig. 5a, b) and stimulus (Fig. 5c, d) in the Strategy task. In
addition, Supplementary Fig. 6 shows non-normalized cross-temporal
decoding matrices. We observed a general tendency of the BW
population to express a higher percentage of off-diagonal data points
classified as static than the NWpopulation in all the tasks and variables
analyzed (Strategy response, BW: 34.7%, NW: 12.5%; Strategy stimulus,
BW: 35.2%, NW: 11.7%; NovelMap associations, BW: 27.2%, NW: 13.7%;
FamMap, BW: 41.2%, NW: 24.2%; Chi-square test all compar-
ison, p <0.001).

To investigate the temporal evolution of neural coding stability
more quantitatively, we compared the BW and NW populations by
implementing a stability index that estimates the proportion of off-
diagonaldata points classified as static26,55,56 (seeMethods). To ensure a
fair comparison, we applied a number-matching procedure to rule out
that the numerosity of the sample could affect the results, selecting an
equal number of cells for BW and NW populations in each task
(Strategy response: 200; Strategy stimulus: 200; novel association
NovelMap: 165; familiar associations FamMap: 80). We observed a
significant difference in the population coding scheme as reflected by
the coding stability in the IS period between the NW and BW popula-
tions for the novel associations in the NovelMap task (cluster-based
permutation test, p <0.001). The NW population showed significantly
lower stability than the BW population (Fig. 4e), suggesting that a
moderately dynamic coding scheme was maintained for the whole IS
period. On the other hand, the BW population was characterized by a
progressive increase in stability in the early phase of the IS period,
reaching the peak at ~625ms after the presentation of the IS but still
maintaining relatively high stability in the later IS period. Familiar
associations in the FamMap task (Fig. 4f) were represented through a
static scheme in the BW population with a moderate increase in
magnitude comparedwith the novel associations in theNovelMap task
in the late IS period, although this increase was not statistically sig-
nificant (Fig. 6a). However, we observed an earlier increase in stability
starting from 150ms up to the end of the early phase of the IS period
that reached its peak at approximately 475ms (Fig. 6a) in the FamMap
compared to the NovelMap task (cluster-based permutation test,
p <0.001). Surprisingly, although we still found the NW population to
be less static than the BW population (Fig. 4f) (cluster-based permu-
tation test, p <0.001), when comparing the two tasks, we observed a
switch to amore static coding scheme in the late IS periodbut from the
NovelMap to the FamMap task (Fig. 6b) with a significant increase in
stability between the two tasks (cluster-based permutation test,
p <0.001). Static and dynamic coding schemes are thought to be the
product of an interplay between neurons of the decoded population50.
Single unit selectivity properties such as duration of selectivity28,50,55

and preference switching55 contribute to such coding schemes. Sup-
plementary Fig. 7 shows examples of single units classified as BW in
NovelMap (Supplementary Fig. 7a) and FamMap (Supplementary
Fig. 7b). Eachof these cells and theNWcell in FamMap (Supplementary
Fig. 7b) exhibited sustained selectivity throughout the IS period
associatedwith a stable coding scheme. Supplementary Fig. 7a shows a
NW cell recorded in NovelMap, characterized by a transient selectivity
that support a dynamic coding scheme.

We then repeated the analysis using the learning and post-
learning blocks of trials within the NovelMap sessions. Interestingly, in
the learning block (Supplementary Fig. 2b, c) the NW population
showed a significant reduction of the levels of stability (cluster-based
permutation test, p <0.001), suggesting the use of a dynamic coding
scheme during the IS period, compared to the high stability levels
achieved in the late IS period by the BWpopulation, indicating a purely
static scheme. However, in the post-learning block (Supplementary
Fig. 2e, f), we found an overall increase in stability comparable to that
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reported in FamMap, where the BW population showed a significant
rise in stability in the early phase of the IS period compared to the
learning block (Supplementary Fig. 8a). The NW population in the
post-learning block, althoughwith lower levels of stability than the BW
population (cluster-based permutation test, p <0.001) (Supplemen-
tary Fig. 2e, f) exhibited a strong increment in stability compared to the
previous learning block (Supplementary Fig. 8b). Such changes in cell
types coding schemes are consistent with those found between the
entireNovelMap and FamMap sessions, again suggesting a shift from a
dynamic to a static coding scheme in the NW population even before

the associations become familiar. These results taken together suggest
that such a coding scheme shift may occur fast after learning for novel
mappings to be maintained thereafter.

Considering the Strategy task, both response (Fig. 5e) and sti-
mulus (Fig. 5f) were represented similarly in BW and NW populations
to what was observed for novel associations in the NovelMap task. In
both cases, the NW populations were characterized by significantly
lower stability (cluster-based permutation test, p <0.001) during the
whole IS period, suggesting a moderate dynamic scheme as in the
NovelMap task. The BWpopulations increased the static levels in time,
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Fig. 4 | Cross-temporal decoding and stability of cell types for novel and
familiar associations. Cross-temporal decoding, stable data point classification,
and stability index for novel associations in NovelMap (a, b, e) and familiar asso-
ciations in FamMap (c,d, f) for theBWandNWpopulations. The alignment refers to
the presentation of the instructor stimulus. a, c Cross-temporal decoding, where
the y-axis shows the time bins used for training and the x-axis shows the time bins
used for testing the classifier. Normalized classification accuracy values are color-
coded. b, d Themaps show the classification of each data point (except for the on-
diagonal data points, not considered in this analysis and left in blue by convention)

of the cross-temporal decoding as static (yellow) or not (blue) (see Methods).
e, f Stability indices quantify the stability of the coding over time for each cell type
(see Methods). High index values indicate strong stability. Shadow areas represent
±1 SD of indices computed independently by repeating decoding by resampling
neurons with replacement for each cell type population (see Methods). Horizontal
black lines show the time points with a significant difference in stability between
the two populations (cluster-based permutation test p <0.001). Source data are
provided as a Source Data file.
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albeit faster than in theNovelMap task, reaching their peaks at ~500ms
from the IS onset to stabilize only in the late IS period. Supplementary
Fig. 7 shows two BW example cells, selective for response (Supple-
mentary Fig. 7c) and stimulus (Supplementary Fig. 7d) in the Strategy
task, whose persistent selectivity supports a static coding scheme at
population level. Finally, the two NW example cells, with the first
exhibiting a transient response selectivity (Supplementary Fig. 7c) and
the second a stimulus preference switching (Supplementary Fig. 7d),
indicate both a dynamic coding scheme.

We applied the control analyses used previously for the magni-
tude of selectivity to test the influence of factors thatmight impact the
population coding schemes. To control that population coding
schemes were maintained independently of differences in firing, we
repeated the decoding analysis and stability index calculation using

the BW and NW populations with comparable firing rates, and we
confirmed the results shown in Figs. 4, 5 and Fig. 6 (Supplementary
Figs. 3 and 9a). Analogously, task-related BW and NW populations and
populations with a firing rate greater than 0.5Hz maintained a coding
scheme consistent with those found in the main results (Supplemen-
tary Figs. 4, 5 and9c, d, respectively). Finally, themaineffects observed
in NovMap and FamMap were also confirmed by matching the same
sample of recorded cells using only the cells recorded in the samedaily
session in both tasks (Supplementary Figs. 10 and 9b).

Discussion
In this study, we recorded single-unit activity in the macaque’s
dorsolateral and dorsomedial prefrontal cortex (PF) in two asso-
ciative tasks, the NovelMap and the FamMap tasks, and in a Strategy
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Fig. 5 | Cross-temporal decoding and stability of cell types for stimulus and
response. Cross-temporal decoding, stable data point classification, and stability
index for the response (a, b, e) and stimulus (c, d, f) in the Strategy task for the BW
and NW populations. Shadow areas represent ±1 SD of indices computed inde-
pendentlyby repeatingdecodingby resamplingneuronswith replacement for each

cell type population (see Methods). The organization of the figure is the same as
that in Fig. 4. Horizontal black lines show the time points with a significant differ-
ence in stability between the two populations (cluster-based permutation test
p <0.001). Source data are provided as a Source Data file.
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task. Previous studies using this and another simplified strategy-
cued version of the task have shown that the PF is involved in mul-
tiple processes: the generation and maintenance of strategies6,7,58,
past and future response coding4,6,59–61, stimulus-response
associations9,10, and choice and outcome monitoring6, but the spe-
cific role of interneurons and pyramidal cells has not yet been
investigated. In this study, we first focused on characterizing the
neural coding of the S-R associations as static or dynamic in the
populations of putative interneurons and pyramidal cells, both
during learning and after learning. Second, we studied response and
stimulus signals in the Strategy task to investigate how our findings
generalized to a non-associative task.

To classify the cell types, we applied an unbiased clustering
technique to the trough-to-peak duration of the cellular waveforms,
dividing them into broad and narrow spiking cells. Previous studies
have indicated this feature to be a good predictor for the identification
of putative pyramidal cell and interneuron cell types33,42,44,45,62, based at
least partly on their differential expression of subtypes of sodium and
potassium channels with different kinetic properties63,64. We found
that the putative interneurons and pyramidal neurons represented
22.8% and 67.7% of the recorded cells, respectively, consistent with the
proportions identified in previous PF studies in monkeys3,31,33,35. In
addition, the two populations have been shown to have different firing
metrics typical of fast and regular spiking cells, which are in turn
associated with the intrinsic firing properties of interneurons and
pyramidal cells36,38,41,47,54,65.

In this study, we addressed the role of the different cell types. As
expected from our previous study7, we found that both cell types
participated in the encoding of novel and familiar associations during
the IS period. Comparing their neural selectivity and latency, we found
that the putative interneuronsweremore selective in both tasks and at
shorter latencies for the associations than the putative pyramidal
neurons. Furthermore, by using the Strategy task, we were able to
dissociate stimuli and responses, testing whether the results in the
associative tasks could be generalized to both visual stimulus and
response signals in a non-associative task. We found that, similarly to
the associative tasks, both stimulus and response were coded more
strongly and earlier by the putative interneurons. Overall, the per-
centage of variance explained by the task variables is consistent with
that reported in previous studies in PFC51,66,67. Previous studies in PFC
have found a similar stronger encoding of task-related information by
interneurons than by pyramidal neurons in tasks involving numerical
categorization32 and reversal learning36.

Our study extends to the learning context, demonstrating a key
contribution of the putative prefrontal interneurons. However, this
result cannotbe taken as a general rule, and further studieswith spatial
oculomotor delayed-response31 and pro/antisaccade tasks33 did not
show a difference in coding between cell types in the PF, while studies
with direction and color discrimination34,47 have shown increased
encoding by pyramidal neurons. The presence of such discrepancy
between studies indicates that the role of the interneurons can change
based on the task requirement and context3. It has been hypothesized
that the anticipation and, in some cases, stronger selectivity of puta-
tive interneurons may play a key role in refining and sharpening the
representation of task-related information in cortical
microcircuitry39,40. Putative interneurons and putative pyramidal neu-
rons have shown divergence in their preferred activity32, inverted
tuning curves32,68, and opposite synchronous firing patterns30. These
studies suggest a role of putative interneurons in the selective inhibi-
tion of pyramidal neurons, sharpening their selectivity by suppressing
their activity under conditions different from the preferred
condition68, leading to optimization of the circuitry in information
processing.

A debate is still ongoing concerning the mechanisms needed to
maintain task-related information in memory through delay periods.
At first, the dominant view was that the maintenance of information
was conveyed by a persistent sustained activity by the cells involved in
information coding17,18,26,27,69,70, establishing a static view of the repre-
sentation conveyed at the population level as the hallmark of short-
term memory. Such persistent activity has also been observed in
relation to several other cognitive processes in addition to short-term
memory13. However, further evidence has challenged this view by
demonstrating a more dynamic coding than previously
thought23,24,28,29,71. More recent studies have also shown that these
coding schemes are not even mutually exclusive in a given brain area,
but rather that they can coexist48 and be associated with distinct
neuronal populations50–52, undermining the idea of rigid categorical
separation and laying the foundations for conceiving mixed and het-
erogeneous representations in the prefrontal cortex. However, these
recent studies lacked cell type classification, except in functional terms
as linked to the intrinsic temporal properties of discharge in baseline
periods51,52, and did not investigate whether these differences depend
on cell types.

Here, we asked whether these heterogeneous representations
could be associated with different processing properties of the cell
types. To address this question, we used a statistical evaluation

Time (ms)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

St
ab

ili
ty

 In
de

x

Time (ms)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

BW NovelMap 
BW FamMap 

NW NovelMap 
NW FamMap a b

0 500 1000 0 500 1000
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replacement for each cell type population (seeMethods). Source data are provided
as a Source Data file.

Article https://doi.org/10.1038/s41467-023-43712-2

Nature Communications |         (2023) 14:8325 9



method of the off-diagonal reduction of accuracy to quantify coding
schemes. The presence of an off-diagonal reduction indicates a certain
degree of independence between activity patterns16,57 and allows for
the study of this coding property in different animal models26,55,72 and
humans56,73. Our method considers the coding schemes not categori-
cally but as a continuum between stability and dynamism aiming to
capture the high variability of the activity patterns described in the
delay periods74, particularly in PFC22,25. We tested whether the two cell
classes differed in terms of stability of their neural coding by char-
acterizing their temporal coding properties during the IS period. In
this period, based on the strategy implemented, a response was
planned and maintained in memory as in a typical delayed response
task but without turning off the visual response targets. The three
squares are not considered to be a visual cue because they do not
provide information about the correct target being presented.

We observed a heterogeneous coding scheme for response and
stimulus in the Strategy task and for the novel associations in Novel-
Map strictly related to the identification of cell types. We found that in
the late phase of IS period, the population activity was characterized
by a considerably static coding scheme of putative pyramidal neurons
as opposed to the continuous, moderately dynamic scheme of puta-
tive interneurons consistent in time throughout the IS period.

The heterogeneous coding schemes observed in our study pre-
sent an opportunity to evaluate the short-term memory mechanisms
proposed by recurrent network models. Our findings reveal that while
the coding of putative pyramidal neuron populations for stimulus,
response, and novel associations reached high levels of stability in the
late IS phase, they also exhibited moderate dynamism in the early IS
phase. Previous studies51,52,55,75 that used cross-temporal decoding in PF
found similar dynamics which are inconsistent with classical stable
attractor models76. Unlike previous studies that did not differentiate
between cell types, our findings report this effect in a specific popu-
lation of putative pyramidal cells.

Previous computational and experimental studies identified
two mechanisms of information maintenance in prefrontal cortex
short-term memory: a static coding scheme and a dynamic coding
scheme11,12,74,77. Static coding is believed to result from reverberating
connections between pyramidal neurons in PF that are mediated by
NMDA receptors78,79, enabling a sustained representation during the
delay before the action is performed. On the other hand, other
studies have shown that informationmaintenance can occur without
static coding, via transient strengthening of active synapses in the
microcircuitry80,81. In this way, a temporary synaptic memory trace is
formed through activity-dependent short-term synaptic plasticity, a
process supported by dynamic coding16,75. The presence of hetero-
geneous coding schemes in the prefrontal cortex in our study sup-
ports the idea that recurrent network models, such as those
proposed for reservoir computing82, which can express both static
and dynamic properties cohesively83–85 may provide a useful model
for the microcircuitry of the prefrontal cortex. Nevertheless, further
studies will be needed to clarify the contribution of cell types within
the framework of these models in the expression of these coding
schemes.

Understanding how the microcircuitry is organized during
extended learning remains a crucial issue in the field of associative
learning86,87. A recent computational work by Barack et al.88 challenged
the view that during an early stage of task learning, a stable attractor
model and its associatedhigh stability could account for thedynamism
observed in the prefrontal cortex. Instead, through neural network
simulations, they suggest that the gradual strengthening of micro-
circuitry connections and structure over time may lead to increased
population stability after extended learning88. Even though this model
likely explains the dynamical states followed by the prefrontal cortex
during different stages of learning, it needs to be backed by further
experimental evidence87. By comparing novel and familiar

associations, we tested the hypothesis that stability increases during
the representation of S-R associations. Our results indicate a learning-
related effect on the coding stability of associations, with an overall
more static representation in FamMap than in NovelMap, as proposed
by Barak et al.84, but strictly dependent on the cell types. Putative
pyramidal neurons appeared more static in FamMap since the early IS
period, while putative interneurons were more static only in the late
period, during which they switched from moderately dynamic to
purely static. Splitting the NovelMap sessions in two phases to distin-
guish the learning andpost-learningperiods revealed a rapid transition
toward a static scheme of the putative interneurons and an overall
increase of stability in the putative pyramidal cells. These results
suggest that the prefrontal microcircuitry shifted toward a purely
static scheme as soon as the learning was completed, and that such
static scheme persisted when the associations became familiar across
days, as seen in the FamMap. There is currently a lack of data on the
activity of interneurons during learning in monkey studies, with the
exception of a study in the inferior temporal cortex89, it is unclear
whether our findings can be generalized to other forms of learning.
However, recent studies in the lateral prefrontal cortex have demon-
strated a prominent role of putative interneurons to encode infor-
mation crucial for the flexible learning of new stimulus-reward
contingencies in a color-based learning task. In this task, the monkeys,
after the presentation of two stimuli, had to identify the movement
direction for the stimulus associated with a specific color, which was
changed in consecutive reversal blocks. Putative interneurons enco-
ded the stimulus’s color to be monitored and modulated their activity
during the progression of learning of the new color-reward con-
tingencies after reversals90,91, suggesting a pronounced recruitment in
learning periods, consistent with our evidence. The available studies in
mice did not address the problem of coding stability of interneurons;
they only show that numerous classes of interneurons play a mod-
ulatory role in S-R association tasks in several brain areas involved in
associative learning92–94, and that their activity can change as an effect
of learning93.

Another important aspect to consider is the advantage of a more
stable coding scheme following associative learning with familiar S-R.
The static coding scheme we reported for putative pyramidal cells can
optimize the flowof information to downstreamneurons andgenerate
an extended representation in the different microcircuits involved,
both temporally invariant50,87,48,48 and easily extractable15,48,50 for a
downstream neuron. To support such mechanism, interneurons can
provide fine control over the probability and timing of pyramidal cell
discharges through local synchronization of inhibitory inputs95 and
generate a persistent memory signal by pyramidal neurons during
delay periods68,79,96,97. Such a function may be generated both locally
and at the network level of communication between PF with the cau-
date nucleus, putamen via corticostriatal loops98,99, and
hippocampus100, which exhibited to engage bidirectional commu-
nication during associative learning. Associative learning also pro-
motes a plastic reconfiguration of the PFmicrocircuitrywith enhanced
synchronous connectivity with other areas involved in associative
behavior, where cell types specific dopaminergic stimulation is
critical101–105.

Based on our findings, we propose that prolonged experience
with familiar associations may generate a plastic adaptation that is cell
type specific, which could result in the increased stability of inter-
neurons, possibly providing a temporally extended refinement and
sharpening of the pyramidal neurons selectivity after learning. The
increase of the pyramidal cells’ stability both during and after learning
may facilitate the generation of a time-invariant downstream signal,
supported by interneurons, easy to extract in all learning phases.
Collectively, these mechanisms could improve the PF signal-to-noise
ratio in communication with areas involved in associative behavior,
leading to rapid and effective recall and maintenance of familiar
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associations in memory, ultimately enhancing behavioral
performance.

One limitation of the cell types classification approach is that it
has been previously shown that it is possible to have interneurons that
could be misclassified with hybrid properties, particularly those with
waveforms of potentially overlapping intermediate widths between
broad and narrow spiking populations and low discharge frequency46.
Further studies have also identified pyramidal cells called intrinsically
bursting45 and chattering42 with waveforms reduced in amplitude and
high firing, and pyramidal cells of the corticospinal tract with the same
confounding characteristics currently identified only in the motor
cortex106. Considering these past studies, we should be aware that cell
classification with our methods can lead to some residual contamina-
tion in our analysis, as in other studies in the literature. In spite of these
method limitations, other studies have provided support for the
reliability of this classification method. Krimer and colleagues46,
investigating the electrophysiological properties and their morpholo-
gical correlates in the dorsolateral cortex (areas 46 and 9) of 12
macaques, confirmed that most of the cells with high firing (fast-
spiking) and reduced waveforms were GABAergic basket and chan-
delier cells, while cells with regular firing and extended waveforms
were mostly pyramidal cells. These studies, together with studies with
antidromic stimulation33 in the PF of the macaque and juxtacellular
recording107, confirm the reliability of classification methods based on
the metrics used in the current study.

A second limitation of our study concerns the classification of
putative interneurons as a unique class of cells. Recent studies have
classified the major BW and NW classes into additional subclasses
suitable for identifying subpopulations of separate types of inter-
neurons and pyramidal cells38,47,54,91. In rodents, molecular classifica-
tion of interneuron subtypes according to their specific expression of
parvalbumin (PV) and somatostatin (SOM) revealed a major occur-
rence of such subtypes in the medial prefrontal cortex and a role in
working memory108. Such subtypes, particularly the PV and partly the
SOM interneurons, showed high firing levels and narrow waveforms108

similar to the properties found in the interneurons’ population
reported in our study. The challenge for future studies, using those
methodologies, requires linking these functional subclasses to mor-
phological and molecular classes of cell types. Such effort might fur-
ther distinguish the coding schemes and codingmagnitude specific to
different cell subtypes, and enrich the characterization of the pre-
frontal microcircuitry’s coding properties.

The third limitation was not considering the specific coding
properties for stimulus, response, or their combination of the cells
selective for the S-R associations, but we know from previous studies
that prefrontal cells show associative properties9. Asaad and
colleagues9 found that about half of the task-related cells in PF
demonstrated non-linear and linear selectivity for arbitrary S-R asso-
ciations coupled with a minority of cells with specific stimulus and
response selectivity during an S-R association reversal task. Although
in our study stimulus and response were not dissociated within the
mapping tasks, they were studied separately in the non-learning con-
text of the Strategy task. Future studies using a reversal task might
overcome this limitation, but only to a degree, considering that asso-
ciation reversal tasks can generate a proactive inhibition of the pre-
ceding learned associations on the learning of the reversed
associations9,109 that could affect the cells coding properties.

The fourth limitation, which is common to most studies of the
prefrontal cortex, is that when analyzing the response, we could not
distinguish neural signals for goals from those for motor plans to
achieve those goals, as well as from attentional signals. Indeed, the
dissociation of such signals necessitates dedicated experiments49,110,111.

In conclusion, our results provide new insight into the role of the
prefrontal microcircuitry in S-R associations, stimuli and responses,
suggesting a key role of the interneurons with their strong and

dynamic coding scheme, particularly in the early phaseof the IS period
when the integration of the information within the decisional process
takes place. We also identified a change in the coding scheme from
dynamic to static in this class of cells when the associations become
familiar and well established, strictly dependent on the cell types,
indicating a flexible adaptation of local interneuron circuitry depend-
ing on the learning process. More generally, we found that the pre-
sence of mixed dynamics, as described recently by Enel et al.50 in the
PFC, can be dependent on the cell types with the highest stability,
observed in the pyramidal neurons, for the representations of stimuli,
responses, and their association.

Methods
Monkeys and surgery
Two adult male rhesus monkeys (Macaca mulatta) of 8.8 and 7.7 kg
were used for this experiment. Before the beginning of each experi-
mental session, the monkeys were seated in a primate chair, and the
head was fixed with the face stably turned to a screen placed 32 cm
from the monkeys’ eyes. All procedures conformed to the Guide for
the Care and Use of Laboratory Animals (1996) and were approved by
the National Institute of Mental Health Animal Care and Use Com-
mittee. Both monkeys were anesthetized with isoflurane and under-
went a craniotomy on the right frontal lobe. A recording chamber was
implanted over the exposed dura mater using several titanium bone
screws fixed to the adjacent bone and methacrylate cement together
with a head fixation system. Following the surgery, analgesia was given
for 3-5 days.

Experimental tasks
Figure 1a shows the temporal sequence of events common to the
three tasks used in this study. Each trial of each task began with the
presentation of a fixation spot in the center of the screen (white
circle, 0.7° viewing angle) onwhich the animal had tofix andmaintain
the fixation (±7.5°) for 1.0 s, together with three spatial targets pre-
sented on the right, left and top from the center of the screen (14°
from the center of the screen). Subsequently, the fixation spot was
removed and replaced by a visual instruction stimulus in the same
position that the monkey had to continue fixating on for a time of 1,
1.5, or 2 s selected pseudorandomly. The subsequent disappearance
of the IS acted as a go signal for performing a saccade to the selected
targets andmaintaining fixation for 1 s. Then, all three targets turned
white, themonkeywas required tomaintain fixation for another 0.5 s,
and if appropriate, 0.1ml of reward fluid was released at the end of
this period. Finally, the targets turned off in both rewarded and
unrewarded trials, and the 2.5 s intertrial period began. Each IS was
composed of two American standard codes for information inter-
change (ASCII) characters of different colors superimposed and
generated pseudorandomly.

Strategy task
The Strategy task was characterized by two classes of trials and two
strategies that themonkeys were required to use according to the task
rule (Fig. 1b). A repeat trial was a trial in which the same IS from the
previous trial was presented in the current trial, requiring the monkey
to select the same target as in the previous trial (repeat-stay strategy).
A change trial was a trial in which the IS of the previous trial differed
from the IS presented in the current trial, requiring the animal to reject
the previously selected target and select one of the two alternative
targets (change-shift strategy).

A trial was considered correct if the required strategy was suc-
cessfully implemented. In the change trials, only one of the two
remaining targets was randomly associated with a reward. When in a
change trial, a target was chosen according to the change-shift strat-
egy, but the target was not rewarded, although it was strategically
correct (first chance trial). The same trial was presented again (second
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chance trial) until the monkey selected the rewarded target. In the
standard version of the Strategy task, the probability of getting a
reward was 50% in first chance trials, while in the high-reward version
of the Strategy, the probability rose to 90%. The Strategy task analyzed
in this study included both of the aforementioned versions.

If the monkey made a strategic error, a correction trial followed
where the same trial was represented (as in the not rewarded change-
shift trial) until the correct targetwas chosen. Importantly, each IS could
be associated with a different spatial target, consequently preventing
any learning of a fixed stimulus-response association by task design.

Novel and familiar mapping task
Unlike the Strategy task in the novel and familiar mapping tasks, each
of the three ISs was associated with a specific fixed target (Fig. 1b). The
monkeys were required to map the association between each IS and
one of the three targets. The difference between the two tasks lies in
the fact that in the NovelMap task, the three ISs were unique and
generated at the beginning of each recording session, and the mon-
keys had to learn three new stimulus-responsemappings each time. In
contrast, in the FamMap task, three ISs were highly familiar with the
same learned stimulus-response mapping presented through the
recording sessions. After a correct response, a reward was released in
both tasks, and in the case of an error no reward was released. A
correction trial followed an incorrect trial in which the same mapping
was represented until a correct response was made.

Data collection methods and histological analysis
A quartz-insulated platinum-iridium electrode (80 µm outer diameter;
impedance, 0.5–1.5 MΩ at 1 kHz) was used to isolate single-unit
potentials, advanced into the cortex by a 16-electrodemicrodrive with
independent control of each electrode (Thomas Recording, Giessen,
Germany) through a custom, concentric recording head with 518 µm
electrode spacing. The signal from each electrode was amplified and
discriminated using a Multispike Detector (Alpha-Omega Engineering,
Nazareth, Israel) or a Multichannel Acquisition Processor (Plexon,
Dallas, TX). NIHM CORTEX was used for task presentation, behavioral
control, and data collection. The monkeys’ eye position was recorded
and monitored with an infrared oculometer (Bouis Instruments,
Karlsruhe, Germany).

The daily recording sessions were divided into blocks of
approximately 100 trials, each consisting of the three tasks used.
Usually, thefirst block startedwith the standard version of the Strategy
task, followedby theNovelMap task and the high reward version of the
Strategy task, both using the new set of ISs created. Finally, the Fam-
Map task was presented using a set of highly familiar ISs for the animal
and was stable between recorded sessions.

At the end of the data collection, two electrolyte lesions (15 µA for
10 s, anodal current)were inducedby twopenetrations at twodifferent
depths. Approximately ten days after this procedure, the animal was
anesthetized and perfused with buffered formaldehyde (3% by
weight), and steel pins were inserted at the known coordinates of the
chamber. The brainwas cut coronally into 40 µmsections on a freezing
microtome and Nissl-stained for cytoarchitectonic analysis. Steel pins
and electrolytic lesions were considered references to trace the sur-
face projections of the recording sites.

Behavioral analysis for learning trial estimation, and learning
and post-learning block definition in NovelMap
To identify the trial in which learning was completed for each set of
novel associations in the NovelMap task sessions, we applied amoving
average method53 defined as follows:

pk = 2w+ 1ð Þ�1
Xk +w

i = k�w

ni ð1Þ

This method generates for each trial k a window size of (2w + 1)
trials, where k is the central trial. Such a window is a binary vector,
where 1 denotes the k trials when each association was performed
correctly, and 0 otherwise. Binomial distribution was employed to
identify the window (and learning trial k) in which the pk was sig-
nificantly higher (p < 0.05) than the pnull, that is the probability of
correct under the null hypothesis. We used w = 2, which dictated a
5-trial window and a pnull = 0.45, requiring that all 5 trials be correct to
identify the k learning trial. For this analysis, we selected the sessions
with at least 42 trials recorded since the start of the session. Finally, for
each session, we split the trials into two blocks to apply further ana-
lyses: the learning block, which included trials from the first to the k
trial identified by the algorithm, and the post-learning block, which
included the trial after the k trial to the end of the session.

Waveform analysis and data preprocessing
The raw signal was sampled at 40 kHz and filtered with a
600–6000Hz bandpass filter to extract spike activity. A spike
threshold method was used to identify the putative single-unit
activity, setting the threshold to reduce the possibility of capturing
multiunit activity. Single-cell potentials were isolated offline (Off-Line
Sorter, Plexon) using different selection criteria: a clear clustering of
spike waveforms and isolation in three-dimensional PCA space, lack
of interspike intervals <1ms, and stable maintenance of discharge
activity throughout the entire recording session7. For this study,
waveforms identified in the spike sorting phase from the same iso-
lated single unit recorded through different recording blocks within
the samedaily recording sessionweremerged into a single sample for
the subsequent cell types classification analysis phase. The complete
dataset underwent a further manual curation to select only the most
isolated single units with a canonicalmeanwaveform (1643/1789).We
then recalculated the average waveform of each unit, keeping only
the spike waveforms that did not exceed 3 standard deviations from
the initial average waveform at each point, in order to increase the
accuracy in the subsequent cell types classification procedure and to
remove noisy waveforms54,112. Finally, to obtain the dataset used for
neuronal analyses (1457/1643), we removed the cells with a main
trough amplitude smaller than the amplitude of the next peak and
with the amplitude of the previous peak 20% greater than the main
trough54 to remove waveforms thatmight come from axons, typically
characterized by an intrinsic short duration that could result in a
wrong classification of cell types113,114. To classify the cells of our
dataset into broad and narrow waveforms spiking cells, we imple-
mented amethodused inprevious studies38,90,115 (performedusing the
waveform analysis toolbox). We applied cubic interpolation to each
cell of the final dataset to increase the sampling accuracy of the
average waveform from 25 µs to 2.5 µs. The interpolated waveforms
were then normalized and aligned to the main trough. We computed
the trough-to-peak duration as a cell classification metric, repre-
senting the distance between the main trough and the following
waveform peak. Two different versions of the Hartigan dip test were
used to statistically test the bimodality of the trough-to-peak dis-
tribution: the original Hartigan dip test116 and its calibrated version
capable of ensuring greater sensitivity38. We calculated two Akaike’s
and Bayesian information criteria indices to determine whether the
trough-to-peak distribution could be fitted by a one- or two-Gaussian
model. For the two-Gaussian model, two cutoffs were set, which
divided the distribution into three parts. The point within the dis-
tribution where the probability of being classified as a narrow cell was
at least 10 times greater than the probability of being classified as a
broad cell represented the first cutoff. Similarly, the second cutoff
was set when the probability of being classified as broad was 10 times
greater than a classification as a narrow cell38. Cells belonging to the
distribution area that fell between the two cutoffs were considered
unclassifiable.
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Firing metrics
To characterize the intrinsic firing behavior for each neuron, we cal-
culated 3 different firing metrics from the fixation period (0.0 - 1.0 s)
(Fig. 1a) and using all the completed trials: firing rate, Fano factor, and
coefficient of variation (CV). The CV is defined as:

CV=
σISI

μISI
ð2Þ

whereσISI is the standarddeviationof interspike intervals andμISI is the
mean of the interspike intervals. The Fano factor is defined as:

Fano factor =
σ2

spike count

μspike count
ð3Þ

whereσ2
spike count is the varianceof the spike count and μspike count is the

mean of the spike count.
The CV and Fano factor are measures of variability that estimate

the regularity of the spike train with values close to or less than 1,
indicating a trend of regular discharge and values greater than that an
irregular discharge pattern38,47. The median of the distributions of
neurons classified as narrow and broad spiking was then calculated on
the values of each metric.

Population analysis
To quantify the information conveyed by the broad and narrow
populations, we used the percentage of explained variance
(ω2)27,51,117(analysis implemented using the measures of effect size
(MES) toolbox, version 1.6.0.0), which allowed us to calculate the
amount of variance in the neurons’ firing rate explained by the tested
variable. ω2 is defined as:

ω2 =
SSBetweenGroups � df �MSE

SSTotal +MSE
ð4Þ

SSBetweenGroups is the sum of squares between groups (variance
between groups):

SSBetweenGroups =
XG

i= 1

nið�xi � �xÞ2 ð5Þ

where G is the total number of group, and ni and �xi are the number of
trials and the average activity of the i-th group.

SSTotal is the total sum of squares (total variance):

SSTotal =
XN

i= 1

ðxi � �xÞ2 ð6Þ

whereN represents the total number of trials for the cell. MSE denotes
the mean squared error (variance within groups):

MSE=
XG

i= 1

Xni

j = 1

ðxij
� �xiÞ2 ð7Þ

df denotes the degrees of freedom (i.e., the levels of the variable
of interest – 1). To account for the bias in the calculation ofω2, for each
neuron, we balanced the number of trials in each condition of the
analyzed variable to the lowest common value among them, and we
used this value to randomly sample the trials for each condition. This
procedure was repeated 50 times, and the mean value was calculated
between repetitions. We calculated theω2 in bins of 150ms resampled
every 15ms from the start of the analysis window. To investigate the
selectivity latencies between cell types populations and associative
tasks, we identified the first significant bin from the IS onset for each
variable of interest and each cell.

Cross-temporal decoding analysis
A decoding analysis was implemented using a methodology devel-
oped by Meyers et al.118 (implemented using the neural decoding
toolbox, version 1.0.4) and used in previous studies28,29. For each
neuron, the binary spike activity was averaged in 50ms bins sampled
at 50ms intervals and the trials labeled for the conditions of the
variable. We decided to use a maximum correlation coefficient linear
classifier to discriminate between the experimental conditions for its
limited computational requirements and its properties that make it
resistant to variations in the firing rate of the analyzed populations29.
Classification accuracywas used as ametric to evaluate the classifier’s
ability to discriminate the experimental conditions. This metric con-
sists of the number of correctly predicted test trials (during each
cross-validation) when the correlation coefficients between tests and
training trials belonging to the same conditionwere higher thanwhen
they belong to different conditions, divided by the total number of
conditions tested. We applied a 10-fold cross-validation (unless
otherwise stated), where for each experimental condition and neu-
ron, 10 trials were randomly selected, of which 9 were used to train
the classifier and a single trial was used to test the classifier in pre-
dicting the associated condition. The procedurewas then repeated 10
times using a different test trial each time, and the prediction results
were averaged between repetitions. During the cross-validation pro-
cedure, z-score normalization was applied to ensure an equal con-
tribution of the entire neuronal population regardless of the
discharge rate by subtracting themean fromeach neuron activity and
dividing by the SD (both calculated in the training trials considering
all conditions) in the training and test trials29,119. Because the classi-
fier’s performance can be influenced by the size of the population
used, we have balanced the broad and narrow spiking populations for
each variable analyzed. At this point, the entire procedure was repe-
ated 50 times, each time randomly resampling the trials and neurons,
and the results were averaged over the cross-validations and over
these 50 runs.

We trained and tested the classifier using all possible combina-
tions of 50ms time bins to establish the temporal evolution of infor-
mation coding. This analysis results in a classification accuracy matrix
where the values along the diagonal are calculated by performing
training and testing on equivalent time bins. In contrast, different time
bins areused to calculate the off-diagonal values. For graphic purposes
only, we normalized the cross-temporal matrix by rescaling the max-
imum andminimumaccuracy values to a range of values between zero
and one.

Static classification of cross-temporal time points and
stability index
To investigate how the variables of interest were coded in time at
the broad and narrow spiking population level, we classified the
static off-diagonal time points of cross-temporal decoding by
implementing the method used in previous studies26,55,56. We first
calculated the difference in accuracy between each off-diagonal
time point, obtained by training and testing the classifier at two
different time bins of 50ms each, and the two on-diagonal time bins
corresponding to the time bins used for training and testing. The
accuracy value at each on-diagonal time bin was obtained by
training and testing the classifier at the same time bin. The same
procedurewas applied to the 1000 iterations of the null distribution
(see Statistical analysis, method 1), allowing us to obtain a dis-
tribution of the differences in accuracy values between the off- and
on-diagonal bins. Next, each off-diagonal time point was classified
as static if such differences were lower than 99.9% of the differences
estimated at the corresponding time point in the null distribution
(cluster-based permutation test, p < 0.001), and the accuracy value
was significantly higher than chance level (cluster-based permuta-
tion test, p < 0.001).
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The formula below formalizes our definition of a static time bin:

Static binary matrix tp1,tp2ð Þ =∼ CTD tp1,tp2ð Þ <CTD tp1,tp1ð Þ
� �

^

∼ CTD tp1,tp2ð Þ <CTD tp2,tp2ð Þ
� �

^ CTD tp1,tp2ð Þ >CTD shuffled labels tp1,tp2,:ð Þ

ð8Þ

whereCTD represents the accuracymatrix of cross-temporal decoding
obtained on the correctly labeled data, CTD shuffled labels represent
the three-dimensional accuracymatrix obtained by randomly shuffling
the labels (where the third dimension includes the 1000 iterations
performed), tp represents the indices within the matrix (as well as the
timebins used to train and test the classifier), and∧denotes the logical
operator AND. Moreover, to classify the off-diagonal time points as
static, the two corresponding time bins on-diagonal used for training
and testing the classifier were both required to be significantly above
chance level (permutation test, p < 0.0025, Bonferroni corrected for
the number of on-diagonal time bins). Finally, we obtained a binary
matrix of the same size as the cross-temporal decoding, where we
assigned 1 to the time bins resulting as static and 0 for all remaining
time bins.

We then quantified the magnitude of the population coding
stability by the stability index. The stability index provides informa-
tion about the proportion of off-diagonal time points that were
classified as static. For each on-diagonal time bin, we calculated the
stability index by averaging the two dimensions of the binary matrix,
where along the corresponding row and column the classifier was
trained for a specific time bin and tested for the remaining bins. We
then applied a smoothing procedure to the stability index calcula-
tion; that is, we used a moving average in which we included the
previous and the next time bin for a given on-diagonal time bin. This
procedure allowed us to alsouse the average of the previous and next
row and column within the binary matrix for a given time bin.
Moreover, the on-diagonal time bins were required to be significantly
above the chance level. Conversely, the stability index was not cal-
culated because it could not provide information on the repre-
sentation of the variable of interest. Following this, we considered
only the time bins significant for both populations to obtain a correct
comparison between the stability indices calculated for the broad
and narrowspiking populations.

An indexof 1 indicates that the variable in the specific timebinwas
represented in a full static way. An index progressively lower than 1
indicates a progressively lower static representation. The stability
index was calculated for both narrow and broad populations sepa-
rately. To quantify the variability of the stability index, we imple-
mented a bootstrappingmethod56. We repeated the decoding analysis
50 times by resamplingwith replacement of the neurons of each broad
and narrow spiking population (where, for each, we calculated the null
distribution by randomly shuffling the experimental conditions 1000
times). We repeated the procedure for calculating the stability index
described above, obtaining 50 indices for each population. Finally, we
calculated the standard deviation of these 50 indices.

Statistical analysis
Unless otherwise indicated, the statistical analyses were performed
using a cluster-based non-parametric permutation test, a statistical
method that checks the statistical significance by taking into account
themultiple comparisons performed over time51,55,120. To do this, a null
distribution was calculated in different ways according to the analysis:
1. randomly shuffling the experimental conditions before performing
the decoding analysis and ω2, repeating this procedure 1000 times to
test the significance of each time point concerning chance; 2. ran-
domly shuffling broad and narrow spiking neurons to test the differ-
ence in the codingmagnitude in theω2 analysis; 3. due to the expensive
computational demands required by the decoding analysis, we

randomly mixed the broad and narrow spiking neurons 46 times
(where for each iteration we shuffled the labels of the experimental
conditions 1000 times), and calculated the stability index for each false
population obtained. Then, we calculated the 1035 possible differ-
ences, considering all the combinations for each time point of the
index, in order to compare the stability values of the two correctly
classified populations. Contiguous time points in the observed popu-
lations that exceeded the 99.9 percentile of the null distribution were
considered to be candidate clusters (unless otherwise stated). The
maximum summed statistical cluster test120 was calculated for the
observed data and compared with that obtained from the values
obtained from the null distribution, and the number of values of the
null distributionwas greater than the value obtainedwith the observed
data determined the p value of the test.We accepted (unless otherwise
stated) as significant only clusters of time points that exceeded the
99.9 percentile of the null distribution (which is equivalent to a p
value < 0.001).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data necessary for the evaluation of this study are provided with
the data source file and the additional data provided in the https://osf.
io/bwnq9/ repository. Raw data are available on request from the
corresponding author. Source data are provided with this paper.

Code availability
Cell types were classified using The waveform analysis toolbox
(https://bitbucket.org/sardid/waveformanalysis/src/master/). Analysis
of explained variance was calculated using Themeasures of effect size
(MES) Toolbox (https://github.com/hhentschke/measures-of-effect-
size-toolbox) and decoding analysis with the neural decoding tool-
box (http://www.readout.info/). Custom code used to classify static
data points and calculate stability index is available at https://osf.io/
bwnq9/. Data were analyzed using MATLAB 2021b.
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